https://pubsonline.informs.org/journal/mnsc

MANAGEMENT SCIENCE

Articles in Advance, pp. 1-20
ISSN 0025-1909 (print), ISSN 1526-5501 (online)

Robust Optimization with Decision-Dependent Information Discovery

Phebe Vayanos,*"®* Angelos Georghiou,® Han Yu®

3 Center for Artificial Intelligence in Society, University of Southern California, Los Angeles, California 90089; ® Daniel J. Epstein Department
of Industrial & Systems Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089;
°Thomas Lord Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California
90089; @ Department of Business and Public Administration, University of Cyprus, 1678 Nicosia, Cyprus

*Corresponding author

Contact: phebe.vayanos@usc.edu, (B https: // orcid.org/0000-0001-7800-7235 (PV); georghiou.angelos@ucy.ac.cy,
(® https: // orcid.org/0000-0003-4490-4020 (AG); hyu376@usc.edu (HY)

Received: January 28, 2021

Revised: August 22, 2022; July 9, 2024
Accepted: September 10, 2024

Published Online in Articles in Advance:
June 20, 2025

Abstract. Robust optimization (RO) is a popular paradigm for modeling and solving two-
and multistage decision-making problems affected by uncertainty. In many real-world appli-
cations, such as R&D project selection, production planning, or preference elicitation for
product or policy recommendations, the time of information discovery is decision-dependent
and the uncertain parameters only become observable after an often costly investment. Yet,
most of the literature on robust optimization assumes that the uncertain parameters can be
observed for free and that the sequence in which they are revealed is independent of the
decision-maker’s actions. To fill this gap in the practicability of RO, we consider two- and
multistage robust optimization problems in which part of the decision variables control the
time of information discovery. Thus, information available at any given time is decision-
dependent and can be discovered (at least in part) by making strategic exploratory invest-
ments in previous stages. We propose a novel dynamic formulation of the problem and prove
its correctness. We leverage our model to provide a solution method inspired from the K-
adaptability approximation, whereby K candidate strategies for each decision stage are cho-
sen here-and-now and, at the beginning of each period, the best of these strategies is selected
after the uncertain parameters that were chosen to be observed are revealed. We reformulate
the problem as a finite mixed-integer (resp. bilinear) program if none (resp. some) of the deci-
sion variables are real-valued. This finite program is solvable with off-the-shelf solvers.
We generalize our approach to the minimization of piecewise linear convex functions. We
demonstrate the effectiveness of our method in terms of usability, optimality, and speed on
synthetic instances of the Pandora box problem, the preference elicitation problem with real-
valued recommendations, the best box problem, and the R&D project portfolio optimization
problem. Finally, we evaluate it on an instance of the active preference elicitation problem
used to recommend kidney allocation policies to policy-makers at the United Network for
Organ Sharing based on real data from the U.S. Kidney Allocation System.
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1. Introduction and Goyal (2012), and Xu and Burer (2018). In multi-

1.1. Background & Motivation

Over the last two decades, robust optimization has
emerged as a popular approach for decision-making
under uncertainty in both single- and multistage settings,
see for example, Ben-Tal et al. (2009), Ben-Tal and
Nemirovski (2000), Ben-Tal and Nemirovski (1999), Ben-
Tal and Nemirovski (1998), Bertsimas et al. (2004), Bertsi-
mas and Sim (2004), Ben-Tal et al. (2004), Bertsimas et al.
(2011), Zhen et al. (2018), Vayanos et al. (2012), Bertsimas

stage models, the uncertain parameters are revealed
sequentially as time progresses and the decisions are
allowed to depend on all the information made avail-
able in the past. Mathematically, decisions are modeled
as functions of the history of observations, thus captur-
ing the adaptive and nonanticipative nature of the decision
process.

Most models and solution approaches in multistage
robust optimization are tailored to problems where
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the uncertain parameters are exogenous, being inde-
pendent of the decision-maker’s actions. In particular,
they assume that uncertainties can be observed for free
and that the sequence in which they are revealed cannot
be influenced by the decision-maker. Yet, these assump-
tions fail to hold in many real-world applications
where the time of information discovery is decision-
dependent and the uncertain parameters only become
observable after an often costly investment. Mathe-
matically, some binary measurement (or observation)
decisions control the time of information discovery
and the nonanticipativity requirements depend upon
these decisions, severely complicating solution.

We now detail several applications areas where the
time of revelation of the uncertain parameters is deci-
sion-dependent.

R&D Project Portfolio Optimization. Research and
development firms typically maintain long pipelines
of candidate projects whose returns are uncertain, see
Solak et al. (2010). For each project, the firm can decide
whether and when to start it and the amount of
resources to be allocated to it. The return of each pro-
ject will only be revealed once the project is completed.
Thus, project start times and resource allocation deci-
sions impact the time of information discovery in
this problem.

Clinical Trial Planning. Pharmaceutical companies
typically maintain long R&D pipelines of candidate
drugs, see for example, Colvin and Maravelias (2008).
Before any drug can reach the marketplace it needs to
pass a number of costly clinical trials whose outcome
(success/failure) is uncertain and will only be
revealed after the trial is completed. Thus, the deci-
sions to proceed with a trial control the time of infor-
mation discovery in this problem.

Offshore Oilfield Exploitation. Offshore oilfields con-
sist of several reservoirs of oil whose volume and ini-
tial deliverability (maximum initial extraction rate)
are uncertain, see for example, Jonsbraten (1998), Goel
and Grossman (2004), and Vayanos et al. (2011). While
seismic surveys can help estimate these parameters,
current technology is not sufficiently advanced to
obtain accurate estimates. In fact, the volume and
deliverability of each reservoir only become precisely
known if a very expensive oil platform is built at the
site and the drilling process is initiated. Thus, the
decisions to build a platform and drill into a reser-
voir control the time of information discovery in
this problem.

Production Planning. Manufacturing companies can
typically produce a large number of different items.
For each type of item, they can decide whether and

how much to produce to satisfy their demand given
that certain items are substitutable, see for example,
Jonsbraten et al. (1998). The production cost of each
item type is unknown and will only be revealed if the
company chooses to produce the item. Thus, the deci-
sions to produce a particular type of item control the
time of information discovery in this problem.

Active Preference Elicitation. Preference elicitation
refers to the problem of developing a decision support
system capable of generating recommendations to a
user, thus assisting in decision making. In active pref-
erence elicitation, one can ask users a (typically lim-
ited) number of questions from a potentially large set
before making a recommendation, see for example,
Vayanos et al. (2022). The answers to the questions are
initially unknown and will only be revealed if the par-
ticular question is asked. Thus, the choices of questions
to ask control the time of information discovery in
this problem.

1.2. Literature Review

Decision-Dependent Information Discovery. Our
paper relates to research on optimization problems
affected by uncertain parameters whose time of reve-
lation is decision-dependent and which originates in
the literature on stochastic programming. The vast
majority of these works assumes that the uncertain
parameters are discretely distributed. In such cases, the
decision process can be modeled by means of a finite
scenario tree whose branching structure depends on
the binary measurement decisions that determine the
time of information discovery. This research began
with the works of Jonsbraten et al. (1998) and Jonsbraten
(1998). Jonsbraten et al. (1998) consider the case where
all measurement decisions are made in the first stage
and propose a solution approach based on an implicit
enumeration algorithm. Jonsbraten (1998) generalizes
this enumeration-based framework to the case where
measurement decisions are made over time. More
recently, Goel and Grossman (2004) showed that sto-
chastic programs with discretely distributed uncertain
parameters whose time of revelation is decision-
dependent can be formulated as deterministic mixed-
binary programs whose size is exponential in the
number of endogenous uncertain parameters. To help
deal with the “curse of dimensionality,” they propose
to precommit all measurement decisions, for example,
to approximate them by here-and-now decisions, and
to solve the multistage problem using either a decom-
position technique or a folding horizon approach.
Later, Goel and Grossman (2006), Goel et al. (2006), and
Colvin and Maravelias (2010) propose optimization-
based solution techniques that truly account for the
adaptive nature of the measurement decisions and
that rely on branch-and-bound and branch-and-cut
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approaches, respectively. Accordingly, Colvin and Mar-
avelias (2010) and Gupta and Grossmann (2011) have
proposed iterative solution schemes based on relaxa-
tions of the nonanticipativity constraints for the mea-
surement variables. Our paper most closely relates to
the work of Vayanos et al. (2011), wherein the authors
investigate two- and multistage stochastic and robust
programs with decision-dependent information dis-
covery that involve continuously distributed uncer-
tain parameters. They propose a decision-rule based
approximation approach that relies on a prepartition-
ing of the support of the uncertain parameters. Since
this approach applies in our context, we will bench-
mark against it in our experiments.

Robust Optimization with Decision-Dependent Uncer-
tainty Sets. Our work also relates to the literature on
robust optimization with uncertainty sets parameter-
ized by the decisions. Such problems capture the abil-
ity of the decision-maker to influence the set of
possible realizations of the uncertain parameters and
have been investigated by Spacey et al. (2012), Noha-
dani and Sharma (2018), Nohadani and Roy (2017),
Zhang et al. (2017), and Bertsimas and Vayanos
(2017). These models do not apply in our context since
they do not capture the ability of the decision-maker
to influence the information available. In particular, the
problems investigated by Spacey et al. (2012), Noha-
dani and Sharma (2018), and Nohadani and Roy
(2017) are all single-stage, while problems with decision-
dependent information discovery are inherently sequential
in nature.

Distributionally Robust Optimization with Decision-
Dependent Ambiguity Sets. Similarly, our paper is
related to research on distributionally robust optimi-
zation with decision-dependent ambiguity sets, see
for example, Luo and Mehrotra (2020), Basciftci et al.
(2021), Noyan et al. (2022), and Yu and Shen (2022).
To the best of our knowledge none of these works
consider the case of decision-dependent information
discovery which is the focus of our work.

