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Abstract. Robust optimization (RO) is a popular paradigm for modeling and solving two- 
and multistage decision-making problems affected by uncertainty. In many real-world appli
cations, such as R&D project selection, production planning, or preference elicitation for 
product or policy recommendations, the time of information discovery is decision-dependent 
and the uncertain parameters only become observable after an often costly investment. Yet, 
most of the literature on robust optimization assumes that the uncertain parameters can be 
observed for free and that the sequence in which they are revealed is independent of the 
decision-maker’s actions. To fill this gap in the practicability of RO, we consider two- and 
multistage robust optimization problems in which part of the decision variables control the 
time of information discovery. Thus, information available at any given time is decision- 
dependent and can be discovered (at least in part) by making strategic exploratory invest
ments in previous stages. We propose a novel dynamic formulation of the problem and prove 
its correctness. We leverage our model to provide a solution method inspired from the K- 
adaptability approximation, whereby K candidate strategies for each decision stage are cho
sen here-and-now and, at the beginning of each period, the best of these strategies is selected 
after the uncertain parameters that were chosen to be observed are revealed. We reformulate 
the problem as a finite mixed-integer (resp. bilinear) program if none (resp. some) of the deci
sion variables are real-valued. This finite program is solvable with off-the-shelf solvers. 
We generalize our approach to the minimization of piecewise linear convex functions. We 
demonstrate the effectiveness of our method in terms of usability, optimality, and speed on 
synthetic instances of the Pandora box problem, the preference elicitation problem with real- 
valued recommendations, the best box problem, and the R&D project portfolio optimization 
problem. Finally, we evaluate it on an instance of the active preference elicitation problem 
used to recommend kidney allocation policies to policy-makers at the United Network for 
Organ Sharing based on real data from the U.S. Kidney Allocation System.
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1. Introduction
1.1. Background & Motivation
Over the last two decades, robust optimization has 
emerged as a popular approach for decision-making 
under uncertainty in both single- and multistage settings, 
see for example, Ben-Tal et al. (2009), Ben-Tal and 
Nemirovski (2000), Ben-Tal and Nemirovski (1999), Ben- 
Tal and Nemirovski (1998), Bertsimas et al. (2004), Bertsi
mas and Sim (2004), Ben-Tal et al. (2004), Bertsimas et al. 
(2011), Zhen et al. (2018), Vayanos et al. (2012), Bertsimas 

and Goyal (2012), and Xu and Burer (2018). In multi
stage models, the uncertain parameters are revealed 
sequentially as time progresses and the decisions are 
allowed to depend on all the information made avail
able in the past. Mathematically, decisions are modeled 
as functions of the history of observations, thus captur
ing the adaptive and nonanticipative nature of the decision 
process.

Most models and solution approaches in multistage 
robust optimization are tailored to problems where 
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the uncertain parameters are exogenous, being inde
pendent of the decision-maker’s actions. In particular, 
they assume that uncertainties can be observed for free 
and that the sequence in which they are revealed cannot 
be influenced by the decision-maker. Yet, these assump
tions fail to hold in many real-world applications 
where the time of information discovery is decision- 
dependent and the uncertain parameters only become 
observable after an often costly investment. Mathe
matically, some binary measurement (or observation) 
decisions control the time of information discovery 
and the nonanticipativity requirements depend upon 
these decisions, severely complicating solution.

We now detail several applications areas where the 
time of revelation of the uncertain parameters is deci
sion-dependent.

R&D Project Portfolio Optimization. Research and 
development firms typically maintain long pipelines 
of candidate projects whose returns are uncertain, see 
Solak et al. (2010). For each project, the firm can decide 
whether and when to start it and the amount of 
resources to be allocated to it. The return of each pro
ject will only be revealed once the project is completed. 
Thus, project start times and resource allocation deci
sions impact the time of information discovery in 
this problem.

Clinical Trial Planning. Pharmaceutical companies 
typically maintain long R&D pipelines of candidate 
drugs, see for example, Colvin and Maravelias (2008). 
Before any drug can reach the marketplace it needs to 
pass a number of costly clinical trials whose outcome 
(success/failure) is uncertain and will only be 
revealed after the trial is completed. Thus, the deci
sions to proceed with a trial control the time of infor
mation discovery in this problem.

Offshore Oilfield Exploitation. Offshore oilfields con
sist of several reservoirs of oil whose volume and ini
tial deliverability (maximum initial extraction rate) 
are uncertain, see for example, Jonsbråten (1998), Goel 
and Grossman (2004), and Vayanos et al. (2011). While 
seismic surveys can help estimate these parameters, 
current technology is not sufficiently advanced to 
obtain accurate estimates. In fact, the volume and 
deliverability of each reservoir only become precisely 
known if a very expensive oil platform is built at the 
site and the drilling process is initiated. Thus, the 
decisions to build a platform and drill into a reser
voir control the time of information discovery in 
this problem.

Production Planning. Manufacturing companies can 
typically produce a large number of different items. 
For each type of item, they can decide whether and 

how much to produce to satisfy their demand given 
that certain items are substitutable, see for example, 
Jonsbråten et al. (1998). The production cost of each 
item type is unknown and will only be revealed if the 
company chooses to produce the item. Thus, the deci
sions to produce a particular type of item control the 
time of information discovery in this problem.

Active Preference Elicitation. Preference elicitation 
refers to the problem of developing a decision support 
system capable of generating recommendations to a 
user, thus assisting in decision making. In active pref
erence elicitation, one can ask users a (typically lim
ited) number of questions from a potentially large set 
before making a recommendation, see for example, 
Vayanos et al. (2022). The answers to the questions are 
initially unknown and will only be revealed if the par
ticular question is asked. Thus, the choices of questions 
to ask control the time of information discovery in 
this problem.

1.2. Literature Review
Decision-Dependent Information Discovery. Our 
paper relates to research on optimization problems 
affected by uncertain parameters whose time of reve
lation is decision-dependent and which originates in 
the literature on stochastic programming. The vast 
majority of these works assumes that the uncertain 
parameters are discretely distributed. In such cases, the 
decision process can be modeled by means of a finite 
scenario tree whose branching structure depends on 
the binary measurement decisions that determine the 
time of information discovery. This research began 
with the works of Jonsbråten et al. (1998) and Jonsbråten 
(1998). Jonsbråten et al. (1998) consider the case where 
all measurement decisions are made in the first stage 
and propose a solution approach based on an implicit 
enumeration algorithm. Jonsbråten (1998) generalizes 
this enumeration-based framework to the case where 
measurement decisions are made over time. More 
recently, Goel and Grossman (2004) showed that sto
chastic programs with discretely distributed uncertain 
parameters whose time of revelation is decision- 
dependent can be formulated as deterministic mixed- 
binary programs whose size is exponential in the 
number of endogenous uncertain parameters. To help 
deal with the “curse of dimensionality,” they propose 
to precommit all measurement decisions, for example, 
to approximate them by here-and-now decisions, and 
to solve the multistage problem using either a decom
position technique or a folding horizon approach. 
Later, Goel and Grossman (2006), Goel et al. (2006), and 
Colvin and Maravelias (2010) propose optimization- 
based solution techniques that truly account for the 
adaptive nature of the measurement decisions and 
that rely on branch-and-bound and branch-and-cut 
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approaches, respectively. Accordingly, Colvin and Mar
avelias (2010) and Gupta and Grossmann (2011) have 
proposed iterative solution schemes based on relaxa
tions of the nonanticipativity constraints for the mea
surement variables. Our paper most closely relates to 
the work of Vayanos et al. (2011), wherein the authors 
investigate two- and multistage stochastic and robust 
programs with decision-dependent information dis
covery that involve continuously distributed uncer
tain parameters. They propose a decision-rule based 
approximation approach that relies on a prepartition
ing of the support of the uncertain parameters. Since 
this approach applies in our context, we will bench
mark against it in our experiments.

Robust Optimization with Decision-Dependent Uncer
tainty Sets. Our work also relates to the literature on 
robust optimization with uncertainty sets parameter
ized by the decisions. Such problems capture the abil
ity of the decision-maker to influence the set of 
possible realizations of the uncertain parameters and 
have been investigated by Spacey et al. (2012), Noha
dani and Sharma (2018), Nohadani and Roy (2017), 
Zhang et al. (2017), and Bertsimas and Vayanos 
(2017). These models do not apply in our context since 
they do not capture the ability of the decision-maker 
to influence the information available. In particular, the 
problems investigated by Spacey et al. (2012), Noha
dani and Sharma (2018), and Nohadani and Roy 
(2017) are all single-stage, while problems with decision- 
dependent information discovery are inherently sequential 
in nature.

Distributionally Robust Optimization with Decision- 
Dependent Ambiguity Sets. Similarly, our paper is 
related to research on distributionally robust optimi
zation with decision-dependent ambiguity sets, see 
for example, Luo and Mehrotra (2020), Basciftci et al. 
(2021), Noyan et al. (2022), and Yu and Shen (2022). 
To the best of our knowledge none of these works 
consider the case of decision-dependent information 
discovery which is the focus of our work.

Robust Optimization with Binary Adaptive Variables. 
Two-stage, and to a lesser extent also multistage, 
robust binary optimization problems have received 
considerable attention in the recent years. One stream 
of works proposes to restrict the functional form of 
the recourse decisions to functions of benign complex
ity, see Bertsimas and Dunn (2017) and Bertsimas 
and Georghiou (2015, 2018). A second stream of work 
relies on partitioning the uncertainty set into finite 
sets and applying constant decision rules on each parti
tion, see Vayanos et al. (2011), Bertsimas and Dunning 
(2016), Postek and Den Hertog (2016), Bertsimas and 
Vayanos (2017). The last stream of works investigates 

the so-called K-adaptability counterpart of two-stage 
problems, see Bertsimas and Caramanis (2010), Hana
susanto et al. (2015), Subramanyam et al. (2020), Chas
sein et al. (2019), and Rahmattalabi et al. (2019). In 
this approach, K candidate policies are chosen here- 
and-now and the best of these policies is selected after 
the uncertain parameters are revealed. Most of these 
papers assume that the uncertain parameters are exog
enous in the sense that they are independent of 
the decision-maker’s actions. Our paper most closely 
relates to the works of Bertsimas and Caramanis 
(2010) and Hanasusanto et al. (2015). It generalizes 
and subsumes the approach from Hanasusanto et al. 
(2015) to problems with decision-dependent information 
discovery, to multistage problems, and to problems 
with piecewise linear convex objective.

