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A B S T R A C T

Crowdshipping is a new delivery paradigm that exploits the capacity of ordinary people who offer their own
vehicles and free time to perform deliveries against compensation. In this work, we consider a peer-to-peer
logistic platform where a company receives orders from its customers and assigns them to occasional drivers
(ODs), or crowdshippers, who perform the delivery operations. We first investigate the problem of deciding how
the orders should be partitioned into bundles, where a bundle is a set of orders assigned to the same OD. Then,
we focus on the problem of determining the compensation associated with each bundle, with the purpose of
minimizing the total delivery costs. The pricing scheme is based on the assumption that each OD is associated
with a willingness-to-serve function, which is modeled as a random variable that gives the probability that the
OD accepts to deliver the bundle given the compensation value. This random variable captures the estimation
of the willingness-to-serve function that the company has elaborated, for example on the basis of historical
data. If the compensation offered by the company is greater than or equal to the willingness-to-serve value, the
OD performs the delivery, otherwise she/he refuses. In case no OD is available to deliver a bundle, then all
packages in the bundle are offered to a third-party delivery company. We simulate two auction systems for
the assignment of bundles to ODs: a static and a dynamic auction. In exhaustive simulation tests, we compare
different pricing schemes as well as the two auction systems, and outline several managerial insights.
1. Introduction

Crowdshipping is an innovative delivery strategy in which occa-
sional drivers (‘crowdshippers’) offer their service to delivery compa-
nies, typically using an online platform (Mckinnon, 2016; Punel and
Stathopoulos, 2017; Buldeo Rai et al., 2018; Alnaggar et al., 2021).
The platform, also named ‘‘peer-to-peer platform’’, typically operates
as follows: the company uploads delivery requests, specifying the area,
expected earnings, and task duration. Occasional drivers (ODs) browse
these opportunities, selecting those that align with their convenience,
and then communicate their availability to perform the service. The
platform subsequently assigns the delivery task to an OD, who delivers
the parcels and receives payment upon successful completion. Among
the most successful crowdshipping platforms we mention Amazon Flex,
the crowdshipping platform of Amazon, My Ways of DHL, Roadie of
UPS, and Postmate of Uber.

This paradigm is gaining success in the last-mile delivery context.
The main reason is that hiring an OD is much ‘easier’ than hiring
a regular driver (RD), i.e., a driver with a permanent full contract.
Indeed, an OD works temporarily for the company (and he/she is typi-
cally engaged just for the time slot associated with the delivery service
he/she accepts to perform) and receives compensation for the service
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provided. RDs instead have a long-term contract and work full-time for
the company (and thus receive a full-time salary). Thus, crowdshipping
offers a great opportunity to deal with peak of demands by temporarily
hiring ODs, avoiding to increase the ‘regular delivery capacity’ of the
company (associated with RDs) which might then become useless when
the peak is off. In most cases, third-party companies are engaged in case
of missing capacity (neither ODs nor RDs are available to fulfill certain
requests).

Implementing a crowdshipping system involves careful considera-
tion of numerous factors. In particular, a critical key point is estab-
lishing appropriate compensation for each delivery offered to ODs. As
stated in Buldeo Rai et al. (2018), remuneration is the most influential
factor influencing willingness to work as a potential crowdshipper
(45.36%). Therefore, defining the policy for assigning requests to ODs,
both in terms of number of parcels and compensation, is crucial, and
this is the focus of our work.

In this paper, we consider a crowdshipping platform that mimics
real applications, like Amazon Flex, where customer requests are ag-
gregated into so-called ‘‘blocks’’, which are then offered to the drivers.
Blocks include the date, type, expected earnings, start time, and es-
timated duration. We first address the problem of bundles (blocks)
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generation, proposing a heuristic approach to generate them. Then, we
propose a pricing scheme to determine the compensation associated
with each bundle. Finally, we develop two auction strategies, a static
and a dynamic auction, where bundles are offered to ODs and we
simulate the corresponding acceptance.