Robust Optimization with Binary Adaptive Variables.
Two-stage, and to a lesser extent also multistage,
robust binary optimization problems have received
considerable attention in the recent years. One stream
of works proposes to restrict the functional form of
the recourse decisions to functions of benign complex-
ity, see Bertsimas and Dunn (2017) and Bertsimas
and Georghiou (2015, 2018). A second stream of work
relies on partitioning the uncertainty set into finite
sets and applying constant decision rules on each parti-
tion, see Vayanos et al. (2011), Bertsimas and Dunning
(2016), Postek and Den Hertog (2016), Bertsimas and
Vayanos (2017). The last stream of works investigates

the so-called K-adaptability counterpart of two-stage
problems, see Bertsimas and Caramanis (2010), Hana-
susanto et al. (2015), Subramanyam et al. (2020), Chas-
sein et al. (2019), and Rahmattalabi et al. (2019). In
this approach, K candidate policies are chosen here-
and-now and the best of these policies is selected after
the uncertain parameters are revealed. Most of these
papers assume that the uncertain parameters are exog-
enous in the sense that they are independent of
the decision-maker’s actions. Our paper most closely
relates to the works of Bertsimas and Caramanis
(2010) and Hanasusanto et al. (2015). It generalizes
and subsumes the approach from Hanasusanto et al.
(2015) to problems with decision-dependent information
discovery, to multistage problems, and to problems
with piecewise linear convex objective.

Stochastic Probing. Our paper also fits in a line of
work on stochastic probing in the computer science
literature, see Gupta et al. (2016, 2017) and Singla
(2018). Here, the problem consists of a set of elements
with uncertain value whose distribution is known but
whose realization becomes observable only after the
element is probed. However, probing is costly (incurs
a cost or consumes budget) and irrevocable and the
goal is to choose the set of elements to probe and the
order in which to probe them to maximize profit (e.g.,
the value of the item with the highest value that has
been probed). Concrete examples include the best box
problem and the Pandora box problem, see for exam-
ple, Singla (2018). The techniques presented in this
stream of work do not apply to the case where the dis-
tributions are unknown, to general optimization pro-
blems with decision-dependent information discovery,
nor to problems with general, potentially uncertain,
constraints.

Worst-Case Regret Optimization. Finally, our work
relates to two-stage worst-case absolute regret mini-
mization problems, see for example, Assavapokee
et al. (2008a, b), Zhang (2011), Jiang et al. (2013), Ng
(2013), Chen et al. (2014), Ning and You (2018), and
Poursoltani and Delage (2019). To the best of our
knowledge, our paper is the first to investigate worst-
case regret minimization problems in the presence of
uncertain parameters whose time of revelation is deci-
sion-dependent.

1.3. Proposed Approach and Contributions
We now summarize our approach and main contribu-
tions in this paper:

a. We consider general two- and multistage robust
optimization problems with decision-dependent infor-
mation discovery. These encompass as special cases the
R&D project portfolio optimization problem, the Pan-
dora box problem (which can be used to model job
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candidate selection and house hunting, among others),
the active preference elicitation problem, and many
more. To the best of our knowledge, only one other
paper in the literature studies such problems in the
robust optimization setting. We propose novel “min-
max-min-max-----min-max” reformulations of these pro-
blems and prove correctness of our formulations. These
reformulations unlock new approximate (and poten-
tially also exact) solution approaches for addressing pro-
blems with decision-dependent information discovery.

b. We leverage our new reformulations to propose a
solution approach based on the K-adaptability approxi-
mation, wherein K candidate strategies are chosen here-
and-now and the best of these strategies is selected after
the uncertain parameters that were chosen to be observed
are revealed. This approximation allows us to control the
trade-off between complexity and solution quality by
tuning a single design parameter, K. We propose practi-
cable reformulations of the K-adaptability counterpart of
problems with decision-dependent information discov-
ery in the form of moderately sized finite programs solv-
able with off-the shelf solvers. These programs can be
written equivalently as mixed-binary linear programs if
all decision-variables are binary. Our reformulations sub-
sume those from the literature that apply only to two-
stage problems with exogenous uncertain parameters.

c. We generalize the K-adaptability approximation
scheme to multistage problems and to problems with
piecewise linear convex objective function. The piece-
wise linear convex objective enables us, among others,
to address worst-case absolute regret minimization
problems. These generalizations and associated algo-
rithm that we provide apply also to problems with
exogenous uncertain parameters.

d. We perform a wide array of experiments on the
R&D project portfolio selection problem, the preference
elicitation problem with real-valued recommendations,
the best box selection problem, Pandora’s box problem,
and the preference elicitation problem. We show that
our proposed approach outperforms the state-of-the-art
in the literature in terms of usability, optimality, and
speed. Indeed, our approach reduces the number of
subsets in the recourse strategy by a factor of 3,
improves the quality of the returned solution by a factor
of 1.9, and results in an 8.5x speed-up. We perform a
case study showcasing the benefits of our approach on
real data from the U.S. Kidney Allocation System (KAS)
to recommend policies that meet the needs of policy-
makers at the Organ Procurement and Transplantation
Network (OPTN) and the United Network for Organ
Sharing (UNOS), the lead agency in charge of allocating
organs for transplantation in the United States."

1.4. Organization of the Paper and Notation
The paper is organized as follows. Sections 2 and 3
introduce two-stage robust optimization problems with

exogenous uncertainty and with decision-dependent
information discovery (DDID), respectively. In partic-
ular, Section 3 introduces our novel formulation. Sec-
tion 4 proposes reformulations of the K-adaptability
counterparts of problems with DDID as finite programs
solvable with off-the-shelf solvers. Section 5 generalizes
the K-adaptability approximation to problems with
piecewise linear convex objective and proposes an effi-
cient solution procedure. Section 6 presents computa-
tional results on synthetic instances of the two-stage
best box selection problem, the two-stage preference
elicitation problem with real-valued recommendations,
and the two-stage R&D project portfolio optimization
problem. Finally, Section 7 formulates the preference
elicitation problem for learning the preferences of
policy-makers at the OPTN/UNOS as a two-stage
robust problem with decision-dependent information
discovery, and presents numerical results on real data
from the U.S. Kidney Allocation System. The proofs of
all statements can be found in the Electronic Compan-
ion to the paper. Proposed extensions to our methods,
algorithms, and speed-up strategies are also deferred to
the Electronic Companion. In particular, Sections EC.1
and EC.2 generalize the K-adaptability approximation
to multistage problems and apply it to the multistage
Pandora’s box problem, respectively.

Notation. Throughout this paper, vectors (matrices)
are denoted by boldface lowercase (uppercase) letters.
The kth element of a vector x € R" (k <n) is denoted
by xy. Scalars are denoted by lowercase letters, for
example, a or u. For a matrix H € R™", we let [H]; €
R"™ denote the kth row of H, written as a column vec-
tor. We let £f denote the space of all functions from
R" to R¥. Accordingly, we denote by Bt the spaces of
all functions from R" to {0,1}*. Given two vectors of
equal length, x, y € R", we let x oy denote the Hada-
mard product of the vectors, for example, their element-
wise product. Given a set .A and a positive integer 1, we
let A" := AX AX---X A (n times). With a slight abuse
of notation, we may use the maximum and minimum
operators even when the optimum may not be attained;
in such cases, the operators should be understood as
suprema and infima, respectively. We use the conven-
tion that a decision is feasible for a minimization prob-
lem if and only if it attains an objective that is < +oco.
Finally, for a logical expression E, we define the indica-
tor function I(E) as I(E) := 1 if E is true and 0 otherwise.

2. Two-Stage RO with Exogenous
Uncertainty

To motivate our formulation from Section 3, we intro-

duce two equivalent models of two-stage robust opti-

mization with exogenous uncertainty from the literature

and discuss their relative merits.
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In two-stage robust optimization with exogenous
uncertainty, first-stage (or here-and-now) decisions x €
X C RNt are made today, before any of the uncertain
parameters are observed. Subsequently, all of the uncer-
tain parameters € E C RN are revealed. Finally, once
the realization of & has become available, second-stage
(or wait-and-see) decisions y e YCRM are selected.
We assume that the uncertainty set 2 is a nonempty

bounded polyhedron expressible as E:={&eRM: :
AE < b} for some matrix A € R®N¢ and vector b € R,
As the decisions y are selected after the uncertain para-
meters are revealed, they are allowed to adapt or adjust
to the realization of &. In the literature, there are two for-
mulations of generic two-stage robust problem with
exogenous uncertainty: they differ in the way in which
the ability of y to adapt to & is modeled.

2.1. Decision Rule Formulation

In the first model, one optimizes today over both the
here-and-now decisions x and over recourse actions y
to be taken in each realization of & The decision y is
modeled as a function (or decision rule) of & that is
selected today, along with x. Under this paradigm, a
two-stage linear robust problem with exogenous uncer-
tainty is expressible as:

minimize max ECx+EQyu®)
e

} VEEE,

where CeRNN: Qe RNoNy T e RPNy, W e RPNy,
and H € R”N:, We assume that the objective function
and right hand-sides are linear in & We can account
for affine dependencies on & by introducing an auxiliary
uncertain parameter &y, ,; restricted to equal unity.

subjectto xe€e X, ye Ezlf

Yy ey
Tx + Wy(§) < HE

1)

2.2. Min-Max-Min Formulation

In the second model, only x is selected today and
the recourse decisions y are optimized explicitly, in a
dynamic fashion, after nature is done making a decision.
Under this model, a two-stage robust problem with
exogenous uncertainty is expressible as:

minimize max §TCx+m131]1 {£€'Qy : Tx+ Wy <H§&}
€= S

subject to x € X.
@

Problems (1) and (2) are equivalent, see for exam-
ple, Shapiro (2017). However, each of them has
proved successful in different contexts. Problem (1)
has been the building block of most of the literature
on the decision rule approximation, see Section 1.
Problem (2) has enabled the advent and tremendous

success of the K-adaptability approximation approach
to two-stage robust problems with binary recourse,
see Bertsimas and Caramanis (2010), Hanasusanto
et al. (2015). It has also facilitated the development of
algorithms and efficient solution schemes, see for
example, Zeng and Zhao (2013), Ayoub and Poss
(2016), and Bertsimas and Shtern (2018).