Stochastic Probing. Our paper also fits in a line of 
work on stochastic probing in the computer science 
literature, see Gupta et al. (2016, 2017) and Singla 
(2018). Here, the problem consists of a set of elements 
with uncertain value whose distribution is known but 
whose realization becomes observable only after the 
element is probed. However, probing is costly (incurs 
a cost or consumes budget) and irrevocable and the 
goal is to choose the set of elements to probe and the 
order in which to probe them to maximize profit (e.g., 
the value of the item with the highest value that has 
been probed). Concrete examples include the best box 
problem and the Pandora box problem, see for exam
ple, Singla (2018). The techniques presented in this 
stream of work do not apply to the case where the dis
tributions are unknown, to general optimization pro
blems with decision-dependent information discovery, 
nor to problems with general, potentially uncertain, 
constraints.

Worst-Case Regret Optimization. Finally, our work 
relates to two-stage worst-case absolute regret mini
mization problems, see for example, Assavapokee 
et al. (2008a, b), Zhang (2011), Jiang et al. (2013), Ng 
(2013), Chen et al. (2014), Ning and You (2018), and 
Poursoltani and Delage (2019). To the best of our 
knowledge, our paper is the first to investigate worst- 
case regret minimization problems in the presence of 
uncertain parameters whose time of revelation is deci
sion-dependent.

1.3. Proposed Approach and Contributions
We now summarize our approach and main contribu
tions in this paper: 

a. We consider general two- and multistage robust 
optimization problems with decision-dependent infor
mation discovery. These encompass as special cases the 
R&D project portfolio optimization problem, the Pan
dora box problem (which can be used to model job 
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candidate selection and house hunting, among others), 
the active preference elicitation problem, and many 
more. To the best of our knowledge, only one other 
paper in the literature studies such problems in the 
robust optimization setting. We propose novel “min- 
max-min-max-⋯-min-max” reformulations of these pro
blems and prove correctness of our formulations. These 
reformulations unlock new approximate (and poten
tially also exact) solution approaches for addressing pro
blems with decision-dependent information discovery.

b. We leverage our new reformulations to propose a 
solution approach based on the K-adaptability approxi
mation, wherein K candidate strategies are chosen here- 
and-now and the best of these strategies is selected after 
the uncertain parameters that were chosen to be observed 
are revealed. This approximation allows us to control the 
trade-off between complexity and solution quality by 
tuning a single design parameter, K. We propose practi
cable reformulations of the K-adaptability counterpart of 
problems with decision-dependent information discov
ery in the form of moderately sized finite programs solv
able with off-the shelf solvers. These programs can be 
written equivalently as mixed-binary linear programs if 
all decision-variables are binary. Our reformulations sub
sume those from the literature that apply only to two- 
stage problems with exogenous uncertain parameters.

c. We generalize the K-adaptability approximation 
scheme to multistage problems and to problems with 
piecewise linear convex objective function. The piece
wise linear convex objective enables us, among others, 
to address worst-case absolute regret minimization 
problems. These generalizations and associated algo
rithm that we provide apply also to problems with 
exogenous uncertain parameters.

d. We perform a wide array of experiments on the 
R&D project portfolio selection problem, the preference 
elicitation problem with real-valued recommendations, 
the best box selection problem, Pandora’s box problem, 
and the preference elicitation problem. We show that 
our proposed approach outperforms the state-of-the-art 
in the literature in terms of usability, optimality, and 
speed. Indeed, our approach reduces the number of 
subsets in the recourse strategy by a factor of 3, 
improves the quality of the returned solution by a factor 
of 1.9, and results in an 8.5× speed-up. We perform a 
case study showcasing the benefits of our approach on 
real data from the U.S. Kidney Allocation System (KAS) 
to recommend policies that meet the needs of policy- 
makers at the Organ Procurement and Transplantation 
Network (OPTN) and the United Network for Organ 
Sharing (UNOS), the lead agency in charge of allocating 
organs for transplantation in the United States.1

1.4. Organization of the Paper and Notation
The paper is organized as follows. Sections 2 and 3
introduce two-stage robust optimization problems with 

exogenous uncertainty and with decision-dependent 
information discovery (DDID), respectively. In partic
ular, Section 3 introduces our novel formulation. Sec
tion 4 proposes reformulations of the K-adaptability 
counterparts of problems with DDID as finite programs 
solvable with off-the-shelf solvers. Section 5 generalizes 
the K-adaptability approximation to problems with 
piecewise linear convex objective and proposes an effi
cient solution procedure. Section 6 presents computa
tional results on synthetic instances of the two-stage 
best box selection problem, the two-stage preference 
elicitation problem with real-valued recommendations, 
and the two-stage R&D project portfolio optimization 
problem. Finally, Section 7 formulates the preference 
elicitation problem for learning the preferences of 
policy-makers at the OPTN/UNOS as a two-stage 
robust problem with decision-dependent information 
discovery, and presents numerical results on real data 
from the U.S. Kidney Allocation System. The proofs of 
all statements can be found in the Electronic Compan
ion to the paper. Proposed extensions to our methods, 
algorithms, and speed-up strategies are also deferred to 
the Electronic Companion. In particular, Sections EC.1 
and EC.2 generalize the K-adaptability approximation 
to multistage problems and apply it to the multistage 
Pandora’s box problem, respectively.

Notation. Throughout this paper, vectors (matrices) 
are denoted by boldface lowercase (uppercase) letters. 
The kth element of a vector x ∈ Rn (k ≤ n) is denoted 
by xk. Scalars are denoted by lowercase letters, for 
example, α or u. For a matrix H ∈ Rn×m, we let [H]k ∈
Rm denote the kth row of H, written as a column vec
tor. We let Lk

n denote the space of all functions from 
Rn to Rk. Accordingly, we denote by Bk

n the spaces of 
all functions from Rn to {0, 1}k. Given two vectors of 
equal length, x, y ∈ Rn, we let x ◦ y denote the Hada
mard product of the vectors, for example, their element- 
wise product. Given a set A and a positive integer n, we 
let An :�A ×A ×⋯×A (n times). With a slight abuse 
of notation, we may use the maximum and minimum 
operators even when the optimum may not be attained; 
in such cases, the operators should be understood as 
suprema and infima, respectively. We use the conven
tion that a decision is feasible for a minimization prob
lem if and only if it attains an objective that is < +∞. 
Finally, for a logical expression E, we define the indica
tor function I(E) as I(E) :� 1 if E is true and 0 otherwise.

2. Two-Stage RO with Exogenous 
Uncertainty

To motivate our formulation from Section 3, we intro
duce two equivalent models of two-stage robust opti
mization with exogenous uncertainty from the literature 
and discuss their relative merits.
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In two-stage robust optimization with exogenous 
uncertainty, first-stage (or here-and-now) decisions x ∈
X ⊆ RNx are made today, before any of the uncertain 
parameters are observed. Subsequently, all of the uncer
tain parameters j ∈ Ξ ⊆ RNξ are revealed. Finally, once 
the realization of j has become available, second-stage 
(or wait-and-see) decisions y ∈ Y ⊆ RNy are selected. 
We assume that the uncertainty set Ξ is a nonempty 
bounded polyhedron expressible as Ξ :� {j ∈ RNξ :

Aj ≤ b} for some matrix A ∈ RR×Nξ and vector b ∈ RR. 
As the decisions y are selected after the uncertain para
meters are revealed, they are allowed to adapt or adjust 
to the realization of j. In the literature, there are two for
mulations of generic two-stage robust problem with 
exogenous uncertainty: they differ in the way in which 
the ability of y to adapt to j is modeled.

2.1. Decision Rule Formulation
In the first model, one optimizes today over both the 
here-and-now decisions x and over recourse actions y 
to be taken in each realization of j. The decision y is 
modeled as a function (or decision rule) of j that is 
selected today, along with x. Under this paradigm, a 
two-stage linear robust problem with exogenous uncer
tainty is expressible as:

minimize max
j∈Ξ

j⊤C x+ j⊤Q y(j)

subject to x ∈ X , y ∈ L
Ny
Nξ

y(j) ∈ Y

Tx+Wy(j) ≤Hj

)

∀j ∈ Ξ,

(1) 

where C ∈ RNξ×Nx , Q ∈ RNξ×Ny , T ∈ RL×Nx , W ∈ RL×Ny , 
and H ∈ RL×Nξ . We assume that the objective function 
and right hand-sides are linear in j. We can account 
for affine dependencies on j by introducing an auxiliary 
uncertain parameter jNξ+1 restricted to equal unity.

2.2. Min-Max-Min Formulation
In the second model, only x is selected today and 
the recourse decisions y are optimized explicitly, in a 
dynamic fashion, after nature is done making a decision. 
Under this model, a two-stage robust problem with 
exogenous uncertainty is expressible as:

minimize max
j∈Ξ

j⊤C x+min
y∈Y
{j⊤Q y : Tx+Wy ≤Hj}

� �

subject to x ∈ X :

(2) 

Problems (1) and (2) are equivalent, see for exam
ple, Shapiro (2017). However, each of them has 
proved successful in different contexts. Problem (1) 
has been the building block of most of the literature 
on the decision rule approximation, see Section 1. 
Problem (2) has enabled the advent and tremendous 

success of the K-adaptability approximation approach 
to two-stage robust problems with binary recourse, 
see Bertsimas and Caramanis (2010), Hanasusanto 
et al. (2015). It has also facilitated the development of 
algorithms and efficient solution schemes, see for 
example, Zeng and Zhao (2013), Ayoub and Poss 
(2016), and Bertsimas and Shtern (2018).

3. Two-Stage RO with Decision-Dependent 
Information Discovery

In this section, we describe two-stage robust optimiza
tion problems with decision-dependent information 
discovery (DDID) and propose an entirely new model
ing framework for studying such problems. This frame
work underpins our ability to generalize the popular 
K-adaptability approximation approach from the liter
ature to problems affected by uncertain parameters 
whose time of revelation is decision-dependent, see 
Sections 4.2 and 4.3.

3.1. Problem Description
In two-stage robust optimization with DDID, the uncer
tain parameters j do not necessarily become observed 
(for free) between the first and second decision-stages. 
Instead, some (typically costly) first stage decisions con
trol the time of information discovery in the problem: they 
decide whether (and which of) the uncertain para
meters will be revealed before the wait-and-see decisions 
y are selected. If the decision-maker chooses to not 
observe some of the uncertain parameters, then those 
parameters will still be uncertain at the time when the 
decision y is selected, and y will only be allowed to 
depend on the portion of the uncertain parameters that 
have been revealed. On the other hand, if the decision- 
maker chooses to observe all of the uncertain para
meters, then there will be no uncertainty in the problem 
at the time when y is selected, and y will be allowed to 
depend on all uncertain parameters.

