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Abstract. Over the last two decades, robust optimization has emerged as a popular
means to address decision-making problems affected by uncertainty. This includes
single-stage and multi-stage problems involving real-valued and/or binary decisions
and affected by exogenous (decision-independent) and/or endogenous (decision-
dependent) uncertain parameters. Robust optimization techniques rely on duality
theory potentially augmented with approximations to transform a (semi-)infinite opti-
mization problem to a finite program, the robust counterpart. Whereas writing down the
model for a robust optimization problem is usually a simple task, obtaining the robust
counterpart requires expertise. To date, very few solutions are available that can facili-
tate the modeling and solution of such problems. This has been a major impediment to
their being put to practical use. In this paper, we propose ROC++, an open-source C++
based platform for automatic robust optimization, applicable to a wide array of single-
stage and multi-stage robust problems with both exogenous and endogenous uncertain
parameters, that is easy to both use and extend. It also applies to certain classes of sto-
chastic programs involving continuously distributed uncertain parameters and endoge-
nous uncertainty. Our platform naturally extends existing off-the-shelf deterministic
optimization platforms and offers ROPy, a Python interface in the form of a callable
library, and the ROB file format for storing and sharing robust problems. We showcase
the modeling power of ROC++ on several decision-making problems of practical inter-
est. Our platform can help streamline the modeling and solution of stochastic and robust
optimization problems for both researchers and practitioners. It comes with detailed
documentation to facilitate its use and expansion. The latest version of ROC++ can be
downloaded from https://sites.google.com/usc.edu/robust-opt-cpp/.
Summary of Contribution: The paper “ROC++: Robust Optimization in C++” proposes
a new open-source C++ based platform for modeling, automatically reformulating, and
solving robust optimization problems. ROC++ can address both single-stage and multi-
stage problems involving exogenous and/or endogenous uncertain parameters and real-
and/or binary-valued adaptive variables. The ROC++ modeling language is similar to the
one provided for the deterministic case by state-of-the-art deterministic optimization solv-
ers. ROC++ comes with detailed documentation to facilitate its use and expansion. It also
offers ROPy, a Python interface in the form of a callable library. The latest version of
ROC++ can be downloaded from https://sites.google.com/usc.edu/robust-opt-cpp/.
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Notation
We denote vectors (matrices) by boldface lowercase
(uppercase) letters. The kth element of a vector x ∈ R

n

(k ≤ n) is denoted by xk. Scalars are denoted by letters—

for example, α or N. We let Ln
k (Bn

k ) represent the
space of all functions from R

k to R
n ({0, 1}n). Given

two vectors of equal length, x, y ∈ R
n, we let x ◦ y

denote their Hadamard product.
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1. Introduction
1.1. Motivation
Robust optimization (RO) is a discipline that develops
models and algorithms for solving decision problems
affected by uncertainty; see, for example, Ben-Tal et al.
(2009) and Bertsimas et al. (2010). It studies problems
with worst-case objective and robust constraints that
must hold for all possible realizations of the uncertain
problem parameters.

The simplest problems studied by RO are single-
stage problems, where all decisions are made before the
uncertain parameters are revealed, and involve only
exogenous uncertainty. These arise, for example, in in-
ventory management (Ardestani-Jaafari and Delage
2016), healthcare (Bandi et al. 2018), and biodiversity
conservation (Haider et al. 2018).

Single-stage robust problems with exogenous un-
certainty are representable as

minimize
{
max
j∈Ξ

c(j)�y + d(j)�z : y ∈ Y, z ∈ Z,

A(j)y + B(j)z ≤ h(j) ∀j ∈ Ξ

}
, (1)

where y ∈ Y ⊆ R
n and z ∈ Z ⊆ {0, 1}ℓ stand for the vec-

tors of real- and binary-valued (static) decisions,
respectively, that must be made before the uncertain
parameters j ∈ R

k are observed. The set Ξ ⊆ R
k

denotes the uncertainty set, which represents the set of
all realizations of j against which the decision-maker
wishes to be immunized. Here, c(j) ∈ R

n and d(j) ∈ R
ℓ

can be interpreted as cost vectors, whereas h(j) ∈ R
m,

and A(j) ∈ R
m×n and B(j) ∈ R

m×ℓ represent the right-
hand-side vector and constraint coefficient matrices,
respectively. It is usually assumed, without much loss
of generality, that c(j), d(j), A(j), B(j), and h(j) are all
linear in j. The goal of the decision-maker is to select,
among all decisions that are robustly feasible, one that
achieves the smallest value of the cost in the worst-
case. The uncertainty set usually admits a conic repre-
sentation, being expressible as

Ξ :� {j ∈ R
k : ∃zs ∈ R

ks , s � 1, : : : ,S :

Psj+Qszs + qs ∈Ks, s � 1, : : : ,S}, (2)

for some matrices Ps ∈ R
rs×k andQs ∈ R

rs×ks , and vector
qs ∈ R

rs , where Ks are closed convex pointed cones in
R

rs , s � 1: : : ,S. This model includes as special cases
budget uncertainty sets (Ben-Tal et al. 2009), uncer-
tainty sets based on the central limit theorem (Bandi
and Bertsimas 2012), and ellipsoidal uncertainty sets
(Ben-Tal et al. 2009).

Under some mild assumptions, the semi-infinite prob-
lem (1) is equivalent to afinite program, the robust counter-
part (RC), that can be solved with off-the-shelf solvers.
This robust counterpart can be obtained by reformulating
each semi-infinite constraint in (1) equivalently as a finite

set of constraints using duality theory. Although the data
in the RC are the same as those in Problem (1), theRCwill
typically not resemble at all the original problem, and
converting one to the other is a tedious task.

A slight generalization to Problem (1) where Ξ is
allowed to depend on decision variables can model
single-stage problems with endogenous uncertainty;
see Nohadani and Sharma (2018) and Lappas and
Gounaris (2018). These arise for example, in radiation
therapy (Nohadani and Roy 2017) and in certain classes
of clinical trial planning problems (Lappas and Gouna-
ris 2018). Their RC is a finite optimization problem
involving products of binary and real-valued variables.
If Ξ depends only on binary variables, these products
can be linearized to yield a mixed-binary conic program
that can be solved with off-the-shelf solvers. In that
sense, obtaining the RC of such problems is more
involved than obtaining the RC of (1).