The main focus of our study is to investigate the impact of pricing
and auction strategies in a crowdshipping system and to derive insights
that might be useful for applications. Indeed, we focus on decisions
related to how bundles should be generated, what should be the
corresponding compensation, and how to adjust the compensation in
case of a dynamic auction.

The contributions of the paper can be summarized as follows:

• We study a crowdshipping system in which a company receives
orders from customers, which are then offered to ODs for delivery.
The company has to decide how to construct bundles of orders
for the ODs and the compensation associated with each bundle.
If no OD accepts to deliver a bundle, all parcels in the bundle are
assigned to a third-party delivery company, incurring a higher
cost. We assume that ODs accept to serve a bundle according
to a willingness-to-serve function, which is modeled as a random
variable giving the probability of acceptance with respect to the
compensation offered.

• We propose a solution approach in which, in the first phase, we
determine the bundles to be offered to the ODs. The correspond-
ing compensation for each bundle is then determined in a second
phase.

• We develop a bundle generation procedure based on a greedy
algorithm, that takes into account both the temporal and spa-
tial proximity of requests. The compensation is then determined
according to a bundle pricing scheme, based on the willingness-to-
serve function.

• We simulate two auction systems for the assignment of bundles
to ODs. In the first system, which is called ‘‘static’’, bundles
are offered with a compensation that is determined as described
above. If a bundle is not accepted, it is offered to the third
company at a higher price. In the second auction system, called
‘‘dynamic’’, the company can react to a ‘‘rejection’’ by increasing
the compensation associated with a bundle and repeating the
auction.

• We perform extensive simulations on synthetic instances with
100 and 1000 requests. We compare the static and the dynamic
auctions, as well as two pricing strategies: the one previously
mentioned and another where compensation is equal to the pure
transport cost of serving the requests belonging to the bundle,
estimated based on the distance traveled. We also run simulations
on an instance generated on Rio de Janeiro’s real road network,
considering a case study of a large company that operates in last-
mile delivery. We provide managerial insights, by comparing the
pricing strategies and the auction systems.

The rest of the paper is organized as follows: in Section 2 we
resent a brief literature review on crowdshipping. In Sections 3 and
we describe the setting of the problem and the solution approach,

espectively. In Section 5 we describe the auction systems. Section 6 is
evoted to computational results and we finally outline the conclusions
nd future research perspectives in Section 7.

. Literature review

Crowdshipping gained success not only in practical applications,
ut also in the scientific community, as academics have started to
tudy the problem from several perspectives. Le et al. (2019) reviewed
urrent practices, academic research, and several case studies rang-
ng from supply and demand management to operations scheduling,

hile Archetti and Bertazzi (2021) focused on routing problems with a

2 
rowdshipping. Pourrahmani and Jaller (2021) provided an overview
f the operational characteristics of crowdshippping platforms and a
omprehensive review of the literature, highlighting the challenges and
he research opportunities.

In the following we review some of the recent contributions in
rowdshipping, focusing on delivery applications. In particular, we
onsider the works addressing the three main problems arising when
mplementing a crowdshipping (or peer-to-peer logistics) platform:
atching, routing, and pricing problems.

.1. Matching in crowdshipping

In general, peer-to-peer logistics platforms use two different ap-
roaches to match suppliers (i.e., drivers) and requests (i.e., customers):
entralized or decentralized (see, Mofidi and Pazour (2019)). In the
entralized approach, decisions are taken by the company managing
he platform. The platform proposes a request to a supplier and the
upplier may accept or reject the proposed request. In the decentralized
pproach, the suppliers choose which requests they would like to serve.

