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Abstract
In the context of discrete choice modeling, the extraction of potential behavioral insights
from large datasets is often limited by the poor scalability of maximum likelihood estimation.
This paper proposes a simple and fast dataset reduction method that is specifically designed
to preserve the richness of observations originally present in a dataset, while reducing the
computational complexity of the estimation process. Our approach, called LSH-DR, lever-
ages locality-sensitive hashing to create homogeneous clusters, from which representative
observations are then sampled and weighted. We demonstrate the efficacy of our approach
by applying it on a real-world mode choice dataset: the obtained results show that the sam-
ples generated by LSH-DR allow for substantial savings in estimation time while preserving
estimation efficiency at little cost.

Keywords: discrete choice models, maximum likelihood estimation, dataset reduction,
sample size, locality-sensitive hashing.
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1 Introduction
The technological advancements of the past decades have allowed transforming an increasing
part of our daily actions and decisions into storable data. Specifically, the rise of digital
communication has led to a radical change in the scale and scope of available data in relation
to virtually any object of interest. In the field of discrete choice analysis, such abundance
of data has the potential to significantly expand our understanding of human behavior, but
this prospect is limited by the poor scalability of discrete choice models (DCMs).

Indeed, when estimating DCMs, the use of ever-larger datasets raises two issues: (i) the
number of possible model specifications exponentially grows with the number of candidate
explanatory variables, implying that analysts must spend more time searching for appro-
priate specifications; and (ii) the computational cost of maximum likelihood estimation
increases with the number of observations, quickly becoming intractable for any advanced
model structure. While the first issue has spurred great interest,1 the second has received
much less attention: in order to deal with the increased computational cost associated with
large datasets, effort has mostly been dedicated to improving the optimization methods used
to estimate DCMs (Lederrey et al., 2021; Rodrigues, 2022) or to enhancing their implemen-
tation (Molloy et al., 2021; Arteaga et al., 2022).

This study moves beyond traditional techniques by exploring a less common approach,
which consists in reducing the size of datasets by sampling. Because the most frequently
used algorithms for maximum likelihood estimation compute the log likelihood function
and its gradient across the whole dataset at each iteration, considering fewer observations
effectively reduces their computational burden. Removing observations from a dataset is
usually advised against by choice modelers, but has nevertheless become common practice
when training machine learning models on large amounts of data: given the iterative nature
of model specification, the use of a smaller sample that provides good approximations of
the model’s quality allows for early modeling decisions to be taken significantly faster (Park
et al., 2019). Moreover, in the case of maximum likelihood estimation for DCMs, subsamples
may additionally be used to obtain good starting values for estimation on the whole dataset
after the definitive model specification is reached.

We propose a fast dataset reduction technique that is designed to introduce as little bias as
possible into the parameter estimates of the model of interest. We diverge from the common
premise that all datasets contain some fraction of less relevant observations; instead, our
method aims at preserving the diversity of observations originally present in the dataset,
while reducing its size. Our proposed approach leverages locality-sensitive hashing to create
clusters of similar observations, from which “representative” observations are sampled. The
observations obtained in such way are then given weights that are proportional to the sizes
of the clusters they represent, so as to mimic the full dataset during the model estimation
process. As argued in the following sections, we believe that a carefully selected and weighted
subsample of observations is capable of providing close-to-identical estimation results while
being, by definition, less computationally demanding. The source code is currently being
consolidated and integrated into the Biogeme software (Bierlaire, 2018, 2020).

The remainder of this document is organized as follows: Section 2 provides an overview of the
pertinent literature; Section 3 introduces the concept of locality-sensitive hashing and then
proceeds to describe our proposed algorithm; Section 4 presents and discusses the results
obtained by applying our method to a real-world mode choice dataset; finally, Section 5
summarizes the findings of this study and identifies the future steps of this research.

1The recent literature is rich in studies that seek to mitigate the need for presumptive structural as-
sumptions in DCMs. We refer the reader to van Cranenburgh et al. (2021) for a review and discussion.
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2 Literature review
Instance selection and prototype generation are dataset reduction tasks that consist in pro-
ducing a smaller representative set of data points from a given dataset, respectively by
sampling said points or by creating new, artificial ones. While shrinking datasets, instance
selection and prototype generation techniques typically aim at minimizing information or
performance loss by discarding redundant data points; as such, they have been shown to be
particularly beneficial to instance-based methods whose performances rely on specific data
points, such as support vector machines or k-nearest neighbors algorithms (Olvera-López
et al., 2010; Alexandropoulos et al., 2019).