In order to allow for endogenous uncertainty, we 
introduce a here-and-now binary measurement (or 
observation) decision vector w ∈ {0, 1}Nξ of the same 
dimension as j whose ith element wi is 1 if and only if 
we choose to observe ji between the first and second 
decision stages. In the presence of such endogenous 
uncertain parameters, the recourse decisions y are 
selected after the portion of uncertain parameters that 
was chosen to be observed is revealed. In particular, y 
must be constant in (i.e., robust to) those uncertain 
parameters that remain unobserved at the second 
decision-stage. The requirement that y only depend on 
the uncertain parameters that have been revealed at 
the time it is chosen is termed nonanticipativity. In the 
presence of uncertain parameters whose time of reve
lation is decision-dependent, this requirement trans
lates to decision-dependent nonanticipativity constraints.
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3.2. Decision Rule Formulation
In the literature and to the best of our knowledge, 
two-stage robust optimization problems with DDID 
have been formulated (in a manner paralleling Prob
lem (1)) by letting the recourse decisions y be functions 
of j and requiring that those functions be constant in 
ji if wi � 0, see Vayanos et al. (2011). Under this (deci
sion rule based) modeling paradigm, generic two-stage 
robust optimization problems with decision-dependent 
information discovery take the form

minimize max
j∈Ξ

j⊤C x+ j⊤D w+ j⊤Q y(j)

subject to x ∈ X , w ∈W, y ∈ L
Ny
Nξ

y(j) ∈ Y

Tx+Vw+Wy(j) ≤Hj

)

∀j ∈ Ξ

y(j) � y(j ′) ∀j, j ′ ∈ Ξ : w ◦ j �w ◦ j ′,

(3) 

where W ⊆ {0, 1}Nξ , D ∈ RNξ×Nξ , V ∈ RL×Nξ , and the 
remaining data elements are as in Problem (1). The 
set W can encode requirements on the measurement 
decisions. For example, it can enforce that a given uncer
tain parameter ji may only be observed if another uncer
tain parameter ji′ has been observed using wi ≤wi′ . 
Accordingly, it can postulate that the total number of 
uncertain parameters that are observed does not exceed 
a certain budget Q using 

PNξ
i�1 wi ≤Q. If only some 

(or all) of the uncertain parameters have a time of infor
mation discovery that is exogenous, our models and 
solution approaches can be used by restricting the obser
vation decisions wi to equal 1 (resp. 0) for each exogenous 
uncertain parameter i that is (resp. is not) observed 
between the first and second decision stages. These 
restrictions can be conveniently added as constraints to 
the set W. The last constraint in the problem is a decision- 
dependent nonanticipativity constraint: it ensures that 
the function y is constant in the uncertain parameters 
that remain unobserved at the second stage. Indeed, the 
identity w ◦ j �w ◦ j′ evaluates to true only if the ele
ments of j and j′ that were observed are indistinguish
able, in which case the decisions taken in scenarios j and 
j′ must be equal. We omit joint (first stage) constraints on 
x and w to minimize notational overhead but emphasize 
that our approach remains applicable in their presence.

Note that Problem (3) generalizes Problem (1). 
Indeed, if we set w � e, D � 0, and V � 0 in Problem 
(3), we recover Problem (1). In addition, it gener
alizes the single-stage robust problem: if we set w � 0 
in Problem (3), all uncertain parameters are revealed 
after the second stage so that the second stage deci
sions are forced to be static (i.e., constant in j).

To the best of our knowledge, the only approach in 
the literature for (approximately) solving problems of 
type (3) is presented in Vayanos et al. (2011) and relies 
on a decision rule approximation. The authors propose 

to approximate the binary (resp. continuous) wait- 
and-see decisions by functions that are piecewise con
stant (resp. piecewise linear) on a preselected partition 
of the uncertainty set of the form Ξs :� {j ∈ Ξ : ci

si�1 ≤

ji < ci
si

, i � 1, : : : , k}, where s ∈ S :�×
Nξ
i�1 {1, : : : , ri} ⊆ ZNξ 

and ci
1 < ci

2 <⋯< ci
ri�1 for i � 1, : : : , Nξ represent ri � 1 

breakpoints along the ji axis. Unfortunately, as the fol
lowing example illustrates, this approach is highly sen
sitive to the choice of breakpoint configuration.

Example 1. Consider the following instance of Prob
lem (3)

minimize 0
subject to w ∈ {0, 1}2, y ∈ B2

2

j� � ≤ y(j) ≤ e + j� �
o

∀j ∈ Ξ

y(j) � y(j ′) ∀j, j ′ ∈ Ξ : w ◦ j � w ◦ j ′,

(4) 

where Ξ :� [�1, 1]2. The inequality constraints in the 
problem combined with the requirement that y(j) be 
binary imply that we must have yi(j) � 1 (resp. 0) 
whenever ji > �i (resp. ji < �i). Thus, from the decision- 
dependent nonanticipativity constraints, the only feasi
ble choice for w is e. It is easy to show that if � �
1e� 3e and if we uniformly partition each axis itera
tively in 2, 3, 4, etc. subsets, then 1999 breakpoints 
along each direction will need to be introduced before 
reaching a feasible (and thus optimal) solution. The 
associated problem will involve over 8e7 binary deci
sion variables and 16e7 constraints. In contrast, as will 
become clear later on, our proposed solution approach 
with approximation parameter K � 4 will be optimal in 
this case.

Example 1 is not surprising: the approach from 
Vayanos et al. (2011) was motivated by stochastic pro
grams which are less sensitive to the breakpoint con
figuration than robust problems. Thus, a more flexible 
approach is needed to address two-stage and multi
stage robust problems with DDID.

3.3. Proposed Min-Max-Min-Max Formulation
Motivated by the success of formulation (2) as the 
starting point to solve two-stage robust optimization 
problems with exogenous uncertainty, we derive an 
analogous dynamic formulation for the case of endoge
nous uncertainties. In particular, we build a robust opti
mization problem in which the sequence of problems 
solved by each of the decision-maker and nature in turn 
is captured explicitly. The idea is as follows. Initially, 
the decision-maker selects x ∈ X and w ∈W. Subse
quently, nature commits to a realization j of the uncer
tain parameters from the set Ξ. Then, the decision- 
maker selects a recourse action y that needs to be robust 
to those elements ji of the uncertain vector j that they 
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have not observed, that is, for which wi � 0. Indeed, the 
decision y may have to be taken under uncertainty if 
there is some i such that wi � 0, in which case not all of 
the uncertain parameters have been revealed when y is 
selected. Indeed, after y is selected, nature is free to 
choose any realization of j ∈ Ξ that is compatible with 
the original choice j in the sense that ji � ji for all i 
such that wi � 1. This model captures the notion that, 
after y has been selected, nature is still free to choose 
the elements ji that have not been observed, provided it 
does so in a way that is consistent with those para
meters that have been observed. Mathematically, given 
the measurement decisions w and the observation j, 
nature can select any element j from the set

Ξ(w, j) :� {j ∈ Ξ : w ◦ j �w ◦ j}:

Note in particular that if w � e, then Ξ(w, j) � {j} and 
there is no uncertainty when y is chosen. Accordingly, 
if w � 0, then Ξ(w, j) � Ξ and y has no knowledge of 
any of the elements of j. The realizations j, j, and the 
sets Ξ and Ξ(w, j) are all illustrated on Figure 1.

Based on the above notation, we propose the follow
ing generic formulation of a two-stage robust optimi
zation problem with decision-dependent information 
discovery:

(P) 

min max
j∈Ξ

min
y∈Y

(

max
j∈Ξ(w, j)

j⊤C x + j⊤D w + j⊤Q y : Tx

+ Vw +Wy ≤ Hj ∀j ∈ Ξ(w, j)

)

s:t: x ∈ X , w ∈W:

Note that, at the time when y is selected, some ele
ments of j are still uncertain. The choice of y thus 
needs to be robust to the choice of those uncertain 
parameters that remain to be revealed. In particular, 

the constraints need to be satisfied for all choices of 
j ∈ Ξ(w, j). Accordingly, y is chosen so as to minimize 
the worst-case possible cost when j is valued in the 
set j ∈ Ξ(w, j).

Problems (3) and (P) are equivalent in a sense made 
precise in the following theorem.

Theorem 1. The optimal objective values of Problems (3) 
and (P) are equal. Moreover, the following statements hold 
true: 

i. Let (x, w) be optimal in (P) and, for each d such that 
d �w ◦ j for some j ∈ Ξ, define

y′(d) ∈ arg min
y∈Y

�

max
j∈Ξ(w,d)

j⊤C x+ j⊤D w+ j⊤Q y : Tx

+ Vw+Wy ≤Hj ∀j ∈ Ξ(w, d)

�

:

Also, for each j ∈ Ξ, define y(j) :� y′(w ◦ j). Then, (x, w, 
y(·)) is optimal in Problem (3).

ii. Let (x, w, y(·)) be optimal in Problem (3). Then, (x, w)
is optimal in Problem (P).

The parameter d in item (i) of the theorem above is 
introduced to ensure that the decision rule y(·) defined 
on Ξ is nonanticipative. Indeed, if for any given (x, w)
and j, there are many optimal solutions to problem

min
y∈Y

�

max
j∈Ξ(w,j)

j⊤C x+ j⊤D w+ j⊤Q y : Tx+Vw

+Wy ≤Hj ∀j ∈ Ξ(w, j)

�

, 

the decision rule ỹ(·) defined on Ξ through

ỹ(j) ∈ arg min
y∈Y

�

max
j∈Ξ(w,j)

j⊤C x+ j⊤D w+ j⊤Q y : Tx

+Vw+Wy ≤Hj ∀j ∈ Ξ(w, j)

�

, 

may not be constant in those parameters that remain 

Figure 1. (Color online) Companion Figure to Section 3.3

Notes. The figure on the left illustrates the role played by j in the new formulation (P) and the definition of the uncertainty sets Ξ and Ξ(w, j). 
Consider a setting where Ξ ⊆ R2 (i.e., Nξ � 2) and suppose that w � (0, 1) so that the decision-maker has chosen to only observe j2. In the figures, 
Ξ is shown as the grey shaded area. Once j is chosen by nature, the decision-maker can only infer that j will materialize in the set Ξ(w, j)which 
collects all parameter realizations j ∈ Ξ that satisfy j2 � j2, being compatible with our partial observation. The figure on the right illustrates 
the construction of an optimal nonanticipative decision y from an optimal solution y(d) to miny∈Y {maxj∈Ξ(w, d) j⊤C x+ j⊤D w+ j⊤Q y : Tx+
Vw+Wy≤Hj ∀j ∈ Ξ(w, d)}, see Theorem 1. We note that the policy y constructed as in Theorem 1 is constant along the j1 direction since here 
w1 � 0.
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unobserved. We note of course that other tie-breaking 
mechanisms could be used to build a nonanticipative 
solution. For example, we may select, among all opti
mal solutions, the one that is lexicographically first.