3. Two-Stage RO with Decision-Dependent

Information Discovery

In this section, we describe two-stage robust optimiza-
tion problems with decision-dependent information
discovery (DDID) and propose an entirely new model-
ing framework for studying such problems. This frame-
work underpins our ability to generalize the popular
K-adaptability approximation approach from the liter-
ature to problems affected by uncertain parameters
whose time of revelation is decision-dependent, see
Sections 4.2 and 4.3.

3.1. Problem Description

In two-stage robust optimization with DDID, the uncer-
tain parameters & do not necessarily become observed
(for free) between the first and second decision-stages.
Instead, some (typically costly) first stage decisions con-
trol the time of information discovery in the problem: they
decide whether (and which of) the uncertain para-
meters will be revealed before the wait-and-see decisions
y are selected. If the decision-maker chooses to not
observe some of the uncertain parameters, then those
parameters will still be uncertain at the time when the
decision y is selected, and y will only be allowed to
depend on the portion of the uncertain parameters that
have been revealed. On the other hand, if the decision-
maker chooses to observe all of the uncertain para-
meters, then there will be no uncertainty in the problem
at the time when y is selected, and y will be allowed to
depend on all uncertain parameters.

In order to allow for endogenous uncertainty, we
introduce a here-and-now binary measurement (or
observation) decision vector w € {0,1}¢ of the same
dimension as £ whose ith element w; is 1 if and only if
we choose to observe & between the first and second
decision stages. In the presence of such endogenous
uncertain parameters, the recourse decisions y are
selected after the portion of uncertain parameters that
was chosen to be observed is revealed. In particular, y
must be constant in (i.e., robust to) those uncertain
parameters that remain unobserved at the second
decision-stage. The requirement that y only depend on
the uncertain parameters that have been revealed at
the time it is chosen is termed nonanticipativity. In the
presence of uncertain parameters whose time of reve-
lation is decision-dependent, this requirement trans-
lates to decision-dependent nonanticipativity constraints.
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3.2. Decision Rule Formulation

In the literature and to the best of our knowledge,
two-stage robust optimization problems with DDID
have been formulated (in a manner paralleling Prob-
lem (1)) by letting the recourse decisions y be functions
of § and requiring that those functions be constant in
& if w; =0, see Vayanos et al. (2011). Under this (deci-
sion rule based) modeling paradigm, generic two-stage
robust optimization problems with decision-dependent
information discovery take the form

minimize r?aHx £ Cx+EDw+E Qy(é)
e
subjectto xe X, weW,ye E%Z

y(ey

(©)
Tx+Vw+Wy(§)SH§} vee
y@=y() VEEE€E  wof=wof,

where Wc{0,1}, DeRVN:, v e RPNe | and the
remaining data elements are as in Problem (1). The
set W can encode requirements on the measurement
decisions. For example, it can enforce that a given uncer-
tain parameter & may only be observed if another uncer-
tain parameter &, has been observed using w; < wy.
Accordingly, it can postulate that the total number of
uncertain parameters that are observed does not exceed
a certain budget Q using Zﬁi w; < Q. If only some
(or all) of the uncertain parameters have a time of infor-
mation discovery that is exogenous, our models and
solution approaches can be used by restricting the obser-
vation decisions w; to equal 1 (resp. 0) for each exogernous
uncertain parameter i that is (resp. is not) observed
between the first and second decision stages. These
restrictions can be conveniently added as constraints to
the set WV. The last constraint in the problem is a decision-
dependent nonanticipativity constraint: it ensures that
the function y is constant in the uncertain parameters
that remain unobserved at the second stage. Indeed, the
identity wo §=wo & evaluates to true only if the ele-
ments of § and & that were observed are indistinguish-
able, in which case the decisions taken in scenarios & and
& must be equal. We omit joint (first stage) constraints on
x and w to minimize notational overhead but emphasize
that our approach remains applicable in their presence.

Note that Problem (3) generalizes Problem (1).
Indeed, if we set w=e, D=0, and V =0 in Problem
(3), we recover Problem (1). In addition, it gener-
alizes the single-stage robust problem: if we set w =0
in Problem (3), all uncertain parameters are revealed
after the second stage so that the second stage deci-
sions are forced to be static (i.e., constant in &).

To the best of our knowledge, the only approach in
the literature for (approximately) solving problems of
type (3) is presented in Vayanos et al. (2011) and relies
on a decision rule approximation. The authors propose

(11

to approximate the binary (resp. continuous) wait-
and-see decisions by functions that are piecewise con-
stant (resp. piecewise linear) on a preselected partition
of the uncertainty set of the form Zs:={£€ & : ¢, _; <
&<c,,i=1,...,k}, whereseS :=><?f1 {1,...,ryczNe
and ¢} <c¢j <--<¢, ; fori=1,...,Ng represent r; — 1
breakpoints along the &; axis. Unfortunately, as the fol-
lowing example illustrates, this approach is highly sen-
sitive to the choice of breakpoint configuration.

Example 1. Consider the following instance of Prob-
lem (3)

minimize 0

subject to w € {0,1)*, y € 18
E—e<yl§) <e+é—c } VEeE B
y(é) =y(§) VEEeE:

4)
wog=wof,

where E:=[-1,1]%. The inequality constraints in the
problem combined with the requirement that y(&) be
binary imply that we must have y,(§) =1 (resp. 0)
whenever & > ¢€; (resp. &; < €;). Thus, from the decision-
dependent nonanticipativity constraints, the only feasi-
ble choice for w is e. It is easy to show that if €=
le —3e and if we uniformly partition each axis itera-
tively in 2, 3, 4, etc. subsets, then 1999 breakpoints
along each direction will need to be introduced before
reaching a feasible (and thus optimal) solution. The
associated problem will involve over 8e7 binary deci-
sion variables and 16e7 constraints. In contrast, as will
become clear later on, our proposed solution approach
with approximation parameter K = 4 will be optimal in
this case.

Example 1 is not surprising: the approach from
Vayanos et al. (2011) was motivated by stochastic pro-
grams which are less sensitive to the breakpoint con-
figuration than robust problems. Thus, a more flexible
approach is needed to address two-stage and multi-
stage robust problems with DDID.

3.3. Proposed Min-Max-Min-Max Formulation

Motivated by the success of formulation (2) as the
starting point to solve two-stage robust optimization
problems with exogenous uncertainty, we derive an
analogous dynamic formulation for the case of endoge-
nous uncertainties. In particular, we build a robust opti-
mization problem in which the sequence of problems
solved by each of the decision-maker and nature in turn
is captured explicitly. The idea is as follows. Initially,
the decision-maker selects x € X and w €. Subse-
quently, nature commits to a realization £ of the uncer-
tain parameters from the set E. Then, the decision-
maker selects a recourse action y that needs to be robust
to those elements £; of the uncertain vector € that they
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have not observed, that is, for which w; = 0. Indeed, the
decision y may have to be taken under uncertainty if
there is some i such that w; = 0, in which case not all of
the uncertain parameters have been revealed when y is
selected. Indeed, after y is selected, nature is free to
choose any realization of & € E that is compatible with
the original choice £ in the sense that & = §; for all i
such that w; = 1. This model captures the notion that,
after y has been selected, nature is still free to choose
the elements &; that have not been observed, provided it
does so in a way that is consistent with those para-
meters that have been observed. Mathematically, given
the measurement decisions w and the observation &,
nature can select any element & from the set

B(w,§)={6€E  wof=wo&}.

Note in particular that if w = e, then Z(w, &) = {£} and
there is no uncertainty when y is chosen. Accordingly,
if w =0, then E(w, €) = E and y has no knowledge of
any of the elements of & The realizations E, &, and the
sets & and Z(w, £) are all illustrated on Figure 1.

Based on the above notation, we propose the follow-
ing generic formulation of a two-stage robust optimi-
zation problem with decision-dependent information
discovery:

max £ Cx+ & Dw+£Qy: Tx

min max min
&eE(w, §)

ez Y&V
+Vw+ Wy <HE VEe E(w,g)} (P)
st. xeX, weW.

Note that, at the time when y is selected, some ele-
ments of § are still uncertain. The choice of y thus
needs to be robust to the choice of those uncertain
parameters that remain to be revealed. In particular,

Figure 1. (Color online) Companion Figure to Section 3.3

the constraints need to be satisfied for all choices of
£€ E(w, ). Accordingly, y is chosen so as to minimize
the worst-case possible cost when & is valued in the
set £€ E(w, €).

Problems (3) and (P) are equivalent in a sense made
precise in the following theorem.

Theorem 1. The optimal objective values of Problems (3)
and (P) are equal. Moreover, the following statements hold
true:

i. Let (x,w) be optimal in (P) and, for each & such that

8=wo & for some & € B, define

y'(8) € arg min { max & Cx+& Dw+& Qy: Tx
ey &2, d)

+ Vw+Wy<HE Vée E(w,ﬁ)}.

Also, for each & € B, define y(&) := y'(w o &). Then, (x,w,
y(+)) is optimal in Problem (3).

ii. Let (x,w,y(-)) be optimal in Problem (3). Then, (x,w)
is optimal in Problem (P).