The recent literature offers a variety of instance selection and prototype generation methods.
Among those, a prevalent approach consists in using clustering algorithms to identify groups
of similar data points, from which some are either sampled or merged into prototypes.
Methods based on k-means and its variations are particularly popular despite becoming
computationally heavy when applied to large datasets (Ougiaroglou and Evangelidis, 2016;
Ren and Yang, 2019; Castellanos et al., 2021; Chang et al., 2021; Ougiaroglou et al., 2021;
Saha et al., 2022). To circumvent this limitation, another stream of research makes use
of locality-sensitive hashing (LSH) to cluster similar data points together (Arnaiz-González
et al., 2016; Aslani and Seipel, 2020; Zhang and Liu, 2023). While k-means is known to be
superior in terms of accuracy and reliability, LSH is intrinsically faster because its complexity
is linear in the number of data points to be hashed (Paulevé et al., 2010). This aspect is
crucial when instance selection and prototype generation methods are used to reduce the
computational burden of model training; we therefore deem techniques based on LSH as
particularly promising.

To the best of our knowledge, there have only been two attempts at developing dataset
reduction methods in the context of discrete choice modeling. We explain this scarcity
by the fact that DCMs are generally used to extract behavioral insights from data and,
as such, require datasets to be representative of the actual population of interest. Any
dataset reduction technique applied prior to estimating a DCM therefore needs to preserve
the characteristics of the full dataset in the smaller sample, as it could otherwise lead to
erroneous or biased model estimation results. In contrast, the machine learning paradigm
solely focuses on maximizing predictive accuracy — or on minimizing any loss due to dataset
reduction —without taking into account representativeness.

The earliest instance selection method for DCMs we could find is proposed by van Cranen-
burgh and Bliemer (2019): their method scales any dataset down to a predefined fraction of
its size while iteratively minimizing an estimate of the D-error, obtained by means of a sim-
plified version of the model of interest.2 In doing so, they seek to guarantee that the model
parameters are estimated as precisely as possible on a sample that is much smaller than the
full dataset, but in reality, this only encourages their algorithm to keep observations that
are similar among them. As a result, the obtained samples may not be representative of the
full dataset and therefore lead to biased parameter estimates. The second direct precedent
of this study is described by Schmid et al. (2022) as a pre-processing step applied to a very
large dataset. The method consists in dividing the dataset into homogeneous clusters using
k-means; a single observation is then sampled from each cluster and weighted according to
the cluster size. While this approach is capable of preserving the characteristics of the full
dataset thanks to the weighting scheme it employs, it still suffers from the fact that k-means
is computationally heavy, which severely limits its usage.

2The D-error statistic is a measure of efficiency commonly used in experimental design. It is defined as
the determinant of the asymptotic variance-covariance matrix of the estimated model parameters.
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In this paper, we follow an approach similar to the one presented in Schmid et al. (2022),
but based on LSH. Our main contribution is a fast dataset reduction technique that re-
lies on clustering to sample and weight observations. Jointly, the sampling strategy and
weighting schemes used by our method guarantee that the characteristics of the full dataset
are preserved. The generated samples therefore lead to the same behavioral findings as
the full dataset, while the computational complexity of model estimation is effectively re-
duced.

3 Methodology

3.1 Intuition
Consider a choice dataset of N observations (xn, in), each consisting of a vector xn of
explanatory variables associated with individual n, together with the observed choice in of
that same individual among J alternatives. In its simplest form, a discrete choice model
P (i |xn; θ) calculates the probability that individual n chooses any alternative i as a function
of xn and θ, where θ is a vector of model parameters to be estimated from the data.

The values of the model parameters are typically determined through maximum likelihood
estimation, which consists in finding the values of θ that maximize the joint probability of
replicating all observed choices in the dataset. In practice, the logarithm of the likelihood
is usually maximized instead, for numerical reasons. The log likelihood function is therefore
defined as

L(θ) =
N∑

n=1

logP (in |xn; θ) . (1)

Let us now assume that the dataset contains some observations that are identical in all
explanatory variables and in the observed choice. By gathering the observations into G < N
groups of identical observations, we may rewrite (1) as

L(θ) =
G∑

g=1

Ng · logP (ig |xg; θ) , (2)

where Ng denotes the size of group g and ig and xg are the observed choice and explanatory
variables shared by all observations in group g, respectively. By definition, the G groups are
a partition of the full dataset and therefore verify

G∑
g=1

Ng = N. (3)

(1) and (2) are equivalent and, as such, yield the exact same parameter estimates when
maximized. However, since G < N , the computational cost of evaluating (2) is smaller, by
a ratio of approximately G

N .3 This is empirically shown in Section 4, Experiment B.