The theorem above is the main result that enables us 
to generalize the K-adaptability approximation scheme 
to two-stage robust problems with decision-dependent 
information discovery and binary recourse. In Elec
tronic Companion EC.6, we show that for any given 
choice of here-and-now decisions, the set of para
meters j for which a particular wait-and-see decision 
is optimal may be nonclosed and nonconvex and that 
the optimal value of the problem may not be attained. 
This result is expected from the analysis in Hanasu
santo et al. (2015), since Problem (P) generalizes Prob
lem (2). Our example illustrates that this may be the 
case even if a portion of the uncertain parameters 
remain unobserved in the second stage.

Two-stage robust optimization problems with 
decision-dependent information discovery have a huge 
modeling power, see Sections 1, 6, and 7. Yet, as illus
trated by the preceding discussion, they pose several 
theoretical and practical challenges. As we will see in 
the following sections, whether we are or not able 
to reformulate the K-adaptability counterpart of the 
problem exactly as a finite program solvable with off- 
the-shelf solvers depends on the absence or presence 
of uncertainty in the constraints. When in presence of 
constraint uncertainty, we can always compute an 
arbitrarily tight outer (lower bound) approximation, 
see Section 4.3.

4. K-Adaptability for Problems with DDID
Instead of solving Problem (P) directly, we approxi
mate it through its K-adaptability counterpart,

(PK) 

min max
j∈Ξ

min
k∈K

�

max
j∈Ξ(w, j)

j⊤C x + j⊤D w + j⊤Q yk : Tx

+ Vw +Wyk ≤ Hj ∀j ∈ Ξ(w, j)

�

s:t: x ∈ X , w ∈W, yk ∈ Y, k ∈ K, 

where K :� {1, : : : , K}. In this problem, K candidate 
policies y1, : : : , yK are chosen here-and-now, that is 
before w ◦ j (the portion of uncertain parameters that 
we chose to observe) is revealed. Once w ◦ j becomes 
known, the best of those policies among all those that 
are robustly feasible (in view of uncertainty in the 
uncertain parameters that are still unknown) is imple
mented. If all policies are infeasible for some j ∈ Ξ, 
then we interpret the maximum and minimum in (PK) 
as supremum and infimum, that is, the K-adaptability 
problem evaluates to +∞. Problem (PK) is a conservative 
approximation to program (P). Moreover, if |Y | <∞
and K � |Y | , then the two problems are equivalent. In 
practice, we hope that a moderate number of candidate 

policies K will be sufficient to obtain a (near) optimal 
solution to (P).

4.1. The Price of Usability
Problem (PK) is interesting in its own right. Indeed, in 
problems where usability is important (e.g., if workers 
need to be trained to follow diverse contingency plans 
depending on the realization w ◦ j), Problem (PK) may 
be an attractive alternative to Problem (P). In such set
tings, the loss in optimality incurred due to passing 
from Problem (P) to Problem (PK) can be thought of as 
the price of usability. For example, consider an emer
gency response planning problem where, in the first 
stage, a small number of helicopters can be used to sur
vey affected areas and, in the second stage, and in 
response to the observed state of the areas surveyed, 
deployment of emergency response teams is decided. 
In practice, to avoid having to train teams in a large 
number of plans (yielding significant operational chal
lenges), only a moderate number of response plans 
may be allowed. The importance of interpretability/ 
usability has been previously noted by for example, 
Koç and Morton (2015), McCarthy et al. (2018), Bertsi
mas et al. (2019), and Aghaei et al. (2019, 2024).

Remark 1. If W � {0, 1}Nξ , D � 0, and V � 0, then w � e 
is optimal in Problem (P) and thus Ξ(w, j) � {j}, imply
ing that Problem (P) reduces to Problem (2) and Prob
lem (PK) reduces to the K-adaptability counterpart of 
Problem (2).

Relative to the problems studied by Bertsimas and 
Caramanis (2010) and Hanasusanto et al. (2015), Prob
lem (PK) presents several challenges. First, the second 
stage problem in (PK) is a robust (as opposed to deter
ministic) optimization problem. Second, the uncer
tainty sets involved in the maximization tasks of this 
robust problem are decision-dependent. While Prob
lem (PK) appears to be significantly more complicated 
than its exogenous counterpart, it can be converted to 
an equivalent min-max-min problem by lifting the 
space of the uncertainty set as show in the following 
lemma that is instrumental in our analysis.

Lemma 1. The K-adaptability problem with decision-dependent 
information discovery, Problem (PK), is equivalent to

min max
{jk}k∈K∈Ξ

K(w)
min
k∈K
{(jk)⊤C x + (jk)⊤D w + (jk)⊤Q yk :

Tx + Vw +Wyk ≤ Hjk}

s:t: x ∈ X , w ∈W, yk ∈ Y, k ∈ K,
(5) 

where

ΞK(w) :� {{jk}k∈K ∈ Ξ
K : ∃j ∈ Ξ such that jk ∈ Ξ(w, j)

for all k ∈ K}: (6) 
For any fixed w ∈W, the subvector jk in the defini

tion of ΞK(w) represents the uncertainty scenario that 
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“nature” will choose if the decision-maker acts accord
ing to decisions w in the first stage and according to pol
icy k in the second stage. The set ΞK(w) collects, for each 
k ∈K, all feasible choices that nature can take if the 
decision-maker acts according to w and then yk in the 
first and second stages, respectively. Thus, in Problem 
(5), the decision-maker first selects x, w, and yk, k ∈K. 
Subsequently, nature commits to the portion of observed 
uncertain parameters w ◦ j and to a choice jk, k ∈K, 
associated with each candidate policy yk. Finally, the 
decision-maker chooses one of the candidate policies.

In what follows, we provide insights into the theo
retical and computational properties of the K-adapt
ability counterpart to two-stage robust problems with 
DDID and with binary recourse.

Remark 2. We note that the results in Section 3 gener
alize fully to cases where the objective and constraint 
functions are continuous (not necessarily linear) in x, y, 
and j. Moreover, all of the ideas in our paper generalize 
to the case where the technology and recourse matrices, 
T and W, depend on j. We do not discuss these cases in 
detail so as to minimize notational overhead.

4.2. K-Adaptability for Problems with Objective 
Uncertainty

In this section, we focus our attention on the case 
where uncertain parameters only appear in the objec
tive of Problem (P) and where the recourse decisions 
are binary, being expressible as

(PO) 

minimize max
j∈Ξ

min
y∈Y

�

max
j∈Ξ(w, j̄)

j⊤C x + j⊤D w + j⊤Q y :

Tx + Vw +Wy ≤ h
�

subject to x ∈ X , w ∈W, 

where h ∈ RL, Y ⊆ {0, 1}Ny . We study the K-adaptabil
ity counterpart of Problem (PO) given by

(POK) 

minimize max
j∈Ξ

min
k∈K

�

max
j∈Ξ(w, j̄)

j⊤C x+ j⊤D w+ j⊤Q yk :

Tx+Vw+Wyk ≤ h
�

subject to x ∈ X , w ∈W, yk ∈ Y, k ∈K:

Applying Lemma 1, we are able to write Problem 
(POK) equivalently as

minimize max
{jk}k∈K∈Ξ

K(w)
min
k∈K
{(jk)⊤Cx+ (jk)⊤Dw

+ (jk)
⊤Qyk : Tx+Vw+Wyk ≤ h}

subject to x ∈X , w ∈W, yk ∈Y, k ∈K,
(7) 

where ΞK(w) is defined as in Lemma 1. In the absence 
of uncertainty in the constraints, the constraints in the 
K-adaptability problem can be moved to the first 
stage, as summarized by the following observation.

Observation 1. The K-adaptability counterpart of the 
two-stage robust optimization problem with decision- 
dependent information discovery, Problem (POK), is 
equivalent to
minimize max

{jk}k∈K∈Ξ
K(w)

min
k∈K
{(jk)

⊤Cx+ (jk)
⊤Dw+ (jk)

⊤Qyk}

subject to x ∈X , w ∈W, yk ∈Y, k ∈K

Tx+Vw+Wyk ≤ h ∀k ∈K,

(8) 

where ΞK(w) is as defined in Equation (6).

Note that for all w ∈W, the set ΞK(w) is nonempty 
and bounded. Thus, (x, w, {yk}k∈K) ∈ X ×W × YK is fea
sible in Problem (8) if Tx+Vw+Wyk ≤ h for all k ∈K, 
whereas to be feasible in Problem (7) (and accordingly 
in Problem (POK)), it need only satisfy Tx+Vw+
Wyk ≤ h for some k ∈K. Thus, a triplet (x, w, yk) feasi
ble in (7) (and thus in (POK)) need not be feasible in 
Problem (8). However, the proof of Observation 1, pro
vides a way to construct a feasible solution for Problem 
(8) from a feasible solution to Problem (7) that achieves 
the same optimal value.

Lemma 1 and Observation 1 are key to reformulating 
Problem (POK) as a finite program. They also enable us 
to analyze the complexity of evaluating the objective 
function of the K-adaptability problem under a fixed 
decision. Indeed, from Problem (8), it can be seen that 
for any fixed choice (x, w, {yk}k∈K), the objective value 
of (POK) can be evaluated by solving a linear program 
(LP) obtained by writing (8) in epigraph form. We for
malize this result in the following.
Observation 2. For any fixed K and decision (x, w, 
{yk}k∈K), the objective value of the K-adaptability prob
lem (POK) can be evaluated in polynomial time in the 
size of the input.

In Observation 2, we showed that for any fixed K, x, 
w, and yk, the objective function in Problem (POK) 
can be evaluated by means of a polynomially sized 
LP. By dualizing this LP, we can obtain an equivalent 
reformulation of Problem (POK) in the form of a bilin
ear problem.

Theorem 2. Problem (POK) is equivalent to the bilinear 
problem

minimize b⊤b+
X

k∈K
b⊤bk

subject to x ∈X , w ∈W, yk ∈Y, k ∈K

a ∈RK
+, b ∈RR

+, bk ∈RR
+, gk ∈RNξ , k ∈K

e⊤a� 1

A⊤bk +w◦gk �ak(Cx+Dw+Qyk) ∀k ∈K

A⊤b�
X

k∈K
w ◦gk

Tx+Vw+Wyk ≤ h ∀k ∈K: (9) 
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Although Problem (POK) is generally nonconvex 
(bilinear), there exist several techniques in the litera
ture for solving such problems exactly. In fact, this is 
an extremely active area of research, see for example, 
Tsoukalas and Mitsos (2014) and Gupte et al. (2017). 
Moreover, problems of the form (POK) can now be 
solved with state-of-the-art off-the-shelf solvers like 
Gurobi. Indeed, Gurobi recently released its 9th ver
sion that can tackle nonconvex quadratic programs.2
If X ⊆ {0, 1}Nx and Y ⊆ {0, 1}Ny , the bilinear terms in 
the formulation above can be linearized using stan
dard techniques and we can obtain an equivalent 
reformulation of Problem (POK) in the form of an 
MBLP.

