Biogeme: Python Library  2.5
Functions
legendre.py File Reference

Fonctions for transformed Legendre polynomials, orthonormal on [0,1]:

\[ L_n(x) = \frac{\sqrt{4n^2-1}}{n}(2x-1)L_{n-1}(x)-\frac{(n-1)\sqrt{2n+1}}{n \sqrt{2n-3}} L_{n-2}(x), \]

with $L_0(x)=1$, $L_1(x)=\sqrt{3}(2x-1)$ and $L_2(x) = \sqrt{5}(6x^2-6x+1)$. More...

Go to the source code of this file.

Functions

def legendre.legendre00 (x)
 Implements the transformed Legendre polynomials of degree 0

\[ L_0(x) = 1 \]

. More...

 
def legendre.legendre01 (x)
 Implements the transformed Legendre polynomials of degree 1

\[ L_1(x)=\sqrt{3}(2x-1) \]

. More...

 
def legendre.legendre02 (x)
 Implements the transformed Legendre polynomials of degree 2

\[ L_2(x)=\sqrt{5}(6x^2-6x+1) \]

. More...

 
def legendre.legendre03 (x)
 Implements the transformed Legendre polynomials of degree 3

\[ L_3(x)=\sqrt{7}(20 x^3 30 x^2+12x-1) \]

. More...

 
def legendre.legendre04 (x)
 Implements the transformed Legendre polynomials of degree 4. More...
 
def legendre.legendre05 (x)
 Implements the transformed Legendre polynomials of degree 5. More...
 
def legendre.legendre06 (x)
 Implements the transformed Legendre polynomials of degree 6. More...
 
def legendre.legendre07 (x)
 Implements the transformed Legendre polynomials of degree 7. More...
 

Detailed Description

Fonctions for transformed Legendre polynomials, orthonormal on [0,1]:

\[ L_n(x) = \frac{\sqrt{4n^2-1}}{n}(2x-1)L_{n-1}(x)-\frac{(n-1)\sqrt{2n+1}}{n \sqrt{2n-3}} L_{n-2}(x), \]

with $L_0(x)=1$, $L_1(x)=\sqrt{3}(2x-1)$ and $L_2(x) = \sqrt{5}(6x^2-6x+1)$.

See [1].

Definition in file legendre.py.

Copyright 2016 Michel Bierlaire