The idea behind our dataset reduction method is to extend this factorization trick to obser-
vations that are nearly identical. In other words, by clustering together not only duplicates,
but also “very similar” observations, the intent of our method is to further decrease the

3One could argue that multiplying P (ig |xg ; θ) by Ng adds arithmetic operations that are not required
in (1); still, this additional burden is negligible in comparison to the number of operations needed to evaluate
P (in |xn; θ) for every n, even in trivial model structures.
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number of distinct groups and, in doing so, to effectively reduce the computational time as-
sociated with evaluating the log likelihood function and its gradient. Of course, this comes
at the cost of degrading the estimation results because part of the information contained in
the dataset is lost; still, the use of an adequate clustering scheme limits said degradation
while granting our method a certain reliability. The clustering technique designed for this
purpose is inspired from locality-sensitive hashing (LSH), which we introduce now.

3.2 Locality-sensitive hashing
LSH is an efficient method for finding similar items in data. As opposed to conventional
hashing functions, which allocate items to unique encrypted outputs, LSH seeks to gather
“similar” items into clusters — or buckets. It achieves this goal by combining the outcomes
of several hashing functions, designed in such way that pairs of items are more likely to
be hashed to the same bucket if they are close to each other in their original space than if
they are far apart. As mentioned earlier, the main advantage of LSH over other clustering
techniques is that its computational complexity is linear in the number of items to be
hashed.

A family of LSH functions H = {h : (M,d) → Z} is a collection of functions h that map
elements of a metric space (M,d) onto the set of integers Z (Leskovec et al., 2020). Each
integer represents a different bucket, and two data points xp and xq belong to the same
bucket of function h if and only if h(xp) = h(xq). For instance, a well-known family that is
suited for Euclidean spaces is based on the function

ha,b(x) =

⌊
a · x+ b

w

⌋
, (4)

where ⌊ · ⌋ denotes the floor function, a is a vector whose entries are independently drawn
from a normal distribution N (0, 1), b is a real value chosen uniformly from the range [0, w)
and w is the bucket width (Datar et al., 2004). One may see (4) as a projection of all data
points onto a random line whose direction is given by vector a; an offset equal to b is then
added to all projected points before the line is discretized into uniform intervals of size w.
All data points that fall in the same interval are therefore deemed “equivalent” —contingent
on a— and are assigned to the same bucket.

Parameter w plays a crucial role in the effectiveness of LSH, but its value is context-
dependent. By changing the bucket width— or discretization step — one can choose an
appropriate degree of similarity between data points within buckets: a sufficiently small w
only groups points that are exactly identical, whereas greater values result in fewer buckets
that contain larger amounts of increasingly dissimilar points. The effect of increasing or
decreasing w is demonstrated in Section 4, Experiment C.

Another way of improving the discriminative power of LSH is to combine several hash
functions. In the case of the family defined by (4), this corresponds to simultaneously
projecting the data onto multiple random lines. Suppose a and b are drawn R times: now,
two data points xp and xq belong to the same bucket if and only if they are grouped together
by all R random projections, i.e.:

HA,B(xp) = HA,B(xq) ⇐⇒ har,br (xp) = har,br (xq) ∀r = 1, . . . , R, (5)

where, for the sake of conciseness, A = (a1, . . . , aR) and B = (b1, . . . , bR) gather the R
realizations of a and b, respectively. Increasing R reduces the joint probability that two
data points are grouped together by all projections, which results in more buckets containing
fewer items. This is also illustrated in Section 4, Experiment C.
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3.3 LSH-based dataset reduction (LSH-DR)
Our dataset reduction algorithm has three main ingredients, namely: (i) an LSH function
or a combination of LSH functions capable of partitioning a dataset of size N into buckets
that only contain “similar” observations; (ii) a sampling strategy, based on which some
observations are selected from each bucket; and (iii) a weighting scheme that assigns a
weight Ng to each selected observation (xg, ig). The G observations obtained in such a way,
together with their associated weights N1, . . . , NG, constitute the outcome of our dataset
reduction method. Any model of interest may then be estimated on the obtained subsample
rather than on the whole dataset by using the log likelihood function of (2), with ig and
xg now referring to the observed choice and explanatory variables associated with the g-th
selected observation, respectively.