Corollary 1. Suppose X ⊆ {0, 1}Nx and Y ⊆ {0, 1}Ny . Then, 
Problem (POK) is equivalent an MBLP involving a suit
ably chosen “big-M” constant.

We emphasize that the size of the MBLP in Corol
lary 1 is polynomial in the size of the input data for 
the K-adaptability problem (POK). Note that, contrary 
to Hanasusanto et al. (2015), to reformulate Problem 
(POK) as an MBLP, we require that X ⊆ {0, 1}Nx . This 
is to ensure that we are able to linearize the bilinear 
terms involving the x variables that arise from the 
dualization step. We note that formulation (9) and its 
equivalent MBLP can be augmented with symmetry 
breaking constraints to speed-up solution, see Section 
EC.5.1 for details.

Remark 3. Most MBLP solvers3 allow reformulating 
the bilinear terms without the use of “big-M” con
stants, which are known to suffer from numerical insta
bility. These include, for example, so-called SOS or 
IfThen constraints.

Observation 3. Suppose that we are only in the 
presence of exogenous uncertainty, that is, w � e, 
D � 0, and V � 0. Then, Problem (11) reduces to the 
MBLP formulation of the K-adaptability problem 
with only exogenous uncertainty from Hanasusanto 
et al. (2015).

A generalization of our model and solution approach 
in this section to the multistage case with objective 
uncertainty is provided in Electronic Companion EC.1.

4.3. K-Adaptability for Problems with Constraint 
Uncertainty

The starting point of our analysis is the reformulation 
of Problem (PK) as the min-max-min problem (5). 
Unfortunately, this problem is generally hard as testi
fied by the following theorem.

Theorem 3. Evaluating the objective of Problem (5) if K is 
not fixed is strongly NP-hard.

We reformulate Problem (5) equivalently by shift
ing the second-stage constraints Tx+Vw+Wyk ≤Hjk 

from the objective function to the definition of the 
uncertainty set. We thus replace ΞK(w) with a family 
of uncertainty sets parameterized by a vector ‘.

Proposition 1. The K-adaptability problem with decision- 
dependent information discovery, Problem (5), is equiva
lent to

minimize max
‘∈L

max
{jk}k∈K∈Ξ

K(w,‘)
min
k∈K:
‘k�0

{(jk)
⊤C x+ (jk)

⊤Dw

+ (jk)⊤Qyk}

subject to x ∈X , w ∈W, yk ∈Y, k ∈K,
(10) 

where L :� {0, : : : , L}K, L is the number of second-stage con
straints in Problem (P), and the uncertainty sets ΞK(w,‘), 
‘ ∈ L, are defined as

ΞK(w,‘) :�

{jk}k∈K ∈Ξ
K :

w◦ jk �w◦ j̄ ∀k ∈K for some j̄ ∈Ξ

Tx+Vw+Wyk ≤Hjk ∀k ∈K : ‘k � 0

[Tx+Vw+Wyk]‘k
> [Hjk]‘k

∀k ∈K : ‘k ≠ 0

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

, 

where, for convenience, we have suppressed the dependence 
of ΞK(w,‘) on x and yk, k ∈K.

The elements of vector ‘ ∈ L in Proposition 1 encode 
which second-stage policies are feasible for the param
eter realizations {jk}k∈K ∈ Ξ

K(w,‘). Indeed, recall that 
jk can be viewed as the recourse action that nature 
will take if the decision-maker acts according to yk 

in response to seeing j. Thus, policy yk is feasible in 
Problem (5) (and thus in Problem (PK)) if ‘k � 0. On 
the other hand, policy yk violates the ‘k-th constraint 
in Problem (5) if ‘k ≠ 0. Thus, if ‘k ≠ 0, this implies that 
the ‘k-th constraint in (PK) is violated for some j ∈
Ξ(w, j) and therefore yk is not feasible in (PK). Note 
that, in contrast to the case with exogenous uncertainty 
discussed by Hanasusanto et al. (2016), ‘k � 0 if and 
only if policy yk is robustly feasible in (PK).

Having brought Problem (PK) to the form (10), it 
now presents a similar structure to a problem with 
objective uncertainty (see Section 4.2) with the caveats 
that the problem involves multiple uncertainty sets that 
are also open. Next, we employ closed inner approxi
mations ΞK

ɛ (w,‘) of the sets ΞK(w,‘) that are parame
terized by a scalar ɛ > 0:

minimize max
‘∈L

max
{jk}k∈K∈Ξ

K
ɛ (w,‘)

min
k∈K:
‘k�0

{(jk)
⊤C x+ (jk)

⊤D w

+ (jk)⊤Q yk}

subject to x ∈ X , w ∈W, yk ∈ Y, k ∈K, (10ɛ) 
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where the uncertainty sets ΞK
ɛ (w,‘) are defined as

ΞK
ɛ (w,‘) :�

{jk}k∈K ∈Ξ
K :

w◦ jk �w ◦ j̄ ∀k ∈K for some j̄ ∈Ξ

Tx+Vw+Wyk ≤Hjk ∀k ∈K : ‘k � 0

[Tx+Vw+Wyk]‘k
≥ [Hjk]‘k

+ ɛ ∀k ∈K : ‘k ≠ 0

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

:

Using this definition, we next reformulate the approx
imate Problem (10ɛ) equivalently as an MBLP.

Theorem 4. The approximate problem (10ɛ) is equivalent 
to the mixed binary bilinear program

min τ
s:t: τ ∈R, x ∈X , w ∈W, yk ∈Y, k ∈K

a(‘) ∈RR
+, ak(‘) ∈RR

+, k ∈K, γ(‘) ∈RK
+,

ηk(‘) ∈RNξ , k ∈K, ‘ ∈L

λ(‘) ∈ΛK(‘), bk(‘) ∈RL
+, k ∈K,

A⊤a(‘) �
X

k∈K
w◦hk(‘)

A⊤ak(‘)�H⊤bk(‘) +w ◦ηk(‘)

� λk(‘) Cx+D w+Q yk� �
∀k ∈K : ‘k � 0

A⊤ak(‘) + [H]‘k
γk(‘) +w ◦ηk(‘)

� λk(‘) Cx+D w+Q yk� �
∀k ∈K : ‘k ≠ 0

τ≥ b⊤ a(‘) +
X

k∈K
ak(‘)

 !

�
X

k∈K:
‘k�0

(Tx+Vw+Wyk)⊤

bk(‘) +
X

k∈K:
‘k≠0

([Tx+Vw+Wyk]‘k
� ɛ)γk(‘)

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>;

∀‘ ∈ ∂L

A⊤a(‘) �
X

k∈K
w◦ηk(‘)

A⊤ak(‘) + [H]‘k
γk(‘) +w◦ηk(‘) � 0 ∀k ∈K

b⊤ a(‘) +
X

k∈K
ak(‘)

 !

+
X

k∈K
([Tx+Vw+Wyk]‘k

� ɛ)γk(‘) ≤�1

9
>>>>>>>>>>>=

>>>>>>>>>>>;

∀‘ ∈L+,

(11) 

where ΛK(‘) :� {l ∈ RK
+ : e⊤l � 1, lk � 0 ∀k ∈K : ‘k ≠ 0}, 

∂L :� {‘ ∈ L : ‘ ≯ 0} and L+ :� {‘ ∈ L : ‘ > 0} denote the 
sets for which the decision (x, w, {yk}k∈K) satisfies or violates 
the second-stage constraints in Problem (10), respectively.

If X ⊆ {0, 1}Nx and Y ⊆ {0, 1}Ny , then for ɛ sufficiently 
small, ∪‘∈LΞK

ɛ (w,‘) is nonempty for all (x, w, {yk}k∈K)

feasible in Problem (10ɛ), implying that Problem (10ɛ) 
is bounded below. Therefore, for ɛ sufficiently small, 
its equivalent Problem (11) is also bounded below and 
thus admits an equivalent reformulation as an MBLP 
involving a suitably chosen “big-M” constant. Similar 
to the robust counterpart resulting from the decision 
rule approximation proposed in Vayanos et al. (2011), 

Problem (11) presents a number of constraints and 
decision variables that is exponential in the approxima
tion parameter, in this case K. Relative to the preparti
tioning approach from Vayanos et al. (2011), our 
method does however present a number of distinct 
advantages. First, the trade-off between approximation 
quality and computational tractability is controlled 
using a single design parameter; in contrast, in the pre
partitioning approach, the number of design para
meters equals the number of observable uncertain 
parameters. Second, as we increase K, the quality of the 
approximation improves in our case, whereas increas
ing the number of breakpoints along a given direction 
does not necessarily yield to improvements in the pre
partitioning approach. Finally, to identify breakpoint 
configurations resulting in low optimality gap, a large 
number of optimization problems need to be solved.

Remark 4. Theorem 4 directly generalizes to instances 
of Problem (PK) where the technology and recourse 
matrices T, V , and W depend on j. Indeed, it suffices 
to absorb the coefficients of any uncertain terms in T, 
V , and W in the right-hand side matrix H.

Observation 4. Suppose that we are only in the pres
ence of exogenous uncertainty, that is, w � e, D � 0, 
and V � 0. Then, Problem (11) reduces to the MBLP 
formulation of the K-adaptability problem with con
straint uncertainty and with only exogenous uncertain 
parameters from Hanasusanto et al. (2015). In particu
lar, in the case of constraint uncertainty, Hanasusanto 
et al. (2015) also require that the first stage variables x 
be binary.

5. The Case of Piecewise Linear 
Convex Objective

In this section, we investigate two-stage robust opti
mization problems with DDID and objective uncer
tainty where the objective function is given as the 
maximum of finitely many linear functions.

5.1. Problem Formulation
A piecewise linear convex objective function can be 
written compactly as the maximum of finitely many 
linear functions of j and (x, w, y), being expressible as

max
i∈I

j⊤Ci x+ j⊤Di w+ j⊤Qi y, (12) 

where Ci ∈ RNξ×Nx , Di ∈ RNξ×Nξ , and Qi ∈ RNξ×Ny , i ∈ I , 
I ⊆ N. A two-stage robust optimization problem with 
DDID, objective function given by (12), and objective 
uncertainty is then expressible as

(POPWL) 

min max
j∈Ξ

min
y∈Y

max
j∈Ξ(w,j)

max
i∈I

j⊤Ci x+ j⊤Di w+ j⊤Qi y
� �

s:t: x ∈X , w ∈W:
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Note that, as in Section 4.2, our framework remains 
applicable in the presence of joint deterministic con
straints on the first and second stage variables. We 
omit these to minimize notational overhead.