The RO community has also extensively studiedmulti-
stage problems with exogenous uncertainty, where uncer-
tain parameters are revealed sequentially over time and
decisions are allowed to adapt to the history of observa-
tions (Ben-Tal et al. 2004). These arise for example, in
vehicle routing (Gounaris et al. 2013), energy (Rocha and
Kuhn 2012, Jiang et al. 2014), and inventory management
(Ben-Tal et al. 2005,Mamani et al. 2017).

A multi-stage robust optimization problem with
exogenous uncertainty over the finite planning hori-
zon t ∈ T :� {1, : : : ,T} is representable as

min max
j∈Ξ

∑
t∈T

c�t yt(j) + dt(j)�zt(j)
[ ]

s:t: yt ∈ Lnt
k , zt ∈ Bℓt

k ∀t ∈ T∑t
τ�1

Atτyτ(j) +Btτ(j)zτ(j) ≤ ht(j)
∀j ∈ Ξ, t ∈ T

yt(j) � yt(j′), zt(j) � zt(j′)
∀t ∈ T , ∀j, j′ ∈ Ξ :wt−1 ◦ j �wt−1 ◦ j′, (3)

where yt(j) ∈ R
nt and zt(j) ∈ {0, 1}ℓt represent the vec-

tors of real- and binary-valued decisions for time t,
respectively. The adaptive nature of the decisions is
modelled mathematically by allowing them to depend
on the observed realization of j ∈ R

k. The vectors ct ∈
R

nt and dt(j) ∈ R
ℓt can be interpreted as cost vectors,

ht(j) ∈ R
mt are the right-hand-side vectors, and Atτ ∈

R
mt×nt and Btτ(j) ∈ R

mt×ℓt are the constraint coefficient
matrices. Without much loss, we assume that dt(j),
ht(j), and Btτ(j) are all linear in j. The binary vector
wt ∈ {0, 1}k represents the information base for time t +
1—that is, it encodes the information revealed up to
time t. Specifically, wt,i � 1 if and only if ji is observed
at some time τ ∈ {0, : : : , t}, and w0 � 0. As inform-
ation is never forgotten, wt ≥wt−1 for all t ∈ T . The
last set of constraints in (3) enforces nonanticipativity,
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stipulating that yt and zt must be constant in parame-
ters that have not been observed by time t.

Problems of the form (3) are generally intractable,
and much of the research in the RO community has
focused on devising conservative approximations.
Most authors have studied problems involving only
real-valued adaptive decisions and devised decision
rule approximations that restrict the adjustable deci-
sions to those presenting, for example, constant, linear
(Ben-Tal et al. 2004), piecewise linear (Vayanos et al.
2011, Georghiou et al. 2015), or polynomial (Bampou
and Kuhn 2011, Bertsimas et al. 2011, Vayanos et al.
2012) dependence on j. We use the shorthands CDR
and LDR for constant and linear decision rules,
respectively. Under such approximations, Problem (3)
reduces to a single-stage problem, and approaches
from single-stage RO can be used to solve it. More
recently, several authors have investigated problems
involving binary adaptive decision variables. Some
papers have proposed piecewise constant decision
rule approximations over either a static (Vayanos et al.
2011) or adaptive (Bertsimas and Georghiou 2015, Bert-
simas and Dunning 2016, Bertsimas and Georghiou
2018) partitions of the uncertainty set. Others have
studied the more flexible finite adaptability approxima-
tion that consists of selecting a moderate number of
candidate strategies today and implementing the best
of those strategies in an adaptive fashion once the
uncertain parameters are revealed (Bertsimas and Cara-
manis 2010, Hanasusanto et al. 2015, Vayanos et al.
2020). Although writing down the model for a multi-
stage problem is usually a simple task (akin to for-
mulating a deterministic problem), obtaining the RC of
a conservative approximation to (3) is typically tedious
and requires expertise in robust optimization.

Recently, there has been increased interest inmulti-stage
robust optimization problems involving endogenous uncer-
tainty (Jonsbråten 1998). This includes problems with
decision-dependent uncertainty sets, where the decision-
maker can control the set of possible realizations of j, and
problems involving decision-dependent non-anticipativity
constraints, where the decision-maker can control the time
of information discovery. The latter are particularly rele-
vant in practice, where oftentimes uncertain parameters
only become observable after a costly investment. It
has applications in R&D project selection (Solak et al.
2010), clinical trial planning (Colvin and Maravelias
2008), offshore oilfield exploration (Goel and Gross-
man 2004), and preference elicitation (Vayanos et al.
2020, 2021), among others.

Multi-stage problems with endogenous uncertainty
set are simple variants of (3), where Ξ is allowed to
depend on adaptive decision variables. These have
been studied by Bertsimas and Vayanos (2014), who
proposed piecewise constant and piecewise linear
decision rule approximations over both preselected

and adaptive partitions of the uncertainty set and
showed that the resulting problem can be reformu-
lated as a mixed-integer conic program.