Clustering Our method uses the family of LSH functions introduced in (4) with, as pa-
rameters, the discretization step w and the number of projections R. It is crucial that prior
to hashing, all numerical variables are normalized such that their values are between 0 and
1 and that all categorical variables are encoded using binary indicators. The individuals’
choices are not taken into account during the clustering, which implies that the buckets
might be heterogeneous, i.e., observations with different chosen alternatives might end up
in the same bucket.

Sampling The current version of our method randomly selects one observation from each
alternative in each bucket. Up to J observations may therefore be sampled from each het-
erogeneous bucket, J being the number of alternatives in the choice context. Other sampling
strategies may be used instead, including some that rely on the content of each bucket to
generate synthetic prototypical observations. We leave these for future work.

Weighting Each selected observation (xg, ig) is given a weight Ng that is equal to the num-
ber of observations that share the same bucket HA,B(xg) and chosen alternative ig:

Ng = |{(xn, in) | HA,B(xg) = HA,B(xn), ig = in}| (6)

The weights are of crucial importance in the estimation process, as those ensure that the
sample best approximates the dataset: since the observations are not uniformly distributed
among the buckets, some particular combinations of variable values might end up underrep-
resented if the weights are neglected. Jointly, the adopted sampling strategy and weighting
scheme guarantee that the sum of all weights is equal to the number of observations in the
full dataset, as in (3).

4 Experiments
The efficacy of our method is demonstrated by means of a series of experiments based on
the London passenger mode choice (LPMC) data (Hillel et al., 2018). The dataset consists
of more than 81’000 trip records collected over three years, combined with systematically
matched trip trajectories alongside their corresponding mode alternatives. Four modes are
distinguished: walk, cycle, ride public transport and drive. We divide the dataset into two
parts: the first two years of data —54’766 observations— are used for model estimation
whilst the final year — 26’320 observations— is set aside for out-of-sample validation.

In the experiments, the data is used to train two multinomial logit models that we borrow
from Hillel (2019). We refer to those as “MNL-S” and “MNL-L” and provide their specifi-
cations in the Appendix. The MNL-S includes 10 continuous variables and 13 associated
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parameters, whereas the MNL-L considers 11 continuous variables, 8 categorical variables
encoded using binary indicators and 53 associated parameters. All model estimations are
performed using the Biogeme package for Python (Bierlaire, 2018, 2020) on a 2.3 GHz 32-core
cluster node with 192 GB of RAM.

Experiment A: random samples
We begin by illustrating the relation between sample size, estimation time and quality of the
estimation results. For this purpose, we estimate the MNL-S on random subsamples of the
LPMC dataset and report the following quantities: (i) the execution time, which consists of
the sampling and estimation times; (ii) the normalized out-of-sample log likelihood (OSLL),
i.e., the log likelihood yielded by the estimated model on the validation data, normalized
by the number of observations; (iii) the mean absolute percentage error (MAPE) of the
parameter estimates; and (iv) the value of time for the “drive” alternative, computed as
the ratio between the estimates of the parameters associated with travel time and cost.
The subsamples range from 100% to 1% of the full dataset size — i.e., 54’766 —and 100
repetitions are performed at each sample size. Figure 1 presents the obtained results by
means of moving-window boxplots displaying the 5th, 25th, 50th, 75th and 95th percentiles.
The parameter estimates are plotted individually on Figure 7 in the Appendix.
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Figure 1: Estimation of the MNL-S on random samples of the LPMC dataset.

The first subfigure illustrates that the model estimation time decreases linearly with the
number of observations in the sample, and so does the range of values obtained across
repetitions. The normalized OSLL stays reasonably close to its maximum value down to
30% of the full dataset size, but seriously declines for smaller samples. Similarly, the MAPE
slowly increases until the sample size reaches approximately 20%, then degrades at a much
faster pace. Finally, the median of the value of time appears to be relatively stable, but
its accuracy deteriorates considerably as the sample size decreases. Overall, Figure 1 shows
that random sampling is a decent strategy when the model of interest is small; still, the next
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experiments show that significantly better results can be achieved with a negligible increase
in execution time.