Mofidi and Pazour (2019) proposed a hierarchical approach for the
olution of the matching problem in peer-to-peer logistics platform.
he platform first determines which requests should be recommended
o each supplier, considering the estimation of the supplier’s utility
ssociated with each request. This estimation is based on historical data
ollected by the platform. Then, the suppliers may select which requests
o fulfill. Each request can be offered to more than one supplier, and
ach supplier can accept or reject the offered request/s. The authors
ropose a bi-level approach for modeling the problem. Horner et al.
2021) extended the work of Mofidi and Pazour (2019) by considering

stochastic driver behavior and requests size larger than one. Aus-
eil et al. (2022) studied a dynamic matching, where the problem
s modeled as a sequential decision process, with stochastic supply
nd demand. They proposed a multiple scenario approach, where the
olutions of each scenario are combined using a consensus function to
erive the final decision. Li et al. (2019) studied a decentralized system
nd proposed a multi-agent reinforcement learning approach.

.2. Routing in crowdshipping

In this section we review the literature on contributions where
he aim is to determine the routes to serve the customers, either
erformed by ODs or by regular drivers. No decision is taken about
he compensation to be given to ODs, which is instead fixed, either
s a constant amount or as depending on the distance traveled. The
ontributions where the compensation is part of the decision process
re reviewed in the next section.

The literature related to crowdshipping in delivery operations is
uite recent. Following the classification proposed by Boysen et al.
2022), we consider three crowdshipping paradigms: customer-based,
driver-based, and employee-based.

The customer-based system mimics the Walmart concept, studied
by Archetti et al. (2016), who introduced the vehicle routing with ODs
(VRPOD). In this system, in-store customers may help the company
in delivering parcels to online customers. Several authors extended
the problem presented in Archetti et al. (2016), considering different
features (see, e.g., Macrina et al. (2017), and Dahle et al. (2019)). Dahle
et al. (2017) and Skålnes et al. (2020) considered an uncertain ODs’
availability. Dayarian and Savelsbergh (2020) proposed a dynamic and
stochastic routing problem in which not only ODs availability, but also
customers’ orders arrive over time.

The driver-based crowdshipping system is based on the Amazon Flex
oncept, studied by Macrina et al. (2020). In this case, ODs are not in-
tore customers, hence, they do not start their route from the depot
where parcels are picked up) but from different origins. Behrend et al.
2019) studied a system in which the supply and request of items,
s well as crowdshipper availability, are all announced on the same
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platform. Hence, they jointly addressed the assignment of supplies to
requests and the routing of crowdshippers. Several authors studied
different extensions of this problem considering stochastic/dynamic
information (see. e.g., Archetti et al. (2021), Yıldız (2021), Torres et al.
(2022b,a), and Di Puglia Pugliese et al. (2023)).

The last paradigm, named employee-based crowdshipping, was pro-
osed and studied for the first time by Boysen et al. (2022). In this case,
he employees drive their private cars after work to docking places for
icking up some shipments, then to the customers for delivery.

Focusing on the evaluation of the compensation for the ODs, it can
e noted that in all the contributions mentioned above the compensa-
ion scheme for the ODs is based on the detour or on a fixed amount
er parcel. A few other contributions have, however, studied different
ompensation schemes. Sampaio et al. (2020) proposed a driver-based
RPOD with pickup and delivery, time windows and transfers. Since

he time slot in which a driver is available could be shorter than the
ime required for the deliveries, the authors propose a more flexible
ervice, in which a parcel that must be delivered can be transported by
ore than one driver from its origin to its destination. The compen-

ation for the ODs is based on the time spent for the deliveries. Dai
nd Liu (2020) proposed a workforce capacity planning and alloca-
ion model for logistics systems where different types of workforces
re available: in-house drivers, full-time crowdsourced drivers, and
art-time crowdsourced drivers, which differ in their characteristics
e.g., compensation schemes and position). They considered a delivery
ost for the full-time crowdsourced drivers composed of two elements:
he fixed labor cost for the time periods they work and the number of
arcels assigned. The compensation scheme for the part-time crowd-
ourced drivers depends on the number of orders assigned and not on
he detour.

.3. Pricing in crowdshipping

Among the factors that influence the crowdshippers behavior, the
elivery compensation is a critical one. Some studies proposed different
ethods to determine the most attractive pricing strategy (see Le et al.