Multi-stage robust optimization problems with endo-
genous information discovery constitute a variant of
Problem (3), where the information base for each time t ∈
T is kept flexible and under the control of the decision-
maker. Thus, the information base is modeled as an
adaptive decision variable that is itself allowed to
depend on j, and we denote it by wt(j) ∈ Wt ⊆ {0, 1}k.
Multi-stage robust optimization problems with endoge-
nous information discovery (ID) are expressible as

min max
j∈Ξ

∑
t∈T

c�t yt(j) + dt(j)�zt(j) + f t(j)�wt(j)
[ ]

s:t: yt ∈ Lnt
k , zt ∈ Bℓt

k , wt ∈ Bk
k ∀t ∈ T∑t

τ�1
Atτyτ(j) +Btτ(j)zτ(j)

+Ctτ(j)wτ(j) ≤ ht(j)
wt(j) ∈Wt

wt(j) ≥wt−1(j) } ∀j ∈ Ξ, t ∈ T

yt(j) � yt(j′)
zt(j) � zt(j′)
wt(j) �wt(j′) } ∀t ∈ T , ∀j, j′ ∈ Ξ :

wt−1(j) ◦ j �wt−1(j′) ◦ j′,
(4)

where f t,i(j) ∈ R can be interpreted as the cost of includ-
ing the uncertain parameter ji in the information base at
time t and Ctτ(j) collects the coefficients of wτ in the
time t constraint. The third constraint ensures that in-
formation observed in the past cannot be forgotten,
whereas the last set of constraints are decision-dependent
non-anticipativity constraints that model the requirement
that decisions can only depend on information that the
decision-maker chose to observe in the past. Without
much loss, we assume that dt(j), f t(j), Btτ(j) ∈ R

mt×ℓτ ,
and Ctτ(j) ∈ R

mt×k are all linear in j.
To tackle problems of the form (4), decision rule

and finite adaptability approximations have been pro-
posed. Vayanos et al. (2011) studied piecewise con-
stant (PWC) and piecewise linear (PWL) decision rule
approximations to the real- and binary-valued deci-
sions, respectively. Accordingly, Vayanos et al. (2020)
generalized the finite adaptability approximation to
this setting. In both cases, the authors reformulated
the problem as a mixed-integer linear problem that
can be solved in practical times with off-the-shelf solv-
ers. Although effective, these approaches are quite dif-
ficult to implement, as they rely on approximations,
on the introduction of new decision variables, and on
duality theory, making them inaccessible to practi-
tioners and difficult for researchers to implement.

Robust optimization techniques have been extended
to address certain multi-stage stochastic programs
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involving continuously distributed uncertain parameters
and affected by exogenous (Kuhn et al. 2009, Bodur
and Luedtke 2022) and even endogenous (Vayanos
et al. 2011) uncertainty. In recent years, the field of dis-
tributionally robust optimization (DRO) has burgeoned,
which immunizes decision-makers against ambiguity in
the distribution of j (Wiesemann et al. 2014, Rahimian
andMehrotra 2019). Similarly to RO, deterministic refor-
mulations of DRO problems can be obtained based on
duality theory.

In spite of RO’s success at addressing diverse prob-
lems and the difficulty of implementing these solu-
tions, few platforms are available, and they provide
only limited functionality.

1.2. Contributions
We now summarize our main contributions and the
key advantages of our platform:

a. We propose ROC++, a C++ based platform for
modeling, automatically reformulating, and solving
robust optimization problems; see Vayanos et al.
(2022). Our platform is the first capable of addressing
both single-stage and multi-stage problems involving
exogenous and/or endogenous uncertain parameters
and real- and/or binary-valued adaptive variables. It
can also be used to address certain classes of stochastic
programs involving continuously distributed uncertain-
ties. The suite of models and methods currently available
in ROC++ is summarized in Figures 1 and 2 for the robust
and stochastic settings, respectively. ROC++ can also
interface with a variety of solvers. Presently, ROC++
offers an interface to Gurobi1 and SCIP.2

b. ROC++ provides a Python library, ROPy, that fea-
tures all the main functionality.

c. Thanks to operator overloading, ROC++ and
ROPy are both very easy to use. We illustrate the

Figure 1. (Color online) Classes of Robust Problems andMethods that Can BeHandled by ROC++

Figure 2. (Color online) Classes of Stochastic Problems andMethods that Can Be Handled by ROC++

Note. Support is currently limited to uniformly distributed uncertain parameters.
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flexibility and ease of use of our platform on several
stylized problems.

d. Through our design choices in ROC++, we aim to
align with the SOLID principles of object-oriented pro-
gramming to facilitate maintainability and extendabil-
ity (Martin 2003). ROC++ leverages the power of C++
and in particular of polymorphism to code dynamic
behavior, allowing the user to select their reformulation
strategy at runtime and making it easy to extend the
code with additional methods.

e. We propose the ROB file format, the first file format
for storing and sharing general robust optimization
problems, that is also interpretable and easy to use.

f. Our platform comes with detailed documentation
(created with Doxygen3) to facilitate its use and expan-
sion. Our framework is open-source. The latest version
of the code, installation instructions, and dependencies of
ROC++ are available at https://sites.google.com/usc.
edu/robust-opt-cpp/. A snapshot of the software and
data that were used in the research reported in this paper
can be found at the software’sDOI (Vayanos et al. 2022).

Through these capabilities, our platform lays the
foundation to help facilitate research in, and real-life
applications of, robust optimization.

1.3. Related Literature
Our robust optimization platform ROC++ most
closely relates to several tools released in recent years
for modeling and solving robust optimization prob-
lems. All of these tools present a similar structure:
They provide a modeling platform combined with an
approximation/reformulation toolkit that can auto-
matically obtain the robust counterpart, which is then
solved by using existing open-source and/or commer-
cial solvers. The platform that most closely relates to
ROC++ is called ROC4 and is based on the paper of
Bertsimas et al. (2019). It can be used to solve single-
stage and multi-stage (distributionally) robust optimi-
zation problems with real-valued adaptive variables.
It tackles this class of problems by approximating the
adaptive decisions by linear decision rules or en-
hanced linear decision rules and solves the resulting
problem using CPLEX.5 Contrary to our platform, it
cannot solve problems with endogenous uncertainty
nor with binary adaptive variables. It appears to be
harder to extend because the problems that it can model
are a lot more limited (e.g., no decisions in the uncer-
tainty set, no decision-dependent information discovery,
and no binary adaptive variables) and because it does
not provide a general framework for building new
approximations/reformulations. Moreover, it does not
provide a Python interface. Themajority of the remaining
platforms are based on theMATLABmodeling language.
One tool is the robust optimization module of YALMIP
(Löfberg 2012), which provides support for single-
stage problems with exogenous uncertainty. A notable