Experiment B: LSH-DR
We now move to estimating the MNL-S on samples generated by our proposed method. We
apply the LSH-DR algorithm on the LPMC data 10’000 times, with w ranging from 0.02 to
0.2 and R = 4. The obtained samples range from 48’206 to 1’361 observations in size, that
is, from 88% to 2% of the full dataset. The results are shown in Figure 2 and Figure 3. For
comparative purposes, we also report the outcomes of the previous experiment.
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Figure 2: Estimation of the MNL-S on samples generated by LSH-DR. The results obtained
on random samples are also reported, for comparative purposes.

Figure 2 demonstrates that LSH-DR is capable of producing substantially better samples
than random sampling, for a small increase in execution time: down to approximately
40% of the full dataset size, the samples generated by LSH-DR yield smaller MAPEs of
the parameters and more accurate estimates of the value of time. Figure 3 further shows
that our method also has a beneficial effect on individual parameter estimates. As the
sample sizes decrease, the estimates obtained on random samples deteriorate faster than
those obtained on samples obtained via LSH-DR. One should note that the estimate of the
parameter associated with rail in-vehicle time degenerates at a much faster pace than the
other parameters for both sampling methods, but this is likely due to the fact that the
variable is zero in almost 70% of the observations.

Experiment C: sensitivity analysis
This experiment highlights the importance of choosing an appropriate bucket width w and
number of projections R for LSH-DR. Figure 4 shows the effect of these parameters on the
size of the sample obtained by hashing the first two years of the LPMC data. In this case
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Figure 3: Percentage error of the MNL-S parameter estimates on samples generated by LSH-
DR. The results obtained on random samples are also reported, for comparative purposes.

only the 10 explanatory variables of the MNL-S are considered, as if the dataset was being
reduced prior to estimating that model.
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Figure 4: Size of samples generated by LSH-DR as a function of w and R.

Figure 4 shows that depending on R, the behavior of LSH-DR varies greatly as w increases.
Still, irrespective of R, a sufficiently small w yields a number of buckets equal to the number
of unique observations in the data, which could be seen as lossless dataset reduction.4 There
are 49’020 unique observations in this setting — i.e., when considering only 10 variables —
which means that over 5’700 observations are duplicates.

4On Figure 4, such a value is too small to be represented for R = 1.
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Experiment D: comparison with state-of-the-art methods
In this experiment, we compare the performance of our method with three other dataset
reduction techniques, namely: (i) random sampling; (ii) k-means clustering, similar to the
approach taken in Schmid et al. (2022);5 and (iii) sampling of observations (SoO), as pro-
posed by van Cranenburgh and Bliemer (2019).6 We proceed as follows: a certain percentage
of the full dataset size is chosen and we retrieve from Experiment–B the 100 samples of size
closest to that percentage; the three other dataset reduction techniques are then used to
generate samples of those exact sizes, which are finally used to train the MNL-S model.
Figure 5 reports the sampling time, normalized OSLL, parameters MAPE and value of time
for the “drive” alternative for 75%, 50% and 25% of the full dataset. The size of the samples
retrieved from Experiment B ranges from 40’879 to 41’273, from 27’146 to 27’615 and from
13’480 to 13’984, respectively.
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Figure 5: Comparison of dataset reduction techniques at approximately 75%, 50% and 25%
of the full dataset size. The boxplot whiskers indicate the 5th and 95th percentiles, whereas
the grey horizontal lines represent the normalized OSLL and value of time obtained on the
full dataset.

Overall, Figure 5 illustrates that the samples producing the most accurate results are ob-
tained via k-means. For all chosen percentages of the full dataset size, k-means generates
the best samples in terms of OSLL, MAPE and value of time; only for the largest size does
LSH-DR generate samples of comparable quality. Still, despite its superiority, k-means is
practically unusable because of its runtime: it takes from 8 up to 26 minutes to obtain

5The technique based on k-means consists in running the clustering algorithm on the observations of
each alternative separately, then randomly sampling one observation from each cluster and associating it
with a weight that corresponds to the size of the cluster.

6In SoO, we use the MNL-S model estimated on the full dataset as the sampling model. All individual
Fisher information matrices are pre-computed to speed up the search. The algorithm was implemented from
scratch to be compatible with the rest of our code.
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a sample from a relatively small dataset. That is between 4’000 and 16’000 times longer
than LSH-DR and up to 400’000 times longer than random sampling. As regards SoO, the
method is shown to provide the worst results in terms of OSLL, MAPE and value of time,
while also displaying the largest runtimes. This is due to the fact that SoO is designed to
maximize the efficiency of the parameter estimates rather than their precision or the model’s
predictive accuracy.