The parameter & in item (i) of the theorem above is
introduced to ensure that the decision rule y(-) defined
on E is nonanticipative. Indeed, if for any given (x, w)
and &, there are many optimal solutions to problem

min{ max £ Cx+& Dw+& Qy: Tx+Vw
veV  geE(w, &)

+Wy<HE Vée E(w,f)},

the decision rule #(-) defined on E through

7(£€) € arg min { max £ Cx+& Dw+& Qy: Tx
yey £eE(w, §)

+Vw+Wy<HE Vée E(w,g)},

may not be constant in those parameters that remain

Notes. The figure on the left illustrates the role played by £ in the new formulation (P) and the definition of the uncertainty sets Z and E(w, ).
Consider a setting where E C R? (i.e., N: =2) and suppose that w = (0, 1) so that the decision-maker has chosen to only observe &,. In the figures,

E is shown as the grey shaded area. Once £ is chosen by nature, the decision-maker can only infer that £ will materialize in the set Z(w, £) which
collects all parameter realizations £ € E that satisfy &, = &,, being compatible with our partial observation. The figure on the right illustrates
the construction of an optimal nonanticipative decision % from an optimal solution y(8) to minyey {mMaxgez(w, ) E'Cx+EDw+EQy: Tx+
Vw+Wy<H¢ Ve E(w,d)}, see Theorem 1. We note that the policy 7 constructed as in Theorem 1 is constant along the &; direction since here

w1 =0.
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unobserved. We note of course that other tie-breaking
mechanisms could be used to build a nonanticipative
solution. For example, we may select, among all opti-
mal solutions, the one that is lexicographically first.

The theorem above is the main result that enables us
to generalize the K-adaptability approximation scheme
to two-stage robust problems with decision-dependent
information discovery and binary recourse. In Elec-
tronic Companion EC.6, we show that for any given
choice of here-and-now decisions, the set of para-
meters & for which a particular wait-and-see decision
is optimal may be nonclosed and nonconvex and that
the optimal value of the problem may not be attained.
This result is expected from the analysis in Hanasu-
santo et al. (2015), since Problem (P) generalizes Prob-
lem (2). Our example illustrates that this may be the
case even if a portion of the uncertain parameters
remain unobserved in the second stage.

Two-stage robust optimization problems with
decision-dependent information discovery have a huge
modeling power, see Sections 1, 6, and 7. Yet, as illus-
trated by the preceding discussion, they pose several
theoretical and practical challenges. As we will see in
the following sections, whether we are or not able
to reformulate the K-adaptability counterpart of the
problem exactly as a finite program solvable with off-
the-shelf solvers depends on the absence or presence
of uncertainty in the constraints. When in presence of
constraint uncertainty, we can always compute an
arbitrarily tight outer (lower bound) approximation,
see Section 4.3.

4. K-Adaptability for Problems with DDID

Instead of solving Problem (P) directly, we approxi-
mate it through its K-adaptability counterpart,

max & Cx+&Dw+EQyf : Tx
£eE(w, &)

+Vw + Wyt < HE VgeE(w,E)} (Px)
st. xeX, weW,y el kek,

min max min
EEE kel

where K:={1,...,K}. In this problem, K candidate
policies y,...,y* are chosen here-and-now, that is
before w o € (the portion of uncertain parameters that
we chose to observe) is revealed. Once w o & becomes
known, the best of those policies among all those that
are robustly feasible (in view of uncertainty in the
uncertain parameters that are still unknown) is imple-
mented. If all policies are infeasible for some €€ Z,
then we interpret the maximum and minimum in (Px)
as supremum and infimum, that is, the K-adaptability
problem evaluates to +c0. Problem (Pk) is a conservative
approximation to program (P). Moreover, if || < co
and K = |Y|, then the two problems are equivalent. In
practice, we hope that a moderate number of candidate

policies K will be sufficient to obtain a (near) optimal
solution to (P).

4.1. The Price of Usability

Problem (Pk) is interesting in its own right. Indeed, in
problems where usability is important (e.g., if workers
need to be trained to follow diverse contingency plans
depending on the realization w o &), Problem (P) may
be an attractive alternative to Problem (7). In such set-
tings, the loss in optimality incurred due to passing
from Problem (P) to Problem (Px) can be thought of as
the price of usability. For example, consider an emer-
gency response planning problem where, in the first
stage, a small number of helicopters can be used to sur-
vey affected areas and, in the second stage, and in
response to the observed state of the areas surveyed,
deployment of emergency response teams is decided.
In practice, to avoid having to train teams in a large
number of plans (yielding significant operational chal-
lenges), only a moderate number of response plans
may be allowed. The importance of interpretability/
usability has been previously noted by for example,
Kog and Morton (2015), McCarthy et al. (2018), Bertsi-
mas et al. (2019), and Aghaei et al. (2019, 2024).

Remark 1. If W={0,1},D=0,and V=0, thenw = e
is optimal in Problem (P) and thus E(w, £) = {£}, imply-
ing that Problem (P) reduces to Problem (2) and Prob-
lem (Pk) reduces to the K-adaptability counterpart of
Problem (2).

Relative to the problems studied by Bertsimas and
Caramanis (2010) and Hanasusanto et al. (2015), Prob-
lem (Pxk) presents several challenges. First, the second
stage problem in (Pk) is a robust (as opposed to deter-
ministic) optimization problem. Second, the uncer-
tainty sets involved in the maximization tasks of this
robust problem are decision-dependent. While Prob-
lem (Pk) appears to be significantly more complicated
than its exogenous counterpart, it can be converted to
an equivalent min-max-min problem by lifting the
space of the uncertainty set as show in the following
lemma that is instrumental in our analysis.

Lemma 1. The K-adaptability problem with decision-dependent
information discovery, Problem (Px), is equivalent to

min | max o min {(§)7Cx +(£) " Dw + (¢)7Qy" :
o Tx + Vo + Wy < HE") ©)
s.t. xeX,weW,ykey,kelC,
where
EXw) := {{}er € X TE € B such that & € B(w, €)
for all k € K}. (6)

For any fixed w € W, the subvector §k in the defini-
tion of ZX(w) represents the uncertainty scenario that
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“nature” will choose if the decision-maker acts accord-
ing to decisions w in the first stage and according to pol-
icy k in the second stage. The set ZX(w) collects, for each
ke IC, all feasible choices that nature can take if the
decision-maker acts according to w and then y* in the
first and second stages, respectively. Thus, in Problem
(5), the decision-maker first selects x, w, and yF, k € K.
Subsequently, nature commits to the portion of observed
uncertain parameters wo & and to a choice & kek,
associated with each candidate policy y*. Finally, the
decision-maker chooses one of the candidate policies.

In what follows, we provide insights into the theo-
retical and computational properties of the K-adapt-
ability counterpart to two-stage robust problems with
DDID and with binary recourse.

Remark 2. We note that the results in Section 3 gener-
alize fully to cases where the objective and constraint
functions are continuous (not necessarily linear) in x, y,
and & Moreover, all of the ideas in our paper generalize
to the case where the technology and recourse matrices,
T and W, depend on & We do not discuss these cases in
detail so as to minimize notational overhead.

4.2. K-Adaptability for Problems with Objective
Uncertainty

In this section, we focus our attention on the case

where uncertain parameters only appear in the objec-

tive of Problem (P) and where the recourse decisions

are binary, being expressible as

minimize max min {
ez ¥V | &eE(w,§)
Tx + Vw + Wy < h} (PO)

subject to x € X, we W,

where h e RY, Y € {0,1}"". We study the K-adaptabil-
ity counterpart of Problem (P0) given by

minimize max min { max & Cx+& Dw+& Qy:
EeE kel | geE(w, &)

Tx+ Vw + Wy < h} (POK)

subject to xEX,weVV,ykey,kelC.

Applying Lemma 1, we are able to write Problem
(POk) equivalently as
minimize max min{(&) Cx+ () Dw

(£ e eE (w) kek

+(§k)Tka : Tx+ Vw + Wy* <h}

subjectto xe X, weW, ykey,keIC,

(7)
where ZX(w) is defined as in Lemma 1. In the absence
of uncertainty in the constraints, the constraints in the

K-adaptability problem can be moved to the first
stage, as summarized by the following observation.

max £ Cx+ & Dw+ & Qy:

Observation 1. The K-adaptability counterpart of the
two-stage robust optimization problem with decision-
dependent information discovery, Problem (POk), is
equivalent to

minimize max min{(&) Cx+ (&) Dw+ (§k)Tka}
{§ B () kel
subject to xeX,weW,ykey,keIC (8)

Tx+Vw+Wy*<h Vkek,
where ZX(w) is as defined in Equation (6).

Note that for all w € W, the set ZX(w) is nonempty
and bounded. Thus, (x, w, {yk}ke,c) € X x W x VK is fea-
sible in Problem (8) if Tx + Vw + Wy < h for all k€ K,
whereas to be feasible in Problem (7) (and accordingly
in Problem (POk)), it need only satisfy Tx+ Vw +
Wy < h for some k € K. Thus, a triplet (x,w,y*) feasi-
ble in (7) (and thus in (POk)) need not be feasible in
Problem (8). However, the proof of Observation 1, pro-
vides a way to construct a feasible solution for Problem
(8) from a feasible solution to Problem (7) that achieves
the same optimal value.

Lemma 1 and Observation 1 are key to reformulating

Problem (POk) as a finite program. They also enable us
to analyze the complexity of evaluating the objective
function of the K-adaptability problem under a fixed
decision. Indeed, from Problem (8), it can be seen that
for any fixed choice (x,w, {y*}icc), the objective value
of (POx) can be evaluated by solving a linear program
(LP) obtained by writing (8) in epigraph form. We for-
malize this result in the following.
Observation 2. For any fixed K and decision (x,w,
{¥}erc), the objective value of the K-adaptability prob-
lem (POk) can be evaluated in polynomial time in the
size of the input.

In Observation 2, we showed that for any fixed K, x,
w, and yk, the objective function in Problem (POk)
can be evaluated by means of a polynomially sized
LP. By dualizing this LP, we can obtain an equivalent
reformulation of Problem (POk) in the form of a bilin-
ear problem.