advantage of YALMIP is that the robust counterpart out-
put by the platform can be solved by using any one of a
variety of open-source or commercial solvers. Other
platforms, like ROME6 and RSOME7, are entirely moti-
vated by the (stochastic) robust optimization modeling
paradigm (see Goh and Sim 2011 and Chen et al. 2020)
and provide support for both single-stage and multi-
stage (distributionally) robust optimization problems
affected by exogenous uncertain parameters and involv-
ing only real-valued adaptive variables. The robust coun-
terparts output by ROME can be solved with CPLEX,
Mosek,8 and SDPT3;9 those output by RSOME, with
CPLEX, Gurobi, and Mosek. We note that RSOME is not
open-source. Recently, JuMPeR10 has been proposed as
an add-on to JuMP; see Dunning et al. (2017). It can be
used to model and solve single-stage problems with
exogenous uncertain parameters. JuMPeR can be con-
nected to a large variety of open-source and commercial
solvers. On the commercial front, AIMMS11 is currently
equipped with an add-on that can be used to model and
automatically reformulate robust optimization prob-
lems. It can tackle both single-stage and multi-stage
problems with exogenous uncertainty. To the best of
our knowledge, none of the available platforms can
address (neither model nor solve) problems involving
endogenous uncertain parameters (decision-dependent
uncertainty sets nor decision-dependent information dis-
covery). None of them can tackle (neither model nor
solve) problems presenting binary adaptive variables. A
summary of the functionality offered by these tools is
provided in Table 1.

ROC++ also relates, albeit more loosely, to plat-
forms for modeling and solving stochastic program-
ming problems (Birge and Louveaux 2000), such as
PySP,15 MSPP (Ding et al. 2019), SDDP16 (Dowson
and Kapelevich 2021), and SMI.17 To the best of our
knowledge, all such platforms assume that the uncer-
tain parameters are discretely distributed or provide
mechanisms for building a scenario tree approxima-
tion to the problem. This differs from our approach,
as we work with the true distribution, but approxi-
mate the adaptive decisions.

In our work, we propose an entirely new platform
for modeling and solving a wide array of RO prob-
lems that is also easy to extend with new models and
new approximation and reformulation techniques as
they are proposed in the literature. The main motiva-
tion for doing so is that new models and solution tech-
niques are constantly being devised, whereas existing
tools offer limited capability and were not built with
extensibility in mind. Moreover, as there is a tight cou-
pling between problem class and solution method
in robust optimization (see Section 1.1), a strong
abstraction is needed over the different problem types
and reformulations/approximations to enable exten-
sibility. ROC++ provides a framework built with the
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needs of extensibility and usability in mind from the
onset and accounting for the coupling between prob-
lem class and solution method that is characteristic of
RO. We chose to build the platform in C++ to: (a) lev-
erage the benefits of object-oriented programming,
including inheritance and polymorphism, to build
strong class abstractions; (b) take advantage of its
competitive speed at runtime to be able to more effec-
tively tackle large scale problems; and, (c) to have the
flexibility to compile libraries for other languages, as
showcased by our ROPy interface. These factors com-
bined were the main drivers behind this decision.

1.4. Organization of the Paper
Section 2 discusses the software design and the design
rationale of ROC++. A sample model created and
solved using ROC++ is provided in Section 3. Section 4
presents extensions to the core model that can also be
tackled by ROC++, introduces the ROB file format, and
briefly highlights the ROPy interface. Finally, Section 5
concludes. Additional sample models handled by
ROC++ are provided in the online appendix.

2. ROC11 Software Design and
Design Rationale

The software design and design rationale of ROC++
are motivated by the literature, which has shown that
new problem classes, reformulation strategies, and
approximation schemes are constantly being devel-
oped. This implies that our code should be easy to
maintain and extend and that optimization models and
approximation/reformulation schemes should not be
restricted to a tight standard form. For these reasons,
ROC++ aims to align with the SOLID principles of
object-oriented programming, which establish practices
for developing software with considerations for main-
tainability and extendability (see Martin 2003). More-
over, because of the tight coupling between problem

class and solution method (see Section 1), the soft-
ware needs a strong abstraction over the different
problem types and reformulations/approximations.
These considerations are the main motivation for the
design choices behind ROC++. We now describe the
software design while highlighting how some of our
choices help serve these considerations.

2.1. Classes Involved in the Modeling of
Optimization Problems

The main building blocks to model optimization prob-
lems in the ROC++ platform are the optimization model
interface class, ROCPPOptModelIF; the constraint inter-
face class, ROCPPConstraintIF; the decision variable
interface class, ROCPPVarIF; the objective function in-
terface class, ROCPPObjectiveIF; their derived classes;
and the uncertain parameter class, ROCPPUnc. These
classes mainly act as containers to which several refor-
mulations, approximations, and solvers can be applied
as appropriate; see Sections 2.2–2.4. Inheritance in the
aforementioned classes implements the “is a” relation-
ship. In particular, in our design choices for these
classes, we subscribe to the Open-Close Principle (OCP)
of SOLID, as we encapsulate abstract concepts in base
classes so that additional functionality can be added by
subclassing without changing the previously written
code. We now give a more detailed description of some
of these classes and how they relate to one another.