2019) for a review). Among the studies on routing with crowdship-
ing, only a few contributions focused on the price definition; indeed,
s mentioned above, the majority of the contributions focusing on the
outing problems with crowdshipping proposed a compensation based
n the distance traveled.

Few studies considered the problem of combining the decisions
bout matching, pricing, and routing. Recently, Triki (2021) introduced
he combinatorial auction technique within the VRPOD. In this frame-
ork, the ODs are the bidders that can submit any combination of
ifferent bids and they propose the corresponding price. The lower the
ubmitted price, the higher the probability to obtain it. The author
roposed a mathematical formulation as well as two heuristic ap-
roaches. In particular, a decomposition-based and a cost-comparison
pproach are proposed, in which the winning bid is selected based on
he comparison between the bid’s price and the cost of serving the
ame set of customers by the company’s vehicles. The computational
tudy highlighted the benefits, in terms of cost reduction, of using
ombinatorial auctions to assign the parcels to the ODs.

Mancini and Gansterer (2022) proposed a VRPOD with bundles.
n their framework, the company first focuses on the generation of
he bundles, and then bundles are offered to the ODs. In particular,
undles are generated following two strategies: a traditional clustering
pproach and a technique based on the generation of corridors. ODs
ake a bid for the bundles they consider as attractive. The bid depends

n the OD detour, flexibility (maximum acceptable detour), and will-
ngness to work (a parameter that can assume three values according to
hree levels of willingness: high, medium, and low). Bundles and bids
re inputs of a mathematical model that assigns them to the ODs and
reates also the routes for the regular drivers.
3 
Table 1
Literature review: pricing in crowdshipping.

Reference Routing ODs Bundles
compensation

Triki (2021) Yes Bids-based: random bids Random
Mancini and Gansterer (2022) Yes Bids-based: ODs destination, Clustering

flexibility, willingness
Le et al. (2021) No Detour No

This work No Tour, willingness Route-based

Le et al. (2021) proposed a framework that integrates the match-
ing of requests and offers, together with pricing and compensation
schemes. They first generated all the admissible matches couriers-
requests, then apply the pricing strategies to determine the compen-
sation. The authors evaluated four pricing and compensation schemes
based on flat versus individual scheme settings. In the flat setting, the
price and compensation are the same for all requests and delivery
trips, while in the individual one, they are applied to each request and
delivery trip, separately.

In the current paper, we focus on the bundling and the pricing
problems. Similarly to Triki (2021), we propose an auction strategy
to assign parcels to ODs. However, our framework differs significantly
from the one proposed in Triki (2021). Indeed, in contrast to the
latter one, where bidders propose and submit bids, in our approach
the platform constructs the bundles and determines the compensations.
Bundles are then offered to ODs, who decide whether to accept them
or not. Our work also shares some similarities with Le et al. (2021),
but the approach is different, as they do not consider an auction
system. Finally, we differ also with respect to the work of Mancini
and Gansterer (2022). First, we consider a platform where deliveries
are performed through crowdshipping only. In Mancini and Gansterer
(2022) there are both regular and ODs. They first focus on the bundles
generation and assignment, and then the remaining customers are
served by the company’s drivers. Second, the definition of the com-
pensation for the bundles is also different. In Mancini and Gansterer
(2022) ODs make bids based on detour, flexibility, and a willingness to
work, which is represented as a parameter. In our work, we assume
to have no information about ODs destination, hence, the company
evaluates a starting compensation based on the route that has to be
traveled and on the willingness-to-serve function. Our willingness-to-serve
function, differently from Mancini and Gansterer (2022), is represented
as a random variable depending on the compensation, and not as a pa-
rameter multiplying the detour. In addition, in Mancini and Gansterer
(2022) the authors propose a mathematical model, in which both the
bundles and the bids offered by the ODs are input data. Then, the
mathematical model finds the best assignment. Instead, in our work we
propose a different strategy, where bundles are assigned to ODs through
an auction. A similar strategy is proposed in Gansterer and Hartl (2018)
and Gansterer et al. (2020), where a bundle generation problem in a
collaborative transportation system is studied. However, the problem
setting is completely different given that it arises in a collaboration
framework where carriers can exchange transportation requests among
each other, and decide which requests should be inserted in the auction
pool. Then, the auctioneer generates the bundles of requests and offers
them to the carriers. Carriers give their bids for the offered bundles,
while the auctioneer allocates bundles to carriers based on their bids,
hence the profits are distributed among the carriers.