Theorem 2. Problem (POx) is equivalent to the bilinear
problem

minimize bTB+ZbTBk
kek
subject to xeX,weW,ykey,kelC
acRE, BeRR, BFeRR, f eRN ke
e'a=1
ATB +wonk = ap(Cx+Dw+ Qyf) Vkek
ATB:Zwoyk
kek
Tx+Vw+Wy <h Vkek. )
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Although Problem (POk) is generally nonconvex
(bilinear), there exist several techniques in the litera-
ture for solving such problems exactly. In fact, this is
an extremely active area of research, see for example,
Tsoukalas and Mitsos (2014) and Gupte et al. (2017).
Moreover, problems of the form (POk) can now be
solved with state-of-the-art off-the-shelf solvers like
Gurobi. Indeed, Gurobi recently released its 9th ver-
sion that can tackle nonconvex quadratic programs.”
If Xx<{0,1}" and Y C{0,1}", the bilinear terms in
the formulation above can be linearized using stan-
dard techniques and we can obtain an equivalent
reformulation of Problem (PQOk) in the form of an
MBLP.

Corollary 1. Suppose X C 0,13 and Y € {0,1}™". Then,
Problem (POx) is equivalent an MBLP involving a suit-
ably chosen “big-M" constant.

We emphasize that the size of the MBLP in Corol-
lary 1 is polynomial in the size of the input data for
the K-adaptability problem (POk). Note that, contrary
to Hanasusanto et al. (2015), to reformulate Problem
(POk) as an MBLP, we require that X' C {0,1}™:. This
is to ensure that we are able to linearize the bilinear
terms involving the x variables that arise from the
dualization step. We note that formulation (9) and its
equivalent MBLP can be augmented with symmetry
breaking constraints to speed-up solution, see Section
EC.5.1 for details.

Remark 3. Most MBLP solvers® allow reformulating
the bilinear terms without the use of “big-M” con-
stants, which are known to suffer from numerical insta-
bility. These include, for example, so-called SOS or
IfThen constraints.

Observation 3. Suppose that we are only in the
presence of exogenous uncertainty, that is, w=e,
D =0, and V =0. Then, Problem (11) reduces to the
MBLP formulation of the K-adaptability problem
with only exogenous uncertainty from Hanasusanto
et al. (2015).

A generalization of our model and solution approach
in this section to the multistage case with objective
uncertainty is provided in Electronic Companion EC.1.

4.3. K-Adaptability for Problems with Constraint
Uncertainty

The starting point of our analysis is the reformulation

of Problem (Px) as the min-max-min problem (5).

Unfortunately, this problem is generally hard as testi-

fied by the following theorem.

Theorem 3. Evaluating the objective of Problem (5) if K is
not fixed is strongly NP-hard.

We reformulate Problem (5) equivalently by shift-
ing the second-stage constraints Tx + Vi + Wy* < HE"
from the objective function to the definition of the
uncertainty set. We thus replace ZX(w) with a family
of uncertainty sets parameterized by a vector £.

Proposition 1. The K-adaptability problem with decision-
dependent information discovery, Problem (5), is equiva-
lent to
e s : T T
minimize max  max  min Cx+ Dw
LeL (& YoreE (w, o) IEELC: {(gk) (gk)

T H@&@TQYY (o)
subject to xeX,wEW,ykey,kelC,

where £ :={0,...,L}~, L is the number of second-stage con-

straints in Problem (P), and the uncertainty sets 2w, 0),
L € L, are defined as

{he € EX

X (w, 0) = wof =wok Vk e K for some £ € B ,
Tx + Vw + Wyt <HE VkeK:£,=0
[Tx+Vw+ Wyk], > [HE], VkeK:4#0

where, for convenience, we have suppressed the dependence
of EX(w, £) on x and y¥, k € K.

The elements of vector £ € £ in Proposition 1 encode
which second-stage policies are feasible for the param-
eter realizations {&},., € EX(w, £). Indeed, recall that
fk can be viewed as the recourse action that nature
will take if the decision-maker acts according to y*
in response to seeing . Thus, policy y* is feasible in
Problem (5) (and thus in Problem (Py)) if £ =0. On
the other hand, policy y* violates the £-th constraint
in Problem (5) if £x # 0. Thus, if £ # 0, this implies that
the £;-th constraint in (Pk) is violated for some &e
E(w, &) and therefore y* is not feasible in (Pk). Note
that, in contrast to the case with exogenous uncertainty
discussed by Hanasusanto et al. (2016), £, =0 if and
only if policy y* is robustly feasible in (P).

Having brought Problem (Px) to the form (10), it
now presents a similar structure to a problem with
objective uncertainty (see Section 4.2) with the caveats
that the problem involves multiple uncertainty sets that
are also open. Next, we employ closed inner approxi-
mations ZX(w, £) of the sets Z(w, £) that are parame-
terized by a scalar € > 0:

minimize max max min{(£)" Cx+ (&) Dw
£eL (g hoxeBhw, o) keks

=+ (E) Q'

10
subject to xeX,weW,ykey,kGIC, (10)
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where the uncertainty sets ZX(w, £) are defined as

{Eherc € EX:
X wof =wok Vk € K for some £€ &
Ee(w,ﬂ):: .
Tx+ Vw + Wy* <HE VkeK: 4 =0

[Tx + Vw + Wyk], > [HE], +e VkeK:4#0

Using this definition, we next reformulate the approx-
imate Problem (10.) equivalently as an MBLP.

Theorem 4. The approximate problem (10.) is equivalent
to the mixed binary bilinear program

min T
st. TeR, xeX, weW, y* e, kek
a(f) eRE, of(0) eRY, ke K, y(£) eRE,
(@) eRNe, ke K, £e L
A0) € Ax(£), BF(£) eRL, ke K,
ATa(f) = won'(e)

keK
ATk (8) — HT B*(£) +w o 1f*(£)
:)\k(ﬂ)[Cx+Dw+ka} VkeK:4,=0
ATk () +[H]y, () +worf(£)
:/\k(ﬁ){Cx+Dw+ka} VkeK: 4 #0
T>b" <a(e) +> ak(€)> = (Tx+Vw+WyH)'

keK kelC:
£4=0

VeedLl

B (o) + § ([Tx + Vw + Wy*],, — €)y,(€)
kekC:
£ #0

ATa(l) = Z worn(e)
kel
ATk () +[H], y (&) +wornf(£)=0 Vkek

b <a(13) 3 ak(£)> veeLy,

kel

+ Z([Tx +Vw + Wyk]lk —e)y ) <-1
kek

(11)

where Ag(€):={AeRX :eTA=1,0=0 VkeK: £ #0},
IL:={eL:L#0} and L,:={£e L:L>0} denote the
sets for which the decision (x,w, {y, }xexc) satisfies or violates
the second-stage constraints in Problem (10), respectively.

If ¥ €{0,1}™ and Y € {0,1}"", then for e sufficiently
small, Uger EX(w, £) is nonempty for all (x,w, {y*}rex)
feasible in Problem (10.), implying that Problem (10.)
is bounded below. Therefore, for € sufficiently small,
its equivalent Problem (11) is also bounded below and
thus admits an equivalent reformulation as an MBLP
involving a suitably chosen “big-M"” constant. Similar
to the robust counterpart resulting from the decision
rule approximation proposed in Vayanos et al. (2011),

Problem (11) presents a number of constraints and
decision variables that is exponential in the approxima-
tion parameter, in this case K. Relative to the preparti-
tioning approach from Vayanos et al. (2011), our
method does however present a number of distinct
advantages. First, the trade-off between approximation
quality and computational tractability is controlled
using a single design parameter; in contrast, in the pre-
partitioning approach, the number of design para-
meters equals the number of observable uncertain
parameters. Second, as we increase K, the quality of the
approximation improves in our case, whereas increas-
ing the number of breakpoints along a given direction
does not necessarily yield to improvements in the pre-
partitioning approach. Finally, to identify breakpoint
configurations resulting in low optimality gap, a large
number of optimization problems need to be solved.

Remark 4. Theorem 4 directly generalizes to instances
of Problem (Px) where the technology and recourse
matrices T, V, and W depend on £&. Indeed, it suffices
to absorb the coefficients of any uncertain terms in T,
V,and W in the right-hand side matrix H.

Observation 4. Suppose that we are only in the pres-
ence of exogenous uncertainty, that is, w=e, D=0,
and V =0. Then, Problem (11) reduces to the MBLP
formulation of the K-adaptability problem with con-
straint uncertainty and with only exogenous uncertain
parameters from Hanasusanto et al. (2015). In particu-
lar, in the case of constraint uncertainty, Hanasusanto
et al. (2015) also require that the first stage variables x
be binary.

5. The Case of Piecewise Linear

Convex Obijective
In this section, we investigate two-stage robust opti-
mization problems with DDID and objective uncer-
tainty where the objective function is given as the
maximum of finitely many linear functions.

5.1. Problem Formulation

A piecewise linear convex objective function can be
written compactly as the maximum of finitely many
linear functions of & and (x, w, y), being expressible as

max §'C'x+ £ D'w+£ Q'y, (12)
1€

where C' e RNNx D ¢ RN*Ne and Q' e RNy je T,
7 C N. A two-stage robust optimization problem with
DDID, objective function given by (12), and objective
uncertainty is then expressible as

min max min max_ {max ECx+E§Dw+ §TQiy}
2 VY geE@w,d) | €L

st. xeX,weW. (POPWL)
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Note that, as in Section 4.2, our framework remains
applicable in the presence of joint deterministic con-
straints on the first and second stage variables. We
omit these to minimize notational overhead.

5.2. K-Adaptability Approximation & MBLP
Reformulation

The K-adaptability counterpart of Problem (PO""")

reads

min max min max_ {max ECx+EDw+EQ yk}
geg kek geB(w, &) €T

DPOPWL

st. xeX,weW,y*e) kek. (POK™)

We begin this reformulation by the following lemma,
which parallels Lemma 1, and shows that we can
exchange the order of the inner min and max in for-
mulation (PO"Y), by indexing &by k.

