Ortelli, N., de Lapparent, M., and Bierlaire, M. (2023)
Resampling estimation of discrete choice models
In the context of discrete choice modeling, the extraction of potential behavioral insights from large datasets is often limited by the poor scalability of maximum likelihood estimation. This paper proposes a simple and fast dataset reduction method that is specifically designed to preserve the richness of observations originally present in a dataset, while reducing the computational complexity of the estimation process. Our approach, called LSH-DR, leverages locality-sensitive hashing to create homogeneous clusters, from which representative observations are then sampled and weighted. We demonstrate the efficacy of our approach by applying it on a real-world mode choice dataset: the obtained results show that the sam- ples generated by LSH-DR allow for substantial savings in estimation time while preserving estimation efficiency at little cost.
Download PDF