Experiment E: larger model
Finally, we estimate the MNL-L model on samples generated by LSH-DR to demonstrate
that our method may also be beneficial to larger models. To this end, we apply the LSH-
DR algorithm on the LPMC data 10’000 times, with w ranging from 0.1 to 1 and R = 4.
Note that the MNL-L model includes several discrete explanatory variables; those are not
treated differently by the LSH-DR method, but their inclusion requires the values of w to
be adapted to achieve the desired range of sample sizes. The generated samples range from
51’574 to 3’584 observations in size, that is, from 94% to 7% of the full dataset. Figure 6
displays the achieved results. For the sake of comparison, the results obtained on random
samples are also shown, both on Figure 6 and on Figure 8 in the Appendix.
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Figure 6: Estimation of the MNL-L on samples generated by LSH-DR. The results obtained
on random samples are also reported, for comparative purposes.

Closing remarks
The conducted experiments empirically demonstrate the validity and potential of our pro-
posed resampling method. In particular, they show that the LSH-DR algorithm outperforms
random sampling for both model sizes, in exchange for a negligible increase in computational
time. The algorithm is also shown to be several orders of magnitude faster than the alterna-
tive approaches proposed in the existing literature, while generating samples of comparable
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or superior quality. Finally, the reported results confirm that the samples generated by
our algorithm yield accurate parameter estimates, which is of crucial importance in discrete
choice modeling.

5 Conclusion
In this paper, we propose a simple and fast dataset reduction technique designed to speed
up the estimation of discrete choice models. The gain in computational time naturally
comes at the cost of deteriorating the model estimation results; however, our method is
specifically designed to mitigate this deterioration by preserving as much diversity as possible
among the observations. As a result, the quality of the parameter estimates stays within
reasonable ranges even for large reduction rates. The presented results additionally highlight
the benefits of our method on the estimation of models of small and medium size.

Intended future work includes the development and testing of more elaborate sampling
strategies for selecting observations from buckets. For instance, those could be designed to
increase the probability of choosing the most representative observations within each bucket,
or to rely on the content of each bucket to generate synthetic prototypical observations. Ad-
ditional investigation could also consist in developing LSH functions that can accommodate
the analyst’s knowledge of the dataset or the structure of the model of interest. For instance,
one could consider a distinct projection for each alternative in the choice context and, in each
projection, include only the variables that are relevant to the corresponding utility function;
alternatively, one could associate probability distributions with greater means to specific
variables so as to give them more importance in the hashing. Finally, another promising
direction of research consists in embedding the LSH-DR method within a stochastic gra-
dient descent algorithm for model estimation, such as the one proposed in Lederrey et al.
(2021). The use of carefully selected and weighted batches of data, rather than random
ones, could result in significantly better approximates of the gradient and, as a result, speed
up convergence.
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Appendix

Table 1: Specification of the MNL-S and MNL-L logit models (Hillel, 2019). All categorical
variables are encoded using binary indicators. All explanatory variables are associated with
alternative-specific parameters and all utility functions are linear in parameters. Constants
included, the models consider 13 and 53 parameters, respectively.

Variable Type
MNL-S MNL-L

walk cycle ride drive walk cycle ride drive

Travel time cont. × × ×∗ × × × ×∗ ×
Travel cost cont. × × × ×
Traffic level cont. × ×
Straight-line distance cont. × × ×
Driver’s license bin. × × ×
Gender bin. × × ×
Age: cat.

child ind. × ×
pensioner ind. × × ×

Car ownership: cat.
one car in household ind. ×† × ×
more than one ind. ×† × ×

Trip purpose: cat.
home-based work ind. × × ×
home-based education ind. × ×
home-based other ind. × ×
employers’ business ind. × × ×

Time of departure: cat.
PM peak ind. × × ×
inter-peak ind. × ×

Day of week: cat.
weekdays ind. × ×
Saturday ind. × ×

Season: cat.
winter ind. × ×

∗ The travel time of the “ride” alternative is split into four components, each associated with a distinct
parameter: access and egress time, bus in-vehicle time, rail in-vehicle time and interchange time.

† The “cycle” alternative considers a single parameter associated to both car-ownership categories.
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Figure 7: Percentage error of the MNL-S parameter estimates on random samples of the
LPMC dataset.
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Figure 8: Estimation of the MNL-L on random samples of the LPMC dataset.
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