Lemma 2. The K-adaptability counterpart of Problem
(PO is equivalent to

minimize max  min { max (§) ' C'x+ (&) D'w

{& B (w) kek i€Z
T i,k
+(&)"Q'y } 13

subjectto xe X, weW,y e, kek.

Next, by leveraging Lemma 2, we are able to refor-
mulate Problem (13) exactly as an MBLP.

Theorem 5. Problem (POYY) is equivalent to the bilinear
program

minimize T
subjectto TeR,xe X, weW,yfe), kek
i ~ K pi - R pik - R ik - N
o' eR;, B eR], B eRL, v eRY,
Vkek,ieIX
T2b'g+> b

kek

eTai=1
ATBF 4 wo ik viezK,
= al(Cx + D*w+ Q*y*) VkeKk
ATBi — Zwo,yi,k
kek
(14)

which can be written as an MBBLP, provided X C {0, 1V,

Albeit Problem (14) is an MBLP, it presents an expo-
nential number of decision variables and constraints
making it difficult to solve directly using off-the-shelf
solvers even when K is only moderately large (KX 4).
In the remainder of this section, we exploit the specific
structure of Problem (PO""") to solve its K-adaptabil-
ity counterpart exactly by reformulating it as an MBLP

that presents an attractive structure amenable to decom-
position techniques.

5.3. “Column-and-Constraint Generation”
Algorithm

Column-and-constraint generation techniques are a
popular approach for addressing problems that pos-
sess an exponential number of decision variables and
constraints while presenting a decomposable struc-
ture, see for example, Fischetti and Vigo (1997), Lobel
(1998), Valério De Carvalho (1999), Mamer and McBride
(2000), Feillet et al. (2010), Sadykov and Vanderbeck
(2011), Zeng and Zhao (2013), Muter et al. (2013), and
Muter et al. (2018). We propose a new column-and-
constraint generation algorithm to solve the K-adaptabil-
ity counterpart (POy"") based on its reformulation (14).
The key idea is to decompose the problem into a relaxed
master problem and a series of subproblems indexed by
i€ ZX. The master problem initially only involves the
first stage constraints and a single auxiliary MBLP is used
to iteratively identify indices i € Z¥ for which the solu-
tion to the relaxed master problem becomes infeasible
when plugged into subproblem i. Constraints associated
with infeasible subproblems are added to the master
problem and the procedure continues until convergence.
We detail this procedure in Electronic Companion EC.3
where we also show that certain classes of two-stage
robust optimization problems that seek to minimize the
“worst-case absolute regret” criterion can be written in
the form (PO™1). In Section 7, we leverage the column
and constraint generation algorithm and this observa-
tion to solve an active preference elicitation problem that
seeks to recommend kidney allocation policies with least
possible worst-case regret.

6. Computational Studies on Stylized

Instances
We investigate the performance of our approach on a
variety of two-stage robust optimization problems
with decision-dependent information discovery (for
computational results on multistage robust optimiza-
tion with decision-dependent information discovery,
see Electronic Companion EC.2). We solve these pro-
blems with our proposed methods discussed in Sec-
tions 4.2, 4.3, and 5.2. To speed-up computation, for the
two-stage problems, we employ a conservative greedy
heuristic that uses the solution to problems with smal-
ler K to solve problems with larger K more efficiently,
see Electronic Companion EC.5.2. This strategy enables
us to solve many random instances of problems with
large approximation parameters K (up to K = 10). In all
our experiments, we compare our method to the state-
of-the-art prepartitioning approach from Vayanos et al.
(2011) using the ROC++ platform, see Vayanos et al.
(2023). All of our experiments are performed on the
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High Performance Computing Cluster of our univer-
sity. Each job is allotted 64GB of RAM, 16 cores, and a
2.6GHz Xeon processor. All optimization problems are
solved using Gurobi v9.0.1. We allow a total time limit
of 7,200 seconds to solve each instance cumulatively
across all values of K for the K-adaptability problem
and across all breakpoint configurations for the prepar-
titioning approach. Unless indicated otherwise, we set
M=1,000 for the K-adaptability approach. We found
that this value yielded good performance in most
cases.

6.1. Two-Stage Robust Best Box Selection
(Objective Uncertainty)

The first problem we study is a robust variant of the
best box selection problem, see for example, Gupta
et al. (2016, 2017) for results on the stochastic version.
In this problem, an agent must select one out of N
boxes, indexed in the set N :={1,...,N}, each of
which contains a prize. The value & € R of the prize in
each box i € NV is unknown and will only be revealed
if the box is opened. Opening box i € N incurs a cost
¢;. In the first stage, the agent can decide whether to
open each box i € N which we indicate with the deci-
sion variables w; € {0,1}. Thus, w; =1 if and only if &
is observed between the first and second decision
stages. The total budget available to open boxes is B.
In the second stage, the agent can choose one of the
opened boxes to keep, which we indicate with the
decision variable y; € {0,1}, i € N/, earning its prize.
We assume that the value of box i € NV is expressible as
&=(1+®/2)E, where & corresponds to the nomi-
nal value of the prize of box i, {€ [—1, 1]]“ are L risk fac-
tors, and ®; € R collects the factor loadings associated
with the value of box i. The goal of the agent is to
select the boxes to open (first stage decisions) and the

box to keep (second stage decision) to maximize the
worst-case value of the box kept. The Best Box Selec-
tion problem has numerous applications, for example
in house purchasing or in candidate interviewing, see
for example, Singla (2018). With the notation above,
the problem can be expressed as a two-stage robust
optimization problem with decision-dependent infor-
mation discovery of the form (PO) as

max min max { min £y:e'y=1,c w<By<w,,
we{0, 1} EeE  ye{0, 1} | £eE(w, &)

(15)

where E:={£eRN : 3Ze[-11]": & = (1+ D] £/2)&,
i=1,...,N}

We evaluate the performance of our approach on
100 randomly generated instances of Problem (15)
with L =4 risk factors: 20 instances for each N € {10,
20,30,40,50}. In these instances, ¢ is drawn uniformly
at random from the box [0,10]"Y, we let §? =¢/5, and
B =e"c/2. The matrix ® is sampled uniformly at ran-
dom from the box [—1,1]™*. Our computational results
across those instances are summarized in Table 1. From
the table, we observe that with the proposed K-adapt-
ability approach, all instances (even those involving
N =50 boxes) solved to optimality with an average
solver time no greater than 2 seconds across all problem
sizes. In contrast, the average solver time of the prepar-
titioning approach exceeded 190 seconds for N =20
boxes and equaled 6,713 seconds for N = 50 boxes, with
only 95.7% of the problems associated with all break-
point configurations solving within the allotted time on
average. In addition, the quality of the best solution
identified by the proposed K-adaptability solution con-
sistently outperformed that of the best prepartitioning
solution. For example, an average improvement of over

Table 1. Summary of Computational Results on the Best Box Selection Problem for Various Choices of N over 20

Randomly Generated Instances of Each Size

Adapt N=10,L=4 N=20,L=4 N=30,L=4 N=40,L=4 N=50,L=4
K-adaptability K=1 100%/0.0%/0s 100%/0.0%/0s 100%/0.0%/0s 100%/0.0%/0s 100%/0.0%/0s
K=2 100%/98.3%/0s  100%/83.6%/0s 100%/81.0%/0s  100%/61.2%/0s  100%/59.1%/0s
K=3 100%/136.9%/0s  100%/127.5%/0s  100%/110.4%/0s  100%/81.1%/0s  100%/94.0%/0s
K=4 100%/165.3%/0s  100%/150.0%/0s  100%/127.3%/1s ~ 100%/91.0%/1s  100%/113.6%/0s
K=5 100%/167.9%/0s  100%/157.8%/1s  100%/137.1%/2s  100%/98.4%/1s  100%/117.0%/1s
K=6 100%/170.4%/0s  100%/162.2%/1s ~ 100%/144.6%/3s  100%/102.4%/2s  100%/122.6%/1s
K=7 100%/170.4%/0s  100%/162.6%/1s  100%/147.5%/3s  100%/109.2%/2s  100%/126.1%/1s
K=8 100%/170.4%/0s  100%/162.8%/1s  100%/148.2%/3s  100%/111.2%/2s  100%/127.3%/2s
K=9 100%/170.4%/0s  100%/162.8%/1s  100%/148.3%/3s  100%/111.6%/2s  100%/128.0%/2s
K=10 100%/170.4%/0s  100%/162.8%/1s  100%/148.3%/3s  100%/111.6%/2s  100%/128.4%/2s
Prepartitioning <10 subsets  100%/155.8%/ 100%/142.8%/ 100%/125.6%/ 100%/96.7%/ 95.7%/115.5%/
17s/7.5 190s/8.1 978s/8.1 2,7855/8.6 6,713s/8.2

Notes. In the K-adaptability part of the table, each entry corresponds to: percentage of instances solved within the time limit/average improvement
in the objective value of the K-adaptable solution over the static solution/average solution time across all instances. In the prepartitioning part of the
table, each entry corresponds to: average percentage of breakpoint configurations that solved within the time limit out of all configurations with
cardinality at most 10/average improvement in the objective value of the best prepartitioning solution found within the time limit relative to that of
the static solution/average cumulative solver time/average cardinality of the best solution found within the time limit.
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148% over the static solution was exhibited for the
K-adaptability method for N =30, while the preparti-
tioning solution only resulted in a 125.6% improve-
ment. Finally, the smallest value of K needed to achieve
the same average performance as the best solution
in the prepartitioning method was always smaller than
the average number of subsets needed to obtain that
solution in the prepartitioning approach, resulting in
more easy to use/implement solutions for our pro-
posed method. For example, for N = 30, 8.1 subsets are
needed on average to obtain an improvement of 125.6%
for the prepartitioning approach, whereas K = 4 candi-
date strategies suffice for our proposed K-adaptability
approach to yield an improvement of 127.3%.