In Table 1 we summarize the main features of the contributions
revised in this section and compare them with the features of the system
studied in the current paper.

3. Problem description and formulation

In this paper, we consider a peer-to-peer logistic platform. Fig. 1
provides a graphical illustration of how the platform works. Specifi-

cally, the platform receives the requests from the customers. Requests
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Fig. 1. Representation of the peer-to-peer logistic platform.
are then grouped into bundles and a compensation is associated with
each bundle. Afterward, bundles are offered to ODs through an auction
system. If a bundle is accepted by an OD, the OD receives all informa-
tion needed to perform the delivery, namely the set of customers with
their locations, the route, and the compensation. If no OD accepts to
deliver a bundle, the delivery is performed by a third-party delivery
company.

In particular, we suppose that customers place their requests the day
before the planning. Customers may choose the time window in which
they are available to receive their parcel, i.e., morning or afternoon,
and must indicate the delivery location. Once the platform collects all
customers’ orders, the planning phase starts. The company faces two
primary decisions: first, it has to determine how the requests should be
clustered in bundles. Second, it has to decide what is the compensation
associated with each bundle. Once bundles and compensations are set,
the corresponding information is posted on the platform. We suppose
an infinite population of ODs is available. We are aware that this is
a strong assumption, which limits the applicability of the results of
our study. However, our results can still serve as a basis for scenarios
where this assumption is removed. Each OD accesses the platform
and gives the availability for delivering a bundle at the corresponding
compensation. Each bundle is assigned to the first OD who accepts to
deliver it through an auction system. The compensation is paid for the
delivery of all parcels in the bundle. If some bundles are not accepted
by any ODs, then the corresponding parcels are delivered by a more
expensive third-party delivery company. All delivery routes start from
a common depot, where parcels are picked up.

We assume that the probability that an OD accepts to deliver parcels
depends on the compensation offered. Each OD accepts to deliver a
bundle according to her/his willingness-to-serve function, which corre-
sponds to a random variable measuring the probability of acceptance on
the basis of the compensation. In addition, we assume that ODs are not
willing to make long detours to serve the parcels included in a bundle.
Thus we limit the length of the route associated with each bundle to
a maximum value 𝑇̄ . The objective of the company is to define the
bundles of requests, and the corresponding compensation, in such a
way as to minimize the expected total cost, which is given by the sum
of expected compensation for ODs plus the expected costs associated
with the third-party delivery service.

The problem can be formulated as a non-linear stochastic program-
ming problem as follows. Let 𝑃 be the set of parcels to be served and
𝐵 be the set of all bundles that could be offered to ODs (thus, bundles
associated with a route whose length does not exceed 𝑇̄ ). Each bundle
is associated with a binary variable 𝑦𝑏 which is equal to 1 in case the
bundle is offered to ODs, 0 otherwise. Also, parameter 𝑎𝑝𝑏 is equal to 1
in case parcel 𝑝 is included in bundle 𝑏. Each bundle is also associated
4 
with a second decision variable 𝑐𝑏 corresponding to the compensation
offered. The problem can be modeled as:

𝑚𝑖𝑛
∑

𝑏∈𝐵
E(𝑐𝑏)𝑦𝑏 (1a)

𝑠.𝑡.
∑

𝑏∈𝐵
𝑎𝑝𝑏𝑦𝑏 = 1, 𝑝 ∈ 𝑃 (1b)

𝑐𝑏 ≥ 0, 𝑏 ∈ 𝐵 (1c)

𝑦𝑏 ∈ {0, 1}, 𝑏 ∈ 𝐵 (1d)

where E(𝑐𝑏) in (1a) denotes the expected cost of bundle 𝑏 when com-
pensation 𝑐𝑏 is offered, given by the sum of 𝑐𝑏 times the probability
of acceptance and the cost of the third-party delivery service times
the probability of non-acceptance. Constraints (1b) guarantee that each
parcel is included in one bundle only. Constraints (1c) and (1d) define
the domain of the variables.

