Biogeme: Python Library  2.5
Public Member Functions | Public Attributes | List of all members
bio_expression.Integrate Class Reference

Class performing numerical integration relying on the Gauss-Hermite quadrature to compute

\[ \int_{-\infty}^{+\infty} f(\omega) d\omega. \]

. More...

Inheritance diagram for bio_expression.Integrate:
bio_expression.Expression

Public Member Functions

def __init__ (self, term, v)
 
def getExpression (self)
 
- Public Member Functions inherited from bio_expression.Expression
def __init__ (self)
 Constructor.
 
def getExpression (self)
 
def getID (self)
 
def __str__ (self)
 
def __neg__ (self)
 
def __add__ (self, expression)
 
def __radd__ (self, expression)
 
def __sub__ (self, expression)
 
def __rsub__ (self, expression)
 
def __mul__ (self, expression)
 
def __rmul__ (self, expression)
 
def __div__ (self, expression)
 
def __rdiv__ (self, expression)
 
def __truediv__ (self, expression)
 Support for Python version 3.x. More...
 
def __rtruediv__ (self, expression)
 Support for Python version 3.x. More...
 
def __mod__ (self, expression)
 
def __pow__ (self, expression)
 
def __rpow__ (self, expression)
 
def __and__ (self, expression)
 
def __or__ (self, expression)
 
def __eq__ (self, expression)
 
def __ne__ (self, expression)
 
def __le__ (self, expression)
 
def __ge__ (self, expression)
 
def __lt__ (self, expression)
 
def __gt__ (self, expression)
 

Public Attributes

 function
 
 variable
 
 operatorIndex
 
- Public Attributes inherited from bio_expression.Expression
 operatorIndex
 

Detailed Description

Class performing numerical integration relying on the Gauss-Hermite quadrature to compute

\[ \int_{-\infty}^{+\infty} f(\omega) d\omega. \]

.

As an example, the computation of a normal mixture of logit models is performed using the following syntax, where condprob is the conditional (logit) choice probability:

1 omega = RandomVariable('omega')
2 density = bioNormalPdf(omega)
3 result = Integrate(condprob * density,'omega')

Comments:

It is usually more accurate to compute an integral using a quadrature procedure. However, it should be used only in the presence of few (one or two) random variables. The same integral can be computed using Monte-Carlo integration using the following syntax:

1 BIOGEME_OBJECT.DRAWS = { 'omega': 'NORMAL'}
2 omega = bioDraws('omega')
3 result = MonteCarlo(condprob)

Definition at line 783 of file bio_expression.py.

Constructor & Destructor Documentation

def bio_expression.Integrate.__init__ (   self,
  term,
  v 
)
Parameters
termany valid bio_expression representing the expression to integrate
vname of the integration variable, previously defined using a bioExpression::RandomVariable statement.

Definition at line 786 of file bio_expression.py.


The documentation for this class was generated from the following file:
Copyright 2016 Michel Bierlaire