The ROCPPVarIF class is an abstract base class that
provides a common interface to all decision variable
types. Its class diagram is provided in Figure 3. Its
children are the abstract classes, ROCPPStaticVarIF
and ROCPPAdaptVarIF, that model static and adap-
tive variables, respectively. Each of these present three
children, each of which model static (respectively
(resp.), adaptive) real-valued, binary, or integer varia-
bles (see Figure 3). This structure of the ROCPPVarIF
class ensures that we can pass objects of a subtype

Table 1. Summary of Tools for Modeling, Reformulating, and Solving Robust Optimization Problems

Software
Multi-stage
support Approximation schemes

Endogenous
uncertainty

Binary
adaptive
variables DRO Language Solvers

JuMPeR No — No No No Julia Clp,12 Cbc,13 GLPK,14 Gurobi,
Mosek, CPLEX

YALMIP add-on No — No No No MATLAB Almost any open-source or
commercial solver

AIMMS add-on
(commercial)

Yes LDR No No No AIMMS CPLEX recommended

ROME Yes LDR, bideflected LDR No No Yes MATLAB CPLEX, Mosek, SDPT3

RSOME (not
open-source)

Yes LDR, event-wise static
event-wise affine

No No Yes MATLAB CPLEX, Gurobi, Mosek

ROC Yes LDR, enhanced LDR No No Yes C++ CPLEX

ROC++ Yes CDR/LDR, PWC/PWL,
K-adaptability

Yes Yes No C++, Python Gurobi, SCIP
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(e.g., ROCPPStaticVarReal) whenever an object of
a supertype (e.g., ROCPPVarIF) is specified. This
implies that a decision variable declaration will always
have the type of the interface, ROCPPVarIF, and that
the class realizing the details will be referenced only
once, when it is instanciated. In particular, our modules
will only depend on the abstraction. Thus, optimization
problems, for example, store ROCPPVarIF types and
are indifferent as to the precise type of the decision
variable. This idea aligns with the Liskov Substitution
Principle (LSP) and with the Dependency Inversion
Principle (DIP) of SOLID.

The ROCPPConstraintIF class is an abstract base
class with a single child: the interface class ROCPPClas-
sicConstraint, whose two children, ROCPPEqCon-
straint and ROCPPIneqConstraint, model equality
and inequality constraints, respectively. We are currently
working to add ROCPPSOSConstraint and ROCPPIf-
ThenConstraint as derived classes to ROCPPCon-
straintIF, to model Special Ordered Set and logical
forcing constraints, respectively. Through the interface
definition, all constraint types are forced to provide
certain functionality. For example, they must imple-
ment the mapVars function, which maps the decision
variables in the constraint to an expression; these are
used in the reformulations/approximations. Constraints
can either be main problem constraints or define the

uncertainty set andmay involve decision variables and/
or uncertain parameters. The ROCPPObjectiveFunc-
tionIF abstract base class presents two children,ROCP-
PSimpleObjective and ROCPPMaxObjective, that
model linear and piecewise linear convex objective func-
tions, respectively. The key building block for the
ROCPPConstraintIF and ROCPPObjectiveFunc-
tionIF classes is the ROCPPExpr class that models an
expression, which is a sum of terms of abstract base type
ROCPPCstrTermIF. The ROCPPCstrTermIF class has
two children: ROCPPProdTerm, which is used to model
monomials, and ROCPPNorm, which is used to model
the two-norm of an expression. These class structures
align with LSP and DIP. In particular, a constraint decla-
rationwill always have the type of the interface, ROCPP-
ConstraintIF, and optimization problems will store
ROCPPConstraintIF types while allowing any of
the subtypes (e.g., ROCPPIneqConstraint), being in-
different as to the type of the constraint. Similarly, ex-
pressions will store arbitrary constraint terms without
concern for their specific types.

The ROCPPOptModelIF is an abstract base class
that provides a common and standardized interface to
all optimization problem types. It consists of decision
variables, constraints, an objective function, and poten-
tially uncertain parameters. Its class diagram is shown
in Figure 4. ROCPPOptModelIF presents two derived
classes, ROCPPDetOptModel and ROCPPUncOptModel,
which are used to model deterministic optimization
models and optimization models involving uncertain
parameters, respectively. Although ROCPPDetOptMo-
del can involve arbitrary deterministic constraints, its
derived classes, ROCPPMISOCP and ROCPPBilinMI-
SOCP, can only model mixed-integer second-order
cone problems (MISOCPs) and MISOCPs that also in-
volve bilinear terms. The ROCPPUncOptModel class pre-
sents two derived classes, ROCPPUncSSOptModel and
ROCPPUncMSOptModel, that are used to model single-
stage and multi-stage problems respectively. Finally,
ROCPPUncMSOptModel has two derived classes, ROCP-
POptModelExoID and ROCPPOptModelDDID, that can
model multi-stage optimization problems where the time

Figure 4. (Color online) Inheritance Diagram for the ROCPPOptModelIFClass

Figure 3. (Color online) Inheritance Diagram for the ROCPP-
VarIF Class
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of information discovery is exogenous and endogenous,
respectively. Thus, in accordance with OCP, we encap-
sulate abstract concepts, such as constraint containers,
in base classes and add more functionality on the sub-
classes. As usual, the interface classes list a set of tools
that all derived classes must provide. For example, all
optimization problem types are forced to implement the
checkCompatibility function that checks whether
the constraint being added is compatible with this prob-
lem type. The main role of inheritance here is to ensure
that the problems constructed are of types to which the
available tools (reformulators, approximators, or solvers)
can apply. Naturally, if the platform is augmented with
more such tools that enable the solution of different/
more general optimization problems, the existing inheri-
tance structure can be leveraged to easily extend the code.

2.2. Dynamic Behavior via Strategy Pattern
2.2.1. Reformulation Strategies. The central objective
of our platform is to convert (potentially through approx-
imations) the original uncertain problem input by the
user to a form that it can be fed into and solved by an
off-the-shelf solver. This is achieved in our code through
the use of reformulation strategies applied sequentially
to the input problem. Currently, our platform provides
a suite of such strategies, all of which are derived from
the abstract base class ReformulationStrategyIF.
Themain approximation strategies are: the linear and con-
stantdecision rule approximations, providedby the classes
ROCPPLinearDR and ROCPPConstantDR, respectively;
the piecewise decision rule approximation, provided by
the ROCPPPWDR class; and the K-adaptability approxima-
tion, provided by the ROCPPKAdapt class. The main
equivalent reformulation strategies are: theROCPPRobus-
tifyEngine, which can convert a single-stage robust
problem to its deterministic counterpart; and the ROCPP-
MItoMB class, which can linearize bilinear terms
involving products of binary and real-valued (or
other) decisions. In accordance with LSP and DIP,
the ReformulationStrategyIF module accepts
optimization problems of any type derived from
ROCP-POptModelIF.