5.2. K-Adaptability Approximation & MBLP 
Reformulation

The K-adaptability counterpart of Problem (POPWL) 
reads

(POPWL
K ) 

min max
j∈Ξ

min
k∈K

max
j∈Ξ(w, j̄)

max
i∈I

j⊤Ci x+ j⊤Di w+ j⊤Qi yk
� �

s:t: x ∈X , w ∈W, yk ∈Y, k ∈K:

We begin this reformulation by the following lemma, 
which parallels Lemma 1, and shows that we can 
exchange the order of the inner min and max in for
mulation (POPWL

K ), by indexing j by k.

Lemma 2. The K-adaptability counterpart of Problem 
(POPWL

K ) is equivalent to

minimize max
{jk}k∈K∈Ξ

K(w)
min
k∈K

�

max
i∈I
(jk)⊤Ci x+ (jk)⊤Di w

+ (jk)
⊤Qi yk

�

subject to x ∈X , w ∈W, yk ∈Y, k ∈K:

(13) 

Next, by leveraging Lemma 2, we are able to refor
mulate Problem (13) exactly as an MBLP.

Theorem 5. Problem (POPWL
K ) is equivalent to the bilinear 

program
minimize τ

subject to τ ∈R, x ∈X , w ∈W, yk ∈Y, k ∈K

ai ∈RK
+, bi ∈RR

+, bi,k ∈RR
+, gi,k ∈RNξ ,

∀k ∈K, i ∈ IK

τ ≥ b⊤bi +
X

k∈K
b⊤bi,k

e⊤ai � 1

A⊤bi,k +w◦gi,k

�ai
k(C

ik x+Dik w+Qik yk) ∀k ∈K

A⊤bi �
X

k∈K
w ◦gi,k

9
>>>>>>>>>>>=

>>>>>>>>>>>;

∀i ∈ IK,

(14) 

which can be written as an MBLP, provided X ⊆ {0, 1}Nx .

Albeit Problem (14) is an MBLP, it presents an expo
nential number of decision variables and constraints 
making it difficult to solve directly using off-the-shelf 
solvers even when K is only moderately large (K ⪆ 4). 
In the remainder of this section, we exploit the specific 
structure of Problem (POPWL) to solve its K-adaptabil
ity counterpart exactly by reformulating it as an MBLP 

that presents an attractive structure amenable to decom
position techniques.

5.3. “Column-and-Constraint Generation” 
Algorithm

Column-and-constraint generation techniques are a 
popular approach for addressing problems that pos
sess an exponential number of decision variables and 
constraints while presenting a decomposable struc
ture, see for example, Fischetti and Vigo (1997), Löbel 
(1998), Valério De Carvalho (1999), Mamer and McBride 
(2000), Feillet et al. (2010), Sadykov and Vanderbeck 
(2011), Zeng and Zhao (2013), Muter et al. (2013), and 
Muter et al. (2018). We propose a new column-and- 
constraint generation algorithm to solve the K-adaptabil
ity counterpart (POPWL

K ) based on its reformulation (14). 
The key idea is to decompose the problem into a relaxed 
master problem and a series of subproblems indexed by 
i ∈ IK. The master problem initially only involves the 
first stage constraints and a single auxiliary MBLP is used 
to iteratively identify indices i ∈ IK for which the solu
tion to the relaxed master problem becomes infeasible 
when plugged into subproblem i. Constraints associated 
with infeasible subproblems are added to the master 
problem and the procedure continues until convergence. 
We detail this procedure in Electronic Companion EC.3 
where we also show that certain classes of two-stage 
robust optimization problems that seek to minimize the 
“worst-case absolute regret” criterion can be written in 
the form (POPWL). In Section 7, we leverage the column 
and constraint generation algorithm and this observa
tion to solve an active preference elicitation problem that 
seeks to recommend kidney allocation policies with least 
possible worst-case regret.

6. Computational Studies on Stylized 
Instances

We investigate the performance of our approach on a 
variety of two-stage robust optimization problems 
with decision-dependent information discovery (for 
computational results on multistage robust optimiza
tion with decision-dependent information discovery, 
see Electronic Companion EC.2). We solve these pro
blems with our proposed methods discussed in Sec
tions 4.2, 4.3, and 5.2. To speed-up computation, for the 
two-stage problems, we employ a conservative greedy 
heuristic that uses the solution to problems with smal
ler K to solve problems with larger K more efficiently, 
see Electronic Companion EC.5.2. This strategy enables 
us to solve many random instances of problems with 
large approximation parameters K (up to K � 10). In all 
our experiments, we compare our method to the state- 
of-the-art prepartitioning approach from Vayanos et al. 
(2011) using the ROC++ platform, see Vayanos et al. 
(2023). All of our experiments are performed on the 
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High Performance Computing Cluster of our univer
sity. Each job is allotted 64GB of RAM, 16 cores, and a 
2.6GHz Xeon processor. All optimization problems are 
solved using Gurobi v9.0.1. We allow a total time limit 
of 7,200 seconds to solve each instance cumulatively 
across all values of K for the K-adaptability problem 
and across all breakpoint configurations for the prepar
titioning approach. Unless indicated otherwise, we set 
M�1,000 for the K-adaptability approach. We found 
that this value yielded good performance in most 
cases.

6.1. Two-Stage Robust Best Box Selection 
(Objective Uncertainty)

The first problem we study is a robust variant of the 
best box selection problem, see for example, Gupta 
et al. (2016, 2017) for results on the stochastic version. 
In this problem, an agent must select one out of N 
boxes, indexed in the set N :� {1, : : : , N}, each of 
which contains a prize. The value ji ∈ R of the prize in 
each box i ∈N is unknown and will only be revealed 
if the box is opened. Opening box i ∈N incurs a cost 
ci. In the first stage, the agent can decide whether to 
open each box i ∈N which we indicate with the deci
sion variables wi ∈ {0, 1}. Thus, wi � 1 if and only if ji 
is observed between the first and second decision 
stages. The total budget available to open boxes is B. 
In the second stage, the agent can choose one of the 
opened boxes to keep, which we indicate with the 
decision variable yi ∈ {0, 1}, i ∈N , earning its prize. 
We assume that the value of box i ∈N is expressible as 
ji � (1+F⊤i z=2)j0

i , where j0
i corresponds to the nomi

nal value of the prize of box i, z ∈ [�1, 1]L are L risk fac
tors, and Fi ∈ RL collects the factor loadings associated 
with the value of box i. The goal of the agent is to 
select the boxes to open (first stage decisions) and the 

box to keep (second stage decision) to maximize the 
worst-case value of the box kept. The Best Box Selec
tion problem has numerous applications, for example 
in house purchasing or in candidate interviewing, see 
for example, Singla (2018). With the notation above, 
the problem can be expressed as a two-stage robust 
optimization problem with decision-dependent infor
mation discovery of the form (PO) as

max
w∈{0,1}N

min
j∈Ξ

max
y∈{0,1}N

min
j∈Ξ(w,j)

j⊤y : e⊤y� 1, c⊤w≤B, y≤w

( )

,

(15) 

where Ξ :� {j ∈ RN : ∃z ∈ [�1, 1]L : ji � (1+F⊤i z=2)j0
i , 

i � 1, : : : , N}.
We evaluate the performance of our approach on 

100 randomly generated instances of Problem (15) 
with L � 4 risk factors: 20 instances for each N ∈ {10, 
20, 30, 40, 50}. In these instances, c is drawn uniformly 
at random from the box [0, 10]N, we let j0

i � c=5, and 
B � e⊤c=2. The matrix F is sampled uniformly at ran
dom from the box [�1, 1]N×L. Our computational results 
across those instances are summarized in Table 1. From 
the table, we observe that with the proposed K-adapt
ability approach, all instances (even those involving 
N � 50 boxes) solved to optimality with an average 
solver time no greater than 2 seconds across all problem 
sizes. In contrast, the average solver time of the prepar
titioning approach exceeded 190 seconds for N � 20 
boxes and equaled 6,713 seconds for N � 50 boxes, with 
only 95.7% of the problems associated with all break
point configurations solving within the allotted time on 
average. In addition, the quality of the best solution 
identified by the proposed K-adaptability solution con
sistently outperformed that of the best prepartitioning 
solution. For example, an average improvement of over 

Table 1. Summary of Computational Results on the Best Box Selection Problem for Various Choices of N over 20 
Randomly Generated Instances of Each Size

Adapt. N � 10, L � 4 N � 20, L � 4 N � 30, L � 4 N � 40, L � 4 N � 50, L � 4

K-adaptability K � 1 100%/0.0%/0s 100%/0.0%/0s 100%/0.0%/0s 100%/0.0%/0s 100%/0.0%/0s
K � 2 100%/98.3%/0s 100%/83.6%/0s 100%/81.0%/0s 100%/61.2%/0s 100%/59.1%/0s
K � 3 100%/136.9%/0s 100%/127.5%/0s 100%/110.4%/0s 100%/81.1%/0s 100%/94.0%/0s
K � 4 100%/165.3%/0s 100%/150.0%/0s 100%/127.3%/1s 100%/91.0%/1s 100%/113.6%/0s
K � 5 100%/167.9%/0s 100%/157.8%/1s 100%/137.1%/2s 100%/98.4%/1s 100%/117.0%/1s
K � 6 100%/170.4%/0s 100%/162.2%/1s 100%/144.6%/3s 100%/102.4%/2s 100%/122.6%/1s
K � 7 100%/170.4%/0s 100%/162.6%/1s 100%/147.5%/3s 100%/109.2%/2s 100%/126.1%/1s
K � 8 100%/170.4%/0s 100%/162.8%/1s 100%/148.2%/3s 100%/111.2%/2s 100%/127.3%/2s
K � 9 100%/170.4%/0s 100%/162.8%/1s 100%/148.3%/3s 100%/111.6%/2s 100%/128.0%/2s
K � 10 100%/170.4%/0s 100%/162.8%/1s 100%/148.3%/3s 100%/111.6%/2s 100%/128.4%/2s

Prepartitioning ≤10 subsets 100%/155.8%/ 
17s/7.5

100%/142.8%/ 
190s/8.1

100%/125.6%/ 
978s/8.1

100%/96.7%/ 
2,785s/8.6

95.7%/115.5%/ 
6,713s/8.2

Notes. In the K-adaptability part of the table, each entry corresponds to: percentage of instances solved within the time limit/average improvement 
in the objective value of the K-adaptable solution over the static solution/average solution time across all instances. In the prepartitioning part of the 
table, each entry corresponds to: average percentage of breakpoint configurations that solved within the time limit out of all configurations with 
cardinality at most 10/average improvement in the objective value of the best prepartitioning solution found within the time limit relative to that of 
the static solution/average cumulative solver time/average cardinality of the best solution found within the time limit.
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148% over the static solution was exhibited for the 
K-adaptability method for N � 30, while the preparti
tioning solution only resulted in a 125.6% improve
ment. Finally, the smallest value of K needed to achieve 
the same average performance as the best solution 
in the prepartitioning method was always smaller than 
the average number of subsets needed to obtain that 
solution in the prepartitioning approach, resulting in 
more easy to use/implement solutions for our pro
posed method. For example, for N � 30, 8.1 subsets are 
needed on average to obtain an improvement of 125.6% 
for the prepartitioning approach, whereas K � 4 candi
date strategies suffice for our proposed K-adaptability 
approach to yield an improvement of 127.3%.