The drawback of formulation (1) is that the set 𝐵 is typically
composed of exponentially many variables, namely, one variable for
each feasible bundle. Thus, a branch-and-price approach is needed,
where the relaxation of each node of the branch-and-bound tree is
solved through column generation.

Given the general definition of the problem described above, we
now present the specific assumptions we made in our study, based on
which we propose the solution methodology illustrated in Section 4.

1. The probability that an OD accepts to serve a bundle is increas-
ing with respect to the compensation offered.

2. ODs are identical, i.e., they have the same willingness-to-serve
function. Thus, we are not interested in knowing which OD
accepts the bundle, but simply in knowing whether there is at
least one OD who accepts.

3. There is an infinite population of ODs, so the acceptance of
a bundle has no impact on the probability of accepting the
remaining bundles. As a consequence, ODs can be aggregated
to determine the distribution function measuring the probability
that at least one OD will accept the bundle. Note that, despite
seeming simplistic, this assumption is in line with current trends
in crowdshipping, where the explosion of crowdsourced drivers
availability is experienced (see https://www.cnbc.com/2020/
02/09/amazon-flex-drivers-use-bots-to-get-more-work.html).
This phenomenon also leads to a homogeneous behavior related
to the effort of acquiring as many deliveries services as pos-
sible, which corroborates assumption 2 on top, related to the
homogeneity of ODs.

https://www.cnbc.com/2020/02/09/amazon-flex-drivers-use-bots-to-get-more-work.html
https://www.cnbc.com/2020/02/09/amazon-flex-drivers-use-bots-to-get-more-work.html
https://www.cnbc.com/2020/02/09/amazon-flex-drivers-use-bots-to-get-more-work.html
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As a consequence of the above assumptions, and in particular of
assumption 3, each bundle can be considered separately, as the price
and the acceptance of a given bundle have no impact on the remaining
bundles. This means that objective function (1a) is separable by bun-
dles. Then, the expected cost associated with offering compensation 𝑐𝑏
for bundle 𝑏 is given by:

𝑐𝑏𝑝𝑟𝑏 + 𝐶𝑏(1 − 𝑝𝑟𝑏) (2)

where 𝑝𝑟𝑏 is the probability that an OD accepts to serve bundle 𝑏
with compensation 𝑐𝑏 (given by the willingness-to-serve function) and
𝐶𝑏 is the cost (deterministic) of assigning all parcels in the bundle to a
third-party delivery company.

In the following we present the solution approach we propose to
solve the problem under the assumptions mentioned above. It corre-
sponds to solving sequentially two phases aimed at determining:

1. How should the parcels be clustered into bundles?
2. What should be the compensation offered for each bundle?

4. Solution approach

The solution approach is composed of two main phases:

1. Bundles generation.
2. Bundles pricing.

The two phases are described in Sections 4.1 and 4.2, respectively.
Bundles are constructed on the basis of spatio/temporal proximity, to
make them attractive for ODs. Then, the compensation associated with
each of them is calculated and finally, they are offered to ODs, through
an auction system.

4.1. Bundles generation

In this section, we present the procedure that constructs the bundles
to be offered to the ODs.

Given the assumption mentioned in Section 3, i.e., that ODs are
available for a maximum time 𝑇̄ , then bundles are constructed in such
a way that the route to serve all parcels in the bundle is no longer than
𝑇̄ .