2.2.2. Reformulation Orchestrator. In ROC++, the
user can select at runtime which strategies to apply to
their input problem and the sequence in which these
strategies should be used. This is achieved by using the
idea of a strategy pattern, which allows an object to change
its behavior based on some unpredictable factor; see, for
example, Perez (2018). To implement the strategypattern,
we provide, in addition to the reformulation strategies
discussed above, the class ROCPPOrchestrator that
will act as the client, being aware of the existence of strat-
egies, but not needing to know what each strategy does.
At runtime, an optimization problem, the context, is pro-
vided to the ROCPPOrchestrator together with a

strategy or set of strategies to apply to the context, and
the orchestrator applies the strategies in sequence, after
checking that they can apply to the input problem.

2.2.3. Using and Extending the Code. Thanks to the
idea of the strategy pattern, the code is very easy to use
(the user simply needs to provide the input problem and
the sequence of reformulation strategies). It is also very
easy to extend; a researcher can create more reformula-
tion strategies and leverage the existing client code to
apply these strategies at runtime to the input problem.
All that needs to be provided by the new reformulation
strategy are implementations of the Reformulate,
isApplicable, and getName functions, which do the
reformulation, check that the reformulation can be
applied to the problem input, and return the name of the
approximation, respectively. Usability and extendability
were the key factors that influenced this design choice.

2.3. Solver Interface
The ROC++ platform provides an abstract base class,
ROCPPSolverInterface, which is used to convert
deterministic MISOCPs in ROC++ format to a format
that is recognized and solved by a commercial or
open-source solver. Currently, there is support for
two solvers: Gurobi, through the ROCPPGurobi class,
and SCIP, through the ROCPPSCIP class. Gurobi and
SCIP (with COIN-OR’s Ipopt18 solver) can solve all
problem types output by our platform. Both of these
classes are children of ROCPPSolverInterface and
allow for changing the solver parameters, solving the
problem, retrieving an optimal solution, etc. New solv-
ers can conveniently be added by creating children
classes to ROCPPSolverInterface and implement-
ing its pure virtual member functions. This aligns with
the OCP, LSP, and DIP principles, facilitating both use
and expansion. Note that we also considered using
interfaces such as the Osi Open Solver Interface19

directly, but did not include it, as it does not currently
provide support for conic optimization problems.

2.4. Tools to Facilitate Extension
The ROC++ platform comes with several classes that
can be leveraged to construct new reformulation st-
rategies, such as polynomial decision rules—see, for
example, Bampou and Kuhn (2011) and Vayanos et al.
(2012)—or constraint sampling approximations—see
Campi and Garatti (2008). The key classes that can help
construct new approximators and reformulators are the
abstract base class ROCPPVariableConverterIF and
its abstract derived classes ROCPPOneToOneVarCon-
verterIF and ROCPPOneToExprVarConverterIF,
which can map variables in the problem to other variables
and variables to expressions, respectively. For example,
one of the derived classes of ROCPPOneToExprVarCon-
verterIF is ROCPPPredefO2EVarConverter, which
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takes amap fromvariable to expression as input andmaps
all variables in the problem to their corresponding expres-
sions in the map. We have used it to implement the linear
decision rule by passing a map from adaptive variables to
affine functions of uncertain parameters. New decision
rule approximations, such as polynomial decision rules,
can be added in a similarway. This framework alignswith
theOCPprinciple.

2.5. Interpretable Problem Input Through
Operator Overload

ROC++ leverages operator overloading in C++ to ena-
ble the creation of problem expressions and constraints
in a highly interpretable, human-readable format. ROCP-
PExpr,ROCPPCstrTermIF,ROCCPPVarIF, andROCP-
PUnc objects can be added ormultiplied together to form
new ROCPPExpr objects that can be used as left-hand
sides of constraints. The double equality (“��”) or
inequality (“<�”) signs can be used to create constraints.
This framework effectively generalizes the modeling
setup of modern solvers like Gurobi or CPLEX to the
uncertain setting; see Section 3 for examples.

3. Modeling and Solving Decision-Making
Problems in ROC11

In this section, we showcase the ease of use of our plat-
form through a concrete example. Additional examples
are provided in Online Appendix B. A snapshot of the
software and data that were used to generate these results
can be found at the software’s DOI (Vayanos et al. 2022).

3.1. Robust Pandora’s Box: Problem Description
We consider a robust variant of the celebrated sto-
chastic Pandora’s Box (PB) problem due to Weitzman
(1979). This problem models selection from a set of
unknown, alternative options, when evaluation is
costly. There are I boxes indexed in I :� {1, : : : , I} that
we can choose or not to open over the planning hori-
zon T :� {1, : : : ,T}. Opening box i ∈ I incurs a cost
ci ∈ R+. Each box has an unknown value ji ∈ R, i ∈ I ,
which will only be revealed if the box is opened. At
the beginning of each time t ∈ T , we can either select a
box to open or keep one of the opened boxes, earn its
value (discounted by θt−1), and stop the search.

We assume that the box values are restricted to lie
in the set

Ξ :� {j ∈ R
I : ∃z ∈ [−1, 1]M, ji � (1 + Φ�

i z=2)ji
∀i ∈ I},

where z ∈ R
M represent M risk factors, Φi ∈ R

M

represent the factor loadings, and j ∈ R
I collects the

nominal box values.
In this problem, the box values are endogenous

uncertain parameters, whose time of revelation can be
controlled by the box open decisions. Thus, the infor-
mation base, encoded by the vector wt(j) ∈ {0, 1}I,
t ∈ T , is a decision variable. In particular, wt,i(j) � 1 if
and only if box i ∈ I has been opened on or before
time t ∈ T in scenario j. We assume that w0(j) � 0, so
that no box is opened before the beginning of the
planning horizon. We denote by zt,i(j) ∈ {0, 1} the
decision to keep box i ∈ I and stop the search at time
t ∈ T .