6.2. Preference Elicitation with Real-Valued 
Recommendations (Real Decisions)

The second problem we consider is a robust active 
preference elicitation problem where user preferences 
can be elicited by asking them “how much” they like 
any particular item and where real-valued quantities 
of multiple items can be recommended after prefer
ences are elicited, see Vayanos et al. (2022) for a vari
ant where pairwise comparison queries are used 
instead.

The building blocks of our framework are candidate 
items which we index in the set I :� {1, : : : , I}. We let 
fi ∈ RJ be the feature vector of item i ∈ I . We assume 
that user preferences are cardinal and model them by 
means of a linear utility function. Specifically, we 
assume that the utility of item i is given by u(fi) �

u⊤fi + �̃i, where {�̃i}i∈I are independent identically 
distributed and u is a vector of (unknown) utility func
tion coefficients supported in the set U ⊆ [�1, 1]J. These 
assumptions are standard in the literature, see for 
example, Bertsimas and O’Hair (2013) and Boutilier 
et al. (2004). Before making recommendations, the sys
tem has the opportunity to make Q queries to the user. 
Each query is based on one of the candidate items: if 
query i ∈ I is chosen, the user is asked “On a scale from 
0 to 1, where 1 is the most anyone could like an item 
and 0 is the least anyone could like an item, how much 
do you like policy i?” We denote by ji ∈ [0, 1] the 
answer to query i. After the answers to these queries 
are observed, the system can select N out of the I items 
to recommend and the quantity yi ∈ [0, 1], i ∈ I , of 
those items to recommend. The goal of the recom
mender system is to select Q queries the answers to 
which will enable the system to recommend a set of 
items in quantities resulting in greatest possible worst- 
case utility.

To formulate the preference elicitation problem math
ematically we let wi, i ∈ I , denote the decision to pose 
query i, that is, to observe ji before making a recommen
dation. Thus, W :� {w ∈ {0, 1}I : e⊤w �Q}: The set of 

possible realizations of j is given by

Ξ :�

(

j ∈ [0, 1]I : ∃u ∈ [�1, 1]J, � ∈ E such that

ji �
u⊤fi +maxj∈I ‖f

j ‖1

2 maxj∈I ‖f
j ‖1

+ �i ∀i ∈ I

)

, 

where the normalization of u⊤fi ensures that ji has 
the correct interpretation and, in the spirit of modern 
robust optimization, see for example, Lorca and Sun 
(2016), we assume that � is valued in the set E :� {� ∈

RI :
PI

i�1 |�i | ≤ Γ}, where Γ is a user-specified budget 
of uncertainty parameter. Once the answers to the 
queries are observed, the recommender system may 
select the quantity of each item i ∈ I to recommend 
which we encode with decisions yi ∈ [0, 1]. We let zi ∈

{0, 1} indicate if item i is recommended and require 
that the quantity of items recommended equals 1. 
Thus,

Y :� {y ∈ [0, 1]I : ∃z ∈ {0, 1}I such that
e⊤z �N, y ≤ z, e⊤y � 1}:

With this notation, the preference elicitation problem 
is expressible as

(WCUPE) maximize
w∈W

min
j∈Ξ

max
y∈Y

min
j∈Ξ(w, j)

j⊤y:

A conservative solution to Problem (WCUPE) can be 
obtained using the K-adaptability approximation scheme 
discussed in Section 4.2, by solving the bilinear reformu
lation (9).

We evaluate the performance of our approach on 80 
randomly generated instances of Problem (WCUPE): 
20 instances for each (Q, N,Γ) ∈ {(1, 2, 0:1), (3, 3, 0:3), 
(6, 4, 0:6), (9, 5, 0:9)}. In these instances, I � 30, J � 15, 
and fi, i ∈ I , are drawn uniformly at random from 
the box [�1, 1]J. Our computational results across 
these instances are summarized in Table 2. From the 
table, we observe that on average the optimal value of 
our proposed K-adaptability method (across all K) is 
greater than that of the best optimal value of the 
prepartitioning method (across all breakpoint config
urations). For example, for the (Q, N,Γ) � (9, 5, 0:9) set
ting, K-adaptability yields an average improvement in 
optimal value of 53.3% relative to the static solution, 
whereas prepartitioning only results in an average 
improvement of 10.1% on average in the best case. In 
addition, the solutions obtained by the K-adaptability 
approach in the same time needed to solve for all 
breakpoint configurations (or to reach the time limit) 
in the prepartitioning approach are of far better qual
ity. For example, the prepartitioning approach always 
reached the 7,200 seconds time limit for instances of 
size (Q, N,Γ) � (3, 3, 0:3) with an associated average 
improvement in optimal value of 12.6%. In contrast, 
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within just 17 seconds on average, the K-adaptability 
approach results in an improvement of 28.2% in opti
mal value on average over the same instances. Finally, 
the average value of K needed to achieve a solution of 
quality comparable to that of the best prepartitioning 
approach is a lot smaller than the number of subsets 
needed in prepartitioning, implying that K-adaptabil
ity has more attractive usability properties. For exam
ple, for (Q, N,Γ) � (6, 4, 0:6), 7.4 subsets are needed by 
prepartitioning to yield a 13.8% improvement in opti
mal value whereas K � 2 is sufficient for our method 
to yield an improvement of 35.7%.

6.3. Robust R&D Project Portfolio Optimization 
(Constraint Uncertainty)

The third problem we investigate is a robust variant 
of the R&D project portfolio optimization problem, 
see for example, Solak et al. (2010) for a solution 
approach on the stochastic version. In this problem, 
an R&D firm has a pipeline of N candidate projects 
indexed in the set N :� {1, : : : , N} that it can invest in. 
The return j r

i of each project i ∈N is uncertain and 
will only be revealed if the firm chooses to undertake 
the project. The firm can decide to undertake each pro
ject i ∈N in year one, indicated by decision wr

i ∈ {0, 1}, 
in the following year, indicated by decision yi ∈ {0, 1}, 
or not at all. Thus, wr

i � 1 if and only if j r
i is observed 

between the first and second years. If the firm chooses 
to undertake the investment in the second year, it will 
only realize a known fraction θ ∈ (0, 1] of the return. 
Undertaking project i incurs an unknown cost j c

i that 
will only be revealed if the firm chooses to undertake 
the project. The total budget available to invest in pro
jects across the two years is B. We assume that the 
return and cost of project i ∈N are expressible as j r

i �

(1+F⊤i z=2)j r, 0
i and j c

i � (1+C⊤i z=2)j c, 0
i , where j r, 0

i 
and j c, 0

i corresponds to the nominal return and cost 
for project i, respectively, z ∈ [�1, 1]L are L risk factors, 
and the vectors Fi ∈ RL and Ci ∈ RL collect the factor 
loadings for the return and cost of project i, respectively. 

With this notation, the R&D project portfolio optimiza
tion problem is expressible as a two-stage robust opti
mization problem with decision-dependent information 
discovery of the form (P) as

maximize min
j∈Ξ

max
y∈{0,1}N

(

min
j∈Ξ(w, j̄)

(wr +θy)⊤jr :

(wr +y)⊤jc ≤ B, wr +y≤ e

)

subject to w� (wr,wr), wr ∈ {0, 1}N,
(16) 

where

Ξ :� {(j r,j c) ∈R2N : ∃z ∈ [�1, 1]L : j r
i � (1+F⊤i z=2)j r,0

i ,

j c
i � (1+C⊤i z=2)j c,0

i , i� 1, : : : ,N}:

In this problem, we set M � 100 and ɛ � 10�4. We 
evaluate the performance of our approach on 100 ran
domly generated instances of Problem (16): 20 
instances for each (N, L) ∈ {(5, 3), (10, 5), (15, 8), (20, 10), 
(25, 13)}. In these instances, θ � 0:8, j c, 0 is drawn uni
formly at random from the box [0, 10]N, and we let 
j r, 0 � j c, 0=5 and B � e⊤j c, 0=2. The elements of F and 
C are uniformly distributed in the interval [�1, 1]. We 
remove any instance where K � 1 returns an optimal 
value of zero in the corresponding K-adaptability 
problem so that we can quantify the percentage 
improvement relative to this static solution. Our com
putational results across these instances are summa
rized in Table 3. From the table, we observe that on 
average the optimal value of our proposed K-adapt
ability method (across all K) is greater than that of the 
best optimal value of the prepartitioning method 
(across all breakpoint configurations). For example, 
for the (N, L) � (10, 5) setting, K-adaptability yields an 
average improvement in optimal value of 88.1% rela
tive to the static solution, whereas prepartitioning 
only results in an average improvement of 39.3% in 
the best case. In addition, the solutions obtained by 

Table 2. Summary of Computational Results on the Preference Elicitation Problem with Real-Valued Recommendations for 
Various Choices of Q, N, and Γ over 20 Randomly Generated Instances for Each Setting

Adapt. Q � 1, N � 2, Γ � 0:1 Q � 3, N � 3, Γ � 0:3 Q � 6, N � 4, Γ � 0:6 Q � 9, N � 5, Γ � 0:9

K-adaptability K � 1 100%/0.0%/2s 100%/0.0%/4s 100%/0.0%/8s 100%/0.0%/26s
K � 2 100%/14.0%/7s 100%/28.2%/17s 100%/35.7%/26s 100%/41.7%/51s
K � 3 100%/15.2%/19s 100%/29.0%/89s 100%/42.6%/418s 100%/52.2%/238s
K � 4 100%/16.1%/39s 100%/29.4%/238s 100%/43.5%/1,689s 90%/53.0%/2,772s
K � 5 100%/16.8%/68s 100%/29.4%/509s 80%/43.9%/3,572s 55%/53.2%/4,751s
K � 6 100%/16.9%/105s 100%/29.4%/900s 65%/44.1%/5,088s 40%/53.2%/5,917s
K � 7 100%/17.3%/152s 100%/29.6%/1,434s 25%/44.2%/6,362s 15%/53.2%/6,609s
K � 8 100%/17.3%/203s 100%/29.8%/2,151s 15%/44.2%/6,776s 15%/53.3%/6,904s
K � 9 100%/17.3%/262s 95%/30.0%/3,033s 5%/44.2%/6,957s 5%/53.3%/7,108s
K � 10 100%/17.5%/347s 90%/30.2%/4,155s 5%/44.2%/7,024s 5%/53.3%/7,185s

Prepartitioning ≤10 subsets 3.5%/16.2%/7,200s/8.2 3.0%/12.6%/7,200s/9.7 0.1%/13.8%/7,200s/7.4 0.0%/10.1%/7,200s/6.8

Note. The row names and table entries have the same interpretation as in Table 1.
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the K-adaptability approach in the same time needed 
to solve for all breakpoint configurations (or to reach 
the time limit) in the prepartitioning approach are of 
far better quality. For example, the prepartitioning 
approach needed 6,675 seconds on average to solve 
instances of size (N, L) � (15, 8) with an associated 
average improvement in optimal value of 30.5%. In 
contrast, within just 16 seconds on average, the K- 
adaptability approach results in an improvement of 
40.7% in optimal value on average over the same 
instances. Finally, and similar to our results on the 
best box problem in Section 6.1, the K adaptability 
approach has more attractive usability properties than 
prepartitioning. For example, for (N, L) � (20, 10), 8.8 
subsets are needed by prepartitioning to yield a 21.2% 
improvement in optimal value whereas K � 2 is suffi
cient for our method to yield an improvement of 
29.9%.