To construct the routes, we use a greedy algorithm that works as
follows. Starting from the depot 𝑠, it first adds the farthest customer
(see, e.g., Caric and Gold (2008), Bräysy and Gendreau (2001) and
Bräysy (2003)). Then, during each subsequent iteration, it adds to the
route the first feasible (in terms of time windows) and nearest customer,
until the maximum routing time 𝑇̄ is reached. The procedure is iterated
until all customers have been processed, i.e., they have been inserted
in a bundle. Algorithm 1 provides a sketch of the approach, where 𝑃 is
the set of customers (or parcels). The customers belonging to the same
route compose a bundle.

4.2. Bundles pricing

In this section, we describe how we determine the compensation
associated with each bundle. A bundle is composed of a set of parcels
that should be delivered by an OD.

The price associated with a bundle varies within a range defined by
a minimum and a maximum compensation offered to ODs to deliver
the parcels included. To fix this range, we consider the cost of the route
visiting all customers in the bundle, starting from the depot. Then,
we define a compensation factor that multiplies this cost to find the
minimum and the maximum value of the range. The compensation
offered is then determined within this range by taking into account the
OD willingness-to-serve function.

We define as 𝑑𝑏 the cost of the route associated with bundle 𝑏,
calculated as described above (by the greedy algorithm). Let 𝑐′ be the
𝑏 E
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Algorithm 1: Greedy [𝑃 , 𝑠, 𝑇̄ ]
1 𝑠 ← depot;
2 while P is not empty do
3 initialize a new route 𝑟;
4 insert 𝑠 in 𝑟;
5 find the farthest customer 𝑖 ∈ 𝑃 from 𝑠;
6 insert 𝑖 in 𝑟;
7 remove 𝑖 from 𝑃 ;
8 while the stopping criterion (𝑇̄ ) is not met do
9 find the nearest customer 𝑖′ ∈ 𝑃 to 𝑖;
10 insert 𝑖′ in 𝑟;
11 remove 𝑖′ from 𝑃 ;
12 𝑖 ← 𝑖′;
13 insert the route 𝑟 in the bundle set;

maximum compensation that is offered to an OD to serve parcels in
bundle 𝑏 and 𝐶𝑏 be the price paid to the third-party delivery company
to deliver all parcels in 𝑏. We need to determine, for each bundle 𝑏 ∈ 𝐵,
the compensation to offer to the ODs such as to minimize the expected
total cost, which includes the compensation paid to ODs in case of
acceptance and the price paid to the third-party delivery company in
case of non-acceptance.

The expected cost is calculated with respect to the ODs willingness-
o-serve function. In practice, the company does not know what com-
ensation an OD will accept for delivering bundle 𝑖 (i.e., all parcels in
he bundle). Thus, this willingness-to-serve function is represented as a
andom variable that gives the probability of acceptance with respect
o the compensation offered. This function can be estimated through
he analysis of historical data. Note that, because of the assumption
bove, all ODs are associated with the same willingness-to-serve function.
f the compensation offered by the company is greater than or equal
o the willingness-to-serve value, then the OD will accept to serve the
undle, otherwise, she/he will not. We assume that the willingness-to-
erve function follows a Gaussian distribution  (𝜇𝑏, 𝜎𝑏) (note that the
ollowing model remains valid for any log-concave function), where 𝜇𝑏
s the expected value of the willingness-to-serve and 𝜎𝑏 is the standard
eviation. In the following, we denote as 𝑓 (𝑏) the willingness-to-serve
unction associated with bundle 𝑏 and 𝐹 (𝑏) the corresponding cumula-
ive function (corresponding to 𝑝𝑟𝑏 in (2)). A minimum compensation
𝑏 is defined, i.e., the compensation offered to ODs cannot be lower
han 𝛽𝑏. We fix 𝛽𝑏 = 𝑑𝑏. This is reasonable as the compensation
hould at least cover the cost of the corresponding route. The maximum
ompensation 𝑐′𝑏 is instead fixed to 𝛽𝑏 + 𝛥𝑏, where 𝛥𝑏 is the maximum
rice, in addition to route cost, that the company is willing to pay
or ODs’ compensation. If no