The requirement that, at most, one box be opened at
each time t ∈ T and that no box be opened if we have
stopped the search can be captured by the constraint

∑
i∈I

(wt,i(j) −wt−1,i(j)) ≤ 1−∑t
τ�1

∑
i∈I

zτ,i(j) ∀t ∈ T :

(5)

The requirement that only one of the opened boxes
can be kept is expressible as

zt,i(j) ≤ wt−1,i(j) ∀t ∈ T , ∀i ∈ I : (6)

The objective of the PB problem is to select the
sequence of boxes to open and the box to keep so as to
maximize worst-case net profit. Because the decision
to open box i at time t can be expressed as the differ-
ence (wt,i −wt−1,i), the objective of the PB problem is

max min
j∈Ξ

∑
t∈T

∑
i∈I

θt−1jizt,i(j) − ci(wt,i(j) −wt−1,i(j)):

The mathematical model for this problem can be
found in Online Appendix D.1.

3.2. Robust Pandora’s Box: Model in ROC11
We present the ROC++ model for the PB problem.
We assume that the data of the problem have been
defined in C++, as summarized in Table 2. We discuss
how to construct the key elements of the problem here.
The full code can be found inOnlineAppendixD.2.

The PB problem is a multi-stage robust optimization
problem involving uncertain parameters whose time of
revelation is decision-dependent. Such models can be
stored in the ROCPPOptModelDDID class, which is
derived from ROCPPOptModelIF. We note that in
ROC++, all optimization problems are minimization
problems. All models are pointers to the interface class
ROCPPOptModelIF. Thus, the robust PB problem can
be initialized as:

(Color online)
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Next, we create the ROC++ variables associated
with uncertain parameters and decision variables in
the problem. The correspondence between variables is
summarized in Table 3.

The uncertain parameters of the PB problem are j ∈
R

I and z ∈ R
M. We store the ROC++ variables associ-

ated with these in the Value and Factor maps,
respectively. Each uncertain parameter is a pointer to
an object of type ROCPPUnc. The constructor of the
ROCPPUnc class takes two input parameters: the name
of the uncertain parameter and the period when that

parameter is revealed (first time stage when it is observ-
able). As j has a time of revelation that is decision-
dependent, we can omit the second parameter when
we construct the associated ROC++ variables. The
ROCPPUnc constructor also admits a third (optional)
parameter with default value true that indicates if the
uncertain parameter is observable. As z is an auxiliary
uncertain parameter, we set its time period as being, for
example, one and indicate through the third parameter
in the constructor of ROCPPUnc that this parameter is
not observable.

Table 2. List of Model Parameters and Their Associated C++ Variables for the PB Problem

Model parameter C++ name C++ variable type C++ map keys

θ Theta double NA
T (t) T(t) uint NA
I (i) I(i) uint NA
M (m) M(m) uint NA
ci, i ∈ I CostOpen map<uint,double> i�1…I
j i, i ∈ I NomVal map<uint,double> i�1…I
Fim, i ∈ I , m ∈M FactorCoeff map<uint,map<uint,double> > i�1…I, m�1…M

Note. NA, not applicable.

(Color online)

The decision variables of the problem are the meas-
urement variablesw and the variables z, which decide
on the box to keep. We store these in the maps Meas-
Var and Keep, respectively. In ROC++, the measure-
ment variables are created automatically for all time
periods in the problem by calling the add_ddu()
function, which is a public member of ROCPPOptMo-
delIF. This function admits four input parameters:
an uncertain parameter, the first and last time period

when the decision-maker can choose to observe that
parameter, and the cost for observing the parameter.
In this problem, the cost for observing ji is equal to ci.
The measurement variables constructed in this way
can be recovered by using the getMeasVar() func-
tion, which admits as inputs the name of an uncertain
parameter and the time period for which we want to
recover the measurement variable associated with
that uncertain parameter.

(Color online)
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Table 3. List of Model Variables and Uncertainties and Their Associated C++ Variables for the PB Problem

Variable C++ name C++ type C++ map keys

zt,i, i ∈ I , t ∈ T Keep map<uint,map<uint,ROCPPVarIF_Ptr> > t�1…T, i�1…I
wt,i, i ∈ I , t ∈ T MeasVar map<uint,map<uint,ROCPPVarIF_Ptr> > t�1…T, i�1…I
zm, m ∈M Factor map<uint,ROCPPUnc_Ptr> m�1…M
ji, i ∈ I Value map<uint,ROCPPUnc_Ptr> i�1…I

The boolean Keep variables can be built in ROC++
by using the constructors of the ROCPPStaticVarBool
andROCPPAdaptVarBool classes for the static and adap-
tive variables, respectively. The constructor of ROCPP-

StaticVarBool admits one input parameter: the name
of the variable. The constructor of ROCPPAdaptVar-
Bool admits two input parameters: the name of the vari-
able and the time periodwhen the decision ismade.

(Color online)

Having created the decision variables and uncer-
tain parameters, we turn to adding the constraints
to the model. To this end, we use the Stopped-
Search expression, which tracks the running sum
of the Keep variables, to indicate whether at any
given point in time, we have already decided to

keep one box and stop the search. We also use the
NumOpened expression that, at each period, stores
the expression for the total number of boxes that we
choose to open in that period. Using these expres-
sions, the constraints can be added to the problem
using the following code.

(Color online)
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Next, we create the uncertainty set and the objective
function.

We emphasize that the observation costs were auto-
matically added to the objective function when we
called the add_ddu() function.

3.3. Robust Pandora’s Box: Solution in ROC11
The PB problem is a multi-stage robust problem with
decision-dependent information discovery; see Vayanos
et al. (2011, 2019). ROC++ offers two options for solving
this class of problems: finite adaptability and piecewise
constant decision rules; see Online Appendix Section A.
Here, we illustrate how to solve PB using the finite
adaptability approach; see Online Appendix Section A.2.
Mathematically, the finite adaptability approximation of

a problem is a multi-stage robust optimization prob-
lem, wherein in the first period, a collection of contin-
gency plans zk1,: : : ,ktt ∈ {0, 1}ℓt and wk1,: : : ,kt

t ∈ {0, 1}k, kt ∈
{1, : : : , Kt}, t ∈ T for the variables zt(j) and wt(j) is
chosen. Then, at the beginning of each period t ∈ T ,
one of the contingency plans for that period is
selected to be implemented, in an adaptive fashion;
see Online Appendix A for more details. We let Kmap
store the number of contingency plans Kt per period—
the index in the map indicates the time period t, and the
value it maps to corresponds to the choice of Kt. The
process of computing the optimal contingency plans is
streamlined in ROC++.