6.2. Preference Elicitation with Real-Valued
Recommendations (Real Decisions)

The second problem we consider is a robust active
preference elicitation problem where user preferences
can be elicited by asking them “how much” they like
any particular item and where real-valued quantities
of multiple items can be recommended after prefer-
ences are elicited, see Vayanos et al. (2022) for a vari-
ant where pairwise comparison queries are used
instead.

The building blocks of our framework are candidate
items which we index in the set Z:={1,...,I}. We let
¢' € R/ be the feature vector of item i € Z. We assume
that user preferences are cardinal and model them by
means of a linear utility function. Specifically, we
assume that the utility of item i is given by u(¢') =
uT¢' +&;, where {&};; are independent identically
distributed and u is a vector of (unknown) utility func-
tion coefficients supported in the set 2/ C [—1,1]'. These
assumptions are standard in the literature, see for
example, Bertsimas and O’Hair (2013) and Boutilier
et al. (2004). Before making recommendations, the sys-
tem has the opportunity to make Q queries to the user.
Each query is based on one of the candidate items: if
query i € 7 is chosen, the user is asked “On a scale from
0 to 1, where 1 is the most anyone could like an item
and 0 is the least anyone could like an item, how much
do you like policy i?” We denote by & €[0,1] the
answer to query i. After the answers to these queries
are observed, the system can select N out of the I items
to recommend and the quantity y,€[0,1], i€Z, of
those items to recommend. The goal of the recom-
mender system is to select Q queries the answers to
which will enable the system to recommend a set of
items in quantities resulting in greatest possible worst-
case utility.

To formulate the preference elicitation problem math-
ematically we let w;, i € Z, denote the decision to pose
query i, that is, to observe &, before making a recommen-
dation. Thus, W:= {w € {0,1}' : eTw = Q}. The set of

possible realizations of &is given by

= {g €01 : Jue[-1,1], € € € such that

T 4!
g _wdlmane 9l )
2maxiez [| ' |l1
where the normalization of u™ @' ensures that & has
the correct interpretation and, in the spirit of modern
robust optimization, see for example, Lorca and Sun
(2016), we assume that ejs valued in the set £:= {e €
R': S0 |&] <T}, where T is a user-specified budget
of uncertainty parameter. Once the answers to the
queries are observed, the recommender system may
select the quantity of each item i€Z to recommend
which we encode with decisions y, € [0,1]. We let z; €
{0,1} indicate if item i is recommended and require
that the quantity of items recommended equals 1.
Thus,

V:={ye[01]" :3z€{0,1} such that
e'z=N,y<z e'y=1}

With this notation, the preference elicitation problem
is expressible as

maximize min max min_ £'y.

PE
wew 2 VY geB(w, §) Vaes)

A conservative solution to Problem (WCU'F) can be
obtained using the K-adaptability approximation scheme
discussed in Section 4.2, by solving the bilinear reformu-
lation (9).

We evaluate the performance of our approach on 80
randomly generated instances of Problem (WCU'™®):
20 instances for each (Q,N,I')e€{(1,2,0.1),(3,3,0.3),
(6,4,0.6),(9,5,0.9)}. In these instances, I =30, | =15,
and ¢', i€Z, are drawn uniformly at random from
the box [-1,1]. Our computational results across
these instances are summarized in Table 2. From the
table, we observe that on average the optimal value of
our proposed K-adaptability method (across all K) is
greater than that of the best optimal value of the
prepartitioning method (across all breakpoint config-
urations). For example, for the (Q,N,I') =(9,5,0.9) set-
ting, K-adaptability yields an average improvement in
optimal value of 53.3% relative to the static solution,
whereas prepartitioning only results in an average
improvement of 10.1% on average in the best case. In
addition, the solutions obtained by the K-adaptability
approach in the same time needed to solve for all
breakpoint configurations (or to reach the time limit)
in the prepartitioning approach are of far better qual-
ity. For example, the prepartitioning approach always
reached the 7,200 seconds time limit for instances of
size (Q,N,T)=(3,3,0.3) with an associated average
improvement in optimal value of 12.6%. In contrast,
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Table 2. Summary of Computational Results on the Preference Elicitation Problem with Real-Valued Recommendations for

Various Choices of Q, N, and I over 20 Randomly Generated Instances for Each Setting

Adapt. Q=1,N=2T=01 Q=3 N=3T=03 Q=6N=4,T=06 Q=9,N=5T=09
K-adaptability K=1 100%/0.0%/2s 100%,/0.0%/4s 100%/0.0%/8s 100%/0.0% /265
K=2 100%/14.0%/7s 100%/28.2%/17s 100%,/35.7% /265 100%/41.7%/51s
K=3 100%,/15.2%/19s 100%,/29.0%/89s 100%/42.6%/418s 100%/52.2%/238s
K=4 100%/16.1%/39s 100%/29.4% /2385 100%/43.5%/1,689s 90%/53.0%/2,772s
K=5 100%,/16.8%/68s 100%,/29.4%/509s 80%/43.9%/3,572s 55%/53.2%/4,751s
K=6 100%/16.9% /1055 100%/29.4%/900s 65%/44.1%/5,088s 40%/53.2%/5,917s
K=7 100%/17.3%/152s 100%,/29.6%/1,434s 25%/44.2%/6,362s 15%/53.2%/6,6095
K=8 100%/17.3%/203s 100%,/29.8%/2,151s 15%/44.2% /6,765 15%/53.3%/6,904s
K=9 100%/17.3%/262s 95%/30.0%/3,033s 5%/44.2%/6,957s 5%/53.3%/7,108s
K=10 100%/17.5% /3475 90%/30.2%/4,1555 5%/44.2%/7,024s 5%/53.3%/7,185s

o

Prepartitioning <10 subsets

3.5%/16.2%/7,200s /8.2

3.0%/12.6%/7,200s/9.7

0.1%/13.8%/7,200s /7 .4

0.0%/10.1%/7,200s/6.8

Note. The row names and table entries have the same interpretation as in Table 1.

within just 17 seconds on average, the K-adaptability
approach results in an improvement of 28.2% in opti-
mal value on average over the same instances. Finally,
the average value of K needed to achieve a solution of
quality comparable to that of the best prepartitioning
approach is a lot smaller than the number of subsets
needed in prepartitioning, implying that K-adaptabil-
ity has more attractive usability properties. For exam-
ple, for (Q,N,T') =(6,4,0.6), 7.4 subsets are needed by
prepartitioning to yield a 13.8% improvement in opti-
mal value whereas K =2 is sufficient for our method
to yield an improvement of 35.7%.

6.3. Robust R&D Project Portfolio Optimization
(Constraint Uncertainty)

The third problem we investigate is a robust variant
of the R&D project portfolio optimization problem,
see for example, Solak et al. (2010) for a solution
approach on the stochastic version. In this problem,
an R&D firm has a pipeline of N candidate projects
indexed in the set N :={1,...,N} that it can invest in.
The return & of each project i € A/ is uncertain and
will only be revealed if the firm chooses to undertake
the project. The firm can decide to undertake each pro-
ject i € N in year one, indicated by decision w} € {0,1},
in the following year, indicated by decision y; € {0,1},
or not at all. Thus, w} =1 if and only if & is observed
between the first and second years. If the firm chooses
to undertake the investment in the second year, it will
only realize a known fraction 6 € (0,1] of the return.
Undertaking project i incurs an unknown cost & that
will only be revealed if the firm chooses to undertake
the project. The total budget available to invest in pro-
jects across the two years is B. We assume that the
return and cost of project i € N are expressible as & =
(1+®]¢/2)&"° and & =(1+W]{/2)&°, where &°
and &° corresponds to the nominal return and cost
for project i, respectively, { € [~1,1]" are L risk factors,
and the vectors ®; € R' and W, € R" collect the factor
loadings for the return and cost of project i, respectively.

With this notation, the R&D project portfolio optimiza-
tion problem is expressible as a two-stage robust opti-
mization problem with decision-dependent information
discovery of the form (P) as

maximize min max min_(w'+0y) & :
£e2 ye{o, 1)V | £&E(w,E)

(W +y) &€ <B, w+y< e}
subject to w = (w',w"), w' e {0,1}",
(16)
where
Ei={(¢, &) eRY I [-11]": & =(1+ @] L/2)&"°,
£=(1+Wg/2)g°, i=1,... N}