7. Preference Elicitation to Improve the 
US Kidney Allocation System

In this section, we evaluate our approach on a prefer
ence elicitation and recommendation problem that 
explicitly captures the endogenous nature of the elici
tation process.

7.1. Motivation & Problem Formulation 
(Piecewise Linear Convex Objective)

The motivation for our study is one of the central pro
blems faced by policymakers at the OPTN/UNOS 
who must periodically make changes to the policy for 
prioritizing patients on the kidney transplant waiting 
list for scarce deceased donor kidneys. To tackle this 
problem, a Kidney Transplantation Committee (KTC) 
is appointed at the OPTN that examines the out
comes of numerous candidate policies simulated using 
the Kidney-Pancreas Simulated Allocation Model 
(KPSAM), a simulator developed by the SRTR, see 
KPSAM (2015). The KTC examines the outcomes of 

the allocation policy alternatives along several dimen
sions (measures) of fairness and efficiency (e.g., num
ber of recipients by age group, number of deaths by 
gender) before ultimately committing to one of the 
alternatives. This process was for example followed in 
the latest big policy change, see for example, Wolfe 
et al. (2009). Since selecting one alternative (policy) 
over many others is a challenging task, in particular 
when the dimension of each alternative is large, see 
for example, Toubia et al. (2003, 2004, 2007) and Bouti
lier et al. (2004), we propose a preference elicitation 
and recommendation framework for identifying a pre
ferred policy using a moderate number of strategically 
chosen queries.

We formulate this problem as a variant of the active 
preference elicitation problem from Section 6.2 where 
a single item can be recommended and where we 
select queries that minimize worst-case regret of the 
recommendation. Items indexed in the set I corre
spond to policies where the feature vector fi ∈ RJ of 
policy i ∈ I collects various measures of fairness and 
efficiency of the policy. The problem is expressible 
mathematically as

minimize
w∈W

max
j∈Ξ

min
y∈Y

max
j∈Ξ(w,j)

max
i∈I

ji� j⊤y
� �

, 

(WCRPE) 

where W and Ξ are as in Section 6.2 and where Y :�

{y ∈ {0, 1}I : e⊤y � 1}. In this problem, the first part 
of the objective computes the utility of the best item 
to offer in hindsight, after the utilities j have been 
observed. The second part of the objective corresponds 
to the worst-case utility of the item recommended when 
only a portion of the uncertain parameters are observed, 
as dictated by the vector w. Problem (WCRPE) can be 
solved approximately using the K-adaptability approxi
mation scheme discussed in Section 5. Indeed, the regret 
in Problem (WCRPE) is given as the maximum of 
finitely many linear functions and Theorem 5 applies. 

Table 3. Summary of Computational Results on the R&D Project Portfolio Optimization Problem for Various Choices of N 
and L over 20 Randomly Generated Instances of Each Size

Adapt. N � 5, L � 3 N � 10, L � 5 N � 15, L � 8 N � 20, L � 10 N � 25, L � 13

K-adaptability K � 1 100%/0.0%/0s 100%/0.0%/0s 100%/0.0%/2s 100%/0.0%/15s 100%/0.0%/33s
K � 2 100%/71.9%/0s 100%/40.7%/2s 100%/40.7%/16s 100%/29.9%/166s 95%/44.2%/1,744s
K � 3 100%/114.4%/1s 100%/60.4%/7s 100%/55.2%/61s 100%/43.6%/966s 65%/60.8%/5,018s
K � 4 100%/119.8%/2s 100%/67.9%/23s 100%/62.6%/273s 80%/49.7%/2,876s 10%/68.6%/6,945s
K � 5 100%/125.6%/5s 100%/73.7%/73s 100%/69.1%/1,436s 30%/53.4%/6,479s 0%/69.4%/7,200s
K � 6 100%/125.7%/8s 100%/78.7%/263s 75%/72.4%/5,151s 0%/54.3%/7,200s 0%/69.4%/7,200s
K � 7 100%/131.4%/18s 100%/83.7%/1,200s 5%/74.1%/7,100s 0%/54.3%/7,200s 0%/69.4%/7,200s
K � 8 100%/131.5%/60s 65%/87.0%/4,777s 0%/74.1%/7,200s 0%/54.3%/7,200s 0%/69.4%/7,200s
K � 9 100%/137.1%/276s 0%/88.1%/7,200s 0%/74.1%/7,200s 0%/54.3%/7,200s 0%/69.4%/7,200s
K � 10 100%/137.3%/1,747s 0%/88.1%/7,200s 0%/74.1%/7,200s 0%/54.3%/7,200s 0%/69.4%/7,200s

Prepartitioning ≤10 subsets 100%/72.3%/ 
16s/7.1

100%/39.3%/ 
853s/8.4

92.4%/30.5%/ 
6,675s/9.1

21.0%/21.2%/ 
7,200s/8.8

3.9%/17.3%/ 
7,200s/8.5

Note. The row names and table entries have the same interpretation as in Table 1.
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We note that in this case |Y | � I. Thus, solving the K- 
adaptability counterpart of (WCRPE) with K � I recovers 
an optimal solution to the corresponding original 
problem.

7.2. Generating KAS Candidate Policies
This study used data from the Scientific Registry of 
Transplant Recipients (SRTR). The SRTR data system 
includes data on all donor, wait-listed candidates, and 
transplant recipients in the US, submitted by the 
members of the Organ Procurement and Transplanta
tion Network (OPTN). The Health Resources and 
Services Administration (HRSA), U.S. Department of 
Health and Human Services provides oversight to the 
activities of the OPTN and SRTR contractors.

We generate the outcomes fi, i ∈ I , of I � 20 candi
date policies using the KPSAM simulator which we 
obtained from the SRTR using a modeling window 
from 01/01/2010 to 12/31/2010. The candidate poli
cies we consider are linear scoring rules that use the 
patient dialysis time, the life years from transplant 

score, the Calculated Panel Reactive Antibodies and 
the age of the patient. For each policy, we record J �
22 outcomes, including the number of transplants 
overall, by age, by blood type, by race, and by gender, 
and the number of deaths by race and by gender. For 
details on the construction of the policies and for a list 
of outcomes, see Electronic Companion EC.4.

7.3. Numerical Results on KAS Candidate 
Policies

We evaluate the performance of our approach on the 
KAS policies data set from Section 7.2. Throughout 
our experiments, the K-adaptability counterpart of 
Problem (WCRPE) is solved using the techniques 
described in Section 5. To speed-up computation, we 
also use a heuristic adapted from Subramanyam et al. 
(2020) and detailed in Section EC.5.2. The tolerance δ 
used in the column-and-constraint generation algo
rithm (see Section 5.3) is 10�5. We evaluate the true 
worst-case regret of any given solution w?, which we 
denote by rwc(w?), as follows: we fix w �w? in 

Figure 2. (Color online) Optimality-Scalability Results for the Min-Max Regret Preference Elicitation Problem (WCRPE) on the 
KAS Data 
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Problem (CCGfeas(x, w, {yk}k∈K)), where we set K � I 
and employ all I candidate policies {yk}k∈K in the set 
Y. As before, we use the ROC++ platform to solve the 
prepartitioning problem, see Vayanos et al. (2023). All 
of our experiments are performed using the same 
computing resources as in Section 6.

7.3.1. Optimality-Scalability Trade-Off. We evaluate 
the trade-off between computational complexity and 
scalability of our approach. We solve the min-max 
regret problems as Q and Γ are varied in the sets 
{2, 4, 6, 8} and {0, 0:05, 0:1}, respectively. The results 
are summarized in Figure 2. From the figure it can be 
seen that the K-adaptability approach significantly 
outperforms the prepartitioning approach and static 
policies are very suboptimal. In fact, the prepartition
ing approach performs comparably to static policies 
across all settings. On the other hand, with the K-adapt
ability approach, the normalized4 worst-case regret 
drops to 0.40, 0.68, and 0.9 from 1, 1.16, and 1.32, for 
Γ � 0, 0:05, and 0.1, respectively (for Q � 8). This exper
iment shows the strength of the K-adaptability approach 
compared with the state of the art.

7.3.2. Performance Relative to Random Elicitation. We 
evaluate the benefits of computing near-optimal queries 
using the K-adaptability approximation approach rela
tive to asking questions at random. We compare the 
true performance of a solution to the K-adaptability 
problem, rwc(w?

K), to that of 50 questions drawn uni
formly at random from the set W, rwc(wr). The results 
are summarized on Figure 3. From the figure, we see 
that the probability that the K-adaptability solution out
performs random elicitation converges to 1 as K grows. 
We observe that, for values of K greater than 5, the K- 

adaptability solution outperforms random elicitation in 
over 90% of the cases.

Disclaimer
The data reported here have been supplied by the 
Hennepin Healthcare Research Institute (HHRI) as 
the contractor for the Scientific Registry of Transplant 
Recipients (SRTR). The interpretation and reporting of 
these data are the responsibility of the author(s) and 
in no way should be seen as an official policy of or 
interpretation by the SRTR or the U.S. Government.
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Endnotes
1 See https://www.srtr.org, https://optn.transplant.hrsa.gov, and 
https://unos.org.
2 See for example, https://www.gurobi.com/documentation/9.0/ 
refman/nonconvex.html.
3 See for example, https://www.ibm.com/analytics/cplex-optimizer 
and https://www.gurobi.com/.
4 To aid with interpretability, we normalize regret such that the 
worst-case regret when no question is asked (Q � 0) and there is 
no error (Γ � 0) is 1 and the worst-case regret when all questions are 
asked is 0.
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