(Color online)

(Color online)
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We consider the instance of PB detailed in Online
Appendix D.3, for which T � 4, M � 4, and I � 5. For
Kt � 1 (resp., Kt � 2 and Kt � 3) for all t ∈ T , the prob-
lem takes under half a second (resp., under half a sec-
ond and six seconds) to approximate and robustify.

Its objective value is 2.12 (resp., 9.67 and 9.67). Note
that with T � 4 and Kt � 2 (resp., Kt � 3), the total
number of contingency plans is eight (resp., 27).

Next, we showcase how optimal contingency plans
can be retrieved in ROC++.

(Color online)

When executing this code, the values of all vari-
ables zk1: : : kt2,4 used to approximate z2,4 under all contin-
gency plans (k1, : : : ,kt) ∈×t

τ�1 {1, : : : ,Kτ} are printed.

We show here the subset of the output associated
with contingency plans where z2,4(j) equals one (for
the case K � 2).

(Color online)

Thus, at time 4, we will keep the second box if and
only if the contingency plan we choose is (k1,k2,
k3,k4) � (1, 2, 2, 1). We can display the first time that an

uncertain parameter is observed using the following
ROC++ code.

When executing this code, the time when j2 is
observed under each contingency plan (k1, : : : ,kT) ∈

×τ∈T Kt is printed. In this case, part of the output we
get is as follows.

Thus, in an optimal solution, j2 is opened at time 2
under contingency plan (k1,k2,k3, k4) � (1, 2, 1, 1). On
the other hand, it is never opened under contingency
plan (1, 1, 1, 1).

4. Extensions
4.1. ROB File Format
Given a robust/stochastic optimization problem ex-
pressed in ROC++, our platform can generate a file
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(Color online)

displaying the problem in human readable format.
We show the first few lines from the file obtained by

printing the Pandora’s Box problem of Section 3 to
illustrate this format, with extension “.rob”.

4.2. Integer Decision Variables
ROC++ can solve problems involving integer decision
variables. In the case of the CDR/PWC approxima-
tions, integer adaptive variables are directly approxi-
mated by constant/piecewise constant decisions that
are integer on each subset of the partition. In the case
of the finite adaptability approximation, bounded
integer variables must first be expressed as finite
sums of binary variables before the approximation is
applied. This can be achieved through the reformula-
tion strategy ROCPPBinaryMItoMB.

4.3. Stochastic Programming Capability
ROC++ currently provides limited support for solv-
ing stochastic programs with exogenous and/or
decision-dependent information discovery based on
the paper Vayanos et al. (2011). In particular, the
approach from Vayanos et al. (2011) is available for
the case where the uncertain parameters are uniformly
distributed in a box. We showcase this functionality
via an example on a stochastic best box problem in
Online Appendix Section B.2.

4.4. Limited Memory Decision Rules
For problems involving long time-horizons (>100), the
LDR/CDR and PWL/PWC decision rules can become
computationally expensive. Limited memory decision
rules approximate adaptive decisions by linear functions
of the recent history of observations. The memory param-
eter of the ROCPPConstantDR, ROCPPLinearDR, and
ROCPPPWDR can be used in ROC++ to trade off optimal-
ity with computational complexity.

4.5. The ROPy Python Interface
We use pybind11,20 a lightweight header-only library,
to create Python bindings of the C++ code. With the
Python interface we provide, users can generate a
Python library called ROPy, which contains all the
functions needed for creating decision variables, con-
straints, and models supported by ROC++. ROPy also
implements the dynamic behavior via strategy pat-
tern. It includes all reformulation strategies of ROC++
and uses the reformulation orchestrator to apply the
strategy sequentially. The concise grammar of Python
makes ROPy easy to use. Code extendability is guar-
anteed by pybind11. Developers may directly extend
the library ROPy (by, e.g., deriving new classes) in
Python without looking into the C++ code or by
rebuilding the library after making changes in C++.
ROPy code to all the examples in our paper can be
found in our GitHub repository.

5. Conclusion
We proposed ROC++, an open-source platform for
automatic robust optimization in C++ that can be
used to solve single-stage and multi-stage robust opti-
mization problems with binary and/or real-valued
variables, with exogenous and/or endogenous uncer-
tainty set and with exogenous and/or endogenous
information discovery. ROC++ is very easy to use,
thanks to operator overloading in C++ that allows
users to enter constraints to a ROC++ model in the
same way that they look on paper and thanks to the
strategy pattern that allows users to select the refor-
mulation strategy to employ at runtime. ROC++ is
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also very easy to extend, thanks to extensive use of
inheritance throughout and thanks to the numerous
hooks that are available (e.g., new reformulation strat-
egies and new solvers). We also provide a Python
library to ROC++, named ROPy. ROPy is easy to
extend either directly in Python or in C++. We believe
that ROC++ can facilitate the use of robust optimiza-
tion among both researchers and practitioners.

Some desirable extensions to ROC++ that we
plan to include in future releases are unit test capabil-
ity, support for distributionally robust optimization,
polynomial decision rules, and constraint sampling.
We also hope to generalize the classes of stochastic
programming problems that can be addressed by
ROC++ by adding support for problems where the
mean and covariance of the uncertain parameters are
known. Finally, we are constantly working to improve
usability and extendability, following the SOLID prin-
ciples of object oriented programming.
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6 See https://robustopt.com.
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10 See https://jumper.readthedocs.io/en/latest/jumper.html.
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stochastic_programming.html.
16 See https://odow.github.io/SDDP.jl/stable/.
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