In this problem, we set M =100 and € =10"*. We
evaluate the performance of our approach on 100 ran-
domly generated instances of Problem (16): 20
instances for each (N, L) € {(5,3),(10,5),(15,8),(20,10),
(25,13)}. In these instances, 8 = 0.8, £° is drawn uni-
formly at random from the box [0,10], and we let
£70=¢%9/5 and B=eT£%°/2. The elements of ® and
W are uniformly distributed in the interval [—1,1]. We
remove any instance where K =1 returns an optimal
value of zero in the corresponding K-adaptability
problem so that we can quantify the percentage
improvement relative to this static solution. Our com-
putational results across these instances are summa-
rized in Table 3. From the table, we observe that on
average the optimal value of our proposed K-adapt-
ability method (across all K) is greater than that of the
best optimal value of the prepartitioning method
(across all breakpoint configurations). For example,
for the (N,L) = (10,5) setting, K-adaptability yields an
average improvement in optimal value of 88.1% rela-
tive to the static solution, whereas prepartitioning
only results in an average improvement of 39.3% in
the best case. In addition, the solutions obtained by
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Table 3. Summary of Computational Results on the R&D Project Portfolio Optimization Problem for Various Choices of N

and L over 20 Randomly Generated Instances of Each Size

Adapt N=51=3 N=10,L=5 N=15L1=8 N=20,L=10 N=251=13
K-adaptability ~ K=1 100%/0.0%/0s 100%/0.0%/0s 100%/0.0%/2s  100%/0.0%/15s  100%/0.0%/33s
K=2 100%/71.9%/0s 100%/40.7% /25 100%/40.7%/16s  100%/29.9%/166s 95%/44.2%/1,744s
K=3 100%/114.4%/1s  100%/60.4%/7s ~ 100%/55.2%/61s  100%/43.6%/966s 65%/60.8%/5,018s
K=4 100%/119.8%/2s  100%/67.9%/23s  100%/62.6%/273s  80%/49.7%/2,876s 10%/68.6%/6,945s
K=5 100%/125.6%/5s  100%/73.7%/73s ~ 100%/69.1%/1,436s 30%/53.4%/6,479s  0%/69.4%/7,200s
K=6 100%/125.7%/8s ~ 100%/78.7%/263s  75%/72.4%/5151s  0%/54.3%/7,2005  0%/69.4%/7,200s
K=7 100%/131.4%/18s  100%/83.7%/1,200s  5%/74.1%/7,100s  0%/54.3%/7,200s  0%/69.4%/7,200s
K=8 100%/131.5%/60s  65%/87.0%/4,777s  0%/741%/7,200s  0%/54.3%/7,200s  0%/69.4%/7,200s
K=9  100%/137.1%/276s  0%/88.1%/7,200s  0%/74.1%/7,200s  0%/54.3%/7,200s  0%/69.4%/7,200s
K=10  100%/137.3%/1747s ~ 0%/88.1%/7,200s  0%/741%/7,200s  0%/54.3%/7,200s  0%/69.4%/7,200s
Prepartitioning <10 subsets  100%/72.3%/ 100%,/39.3%/ 92.4%/30.5%/ 21.0%/21.2%/ 3.9%/17.3%/
16s/7.1 853s/8.4 6,6755/9.1 7,200s/8.8 7,200s/8.5

Note. The row names and table entries have the same interpretation as in Table 1.

the K-adaptability approach in the same time needed
to solve for all breakpoint configurations (or to reach
the time limit) in the prepartitioning approach are of
far better quality. For example, the prepartitioning
approach needed 6,675 seconds on average to solve
instances of size (N,L)=(15,8) with an associated
average improvement in optimal value of 30.5%. In
contrast, within just 16 seconds on average, the K-
adaptability approach results in an improvement of
40.7% in optimal value on average over the same
instances. Finally, and similar to our results on the
best box problem in Section 6.1, the K adaptability
approach has more attractive usability properties than
prepartitioning. For example, for (N,L) =(20,10), 8.8
subsets are needed by prepartitioning to yield a 21.2%
improvement in optimal value whereas K = 2 is suffi-
cient for our method to yield an improvement of
29.9%.

7. Preference Elicitation to Improve the
US Kidney Allocation System

In this section, we evaluate our approach on a prefer-
ence elicitation and recommendation problem that
explicitly captures the endogenous nature of the elici-
tation process.

7.1. Motivation & Problem Formulation
(Piecewise Linear Convex Objective)

The motivation for our study is one of the central pro-
blems faced by policymakers at the OPTN/UNOS
who must periodically make changes to the policy for
prioritizing patients on the kidney transplant waiting
list for scarce deceased donor kidneys. To tackle this
problem, a Kidney Transplantation Committee (KTC)
is appointed at the OPTN that examines the out-
comes of numerous candidate policies simulated using
the Kidney-Pancreas Simulated Allocation Model
(KPSAM), a simulator developed by the SRTR, see
KPSAM (2015). The KTC examines the outcomes of

the allocation policy alternatives along several dimen-
sions (measures) of fairness and efficiency (e.g., num-
ber of recipients by age group, number of deaths by
gender) before ultimately committing to one of the
alternatives. This process was for example followed in
the latest big policy change, see for example, Wolfe
et al. (2009). Since selecting one alternative (policy)
over many others is a challenging task, in particular
when the dimension of each alternative is large, see
for example, Toubia et al. (2003, 2004, 2007) and Bouti-
lier et al. (2004), we propose a preference elicitation
and recommendation framework for identifying a pre-
ferred policy using a moderate number of strategically
chosen queries.

We formulate this problem as a variant of the active
preference elicitation problem from Section 6.2 where
a single item can be recommended and where we
select queries that minimize worst-case regret of the
recommendation. Items indexed in the set Z corre-
spond to policies where the feature vector ¢' € R/ of
policy i € Z collects various measures of fairness and
efficiency of the policy. The problem is expressible
mathematically as

minimize max min max_ {max &—-Eyo,
weW £cE yey £€E(w, £) i€Z

(WCRFE)

where W and E are as in Section 6.2 and where ) :=
{ye{0,1} : eTy=1}. In this problem, the first part
of the objective computes the utility of the best item
to offer in hindsight, after the utilities & have been
observed. The second part of the objective corresponds
to the worst-case utility of the item recommended when
only a portion of the uncertain parameters are observed,
as dictated by the vector w. Problem (WCR'®) can be
solved approximately using the K-adaptability approxi-
mation scheme discussed in Section 5. Indeed, the regret
in Problem (WCRFE) is given as the maximum of
finitely many linear functions and Theorem 5 applies.
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We note that in this case |)| =I. Thus, solving the K-
adaptability counterpart of VWCR™) with K = I recovers
an optimal solution to the corresponding original
problem.

7.2. Generating KAS Candidate Policies

This study used data from the Scientific Registry of
Transplant Recipients (SRTR). The SRTR data system
includes data on all donor, wait-listed candidates, and
transplant recipients in the US, submitted by the
members of the Organ Procurement and Transplanta-
tion Network (OPTN). The Health Resources and
Services Administration (HRSA), U.S. Department of
Health and Human Services provides oversight to the
activities of the OPTN and SRTR contractors.

We generate the outcomes &', i€, of I =20 candi-
date policies using the KPSAM simulator which we
obtained from the SRTR using a modeling window
from 01/01/2010 to 12/31/2010. The candidate poli-
cies we consider are linear scoring rules that use the
patient dialysis time, the life years from transplant

score, the Calculated Panel Reactive Antibodies and
the age of the patient. For each policy, we record | =
22 outcomes, including the number of transplants
overall, by age, by blood type, by race, and by gender,
and the number of deaths by race and by gender. For
details on the construction of the policies and for a list
of outcomes, see Electronic Companion EC.4.

7.3. Numerical Results on KAS Candidate
Policies

We evaluate the performance of our approach on the
KAS policies data set from Section 7.2. Throughout
our experiments, the K-adaptability counterpart of
Problem (WCR'F) is solved using the techniques
described in Section 5. To speed-up computation, we
also use a heuristic adapted from Subramanyam et al.
(2020) and detailed in Section EC.5.2. The tolerance 0
used in the column-and-constraint generation algo-
rithm (see Section 5.3) is 107°. We evaluate the true
worst-case regret of any given solution w*, which we
denote by rw.(w*), as follows: we fix w=w" in

Figure 2. (Color online) Optimality-Scalability Results for the Min-Max Regret Preference Elicitation Problem (WCR) on the

KAS Data
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Figure 3. (Color online) Results on the Performance of the K-Adaptability Approach Relative to Random Elicitation for the Min-
Max Regret Preference Elicitation Problem (WCRFE) on the KAS Data Set
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Notes. The number on each facet corresponds to the value of Q. The dashed thin line corresponds to the objective value of the K-adaptability
problem. The thin solid line corresponds to rw.(wj) where wj is the optimal K-adaptable solution. The thick line represents the percentage of
time that ry,(w;) was lower than ry.(w}), where w is a randomly drawn feasible solution.

Problem (CCGteas(x, w, {y*}rexc)), Where we set K=1
and employ all I candidate policies {y*};.c in the set
Y. As before, we use the ROC++ platform to solve the
prepartitioning problem, see Vayanos et al. (2023). All
of our experiments are performed using the same
computing resources as in Section 6.

7.3.1. Optimality-Scalability Trade-Off. We evaluate
the trade-off between computational complexity and
scalability of our approach. We solve the min-max
regret problems as Q and I' are varied in the sets
{2,4,6,8} and {0,0.05,0.1}, respectively. The results
are summarized in Figure 2. From the figure it can be
seen that the K-adaptability approach significantly
outperforms the prepartitioning approach and static
policies are very suboptimal. In fact, the prepartition-
ing approach performs comparably to static policies
across all settings. On the other hand, with the K-adapt-
ability approach, the normalized* worst-case regret
drops to 0.40, 0.68, and 0.9 from 1, 1.16, and 1.32, for
I'=0,0.05, and 0.1, respectively (for Q = 8). This exper-
iment shows the strength of the K-adaptability approach
compared with the state of the art.

7.3.2. Performance Relative to Random Elicitation. We
evaluate the benefits of computing near-optimal queries
using the K-adaptability approximation approach rela-
tive to asking questions at random. We compare the
true performance of a solution to the K-adaptability
problem, ry.(w}), to that of 50 questions drawn uni-
formly at random from the set W, ry(w;). The results
are summarized on Figure 3. From the figure, we see
that the probability that the K-adaptability solution out-
performs random elicitation converges to 1 as K grows.
We observe that, for values of K greater than 5, the K-

adaptability solution outperforms random elicitation in
over 90% of the cases.

Disclaimer
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Recipients (SRTR). The interpretation and reporting of
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in no way should be seen as an official policy of or
interpretation by the SRTR or the U.S. Government.
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Endnotes

T See https://www.srtr.org, https://optn.transplanthrsa.gov, and
https://unos.org.

2See for example, https://www.gurobi.com/documentation/9.0/
refman/nonconvex.html.

3 See for example, hitps://www.ibm.com/analytics/cplex-optimizer
and https: //www.gurobi.com/.

#To aid with interpretability, we normalize regret such that the
worst-case regret when no question is asked (Q =0) and there is
no error (I' = 0) is 1 and the worst-case regret when all questions are
asked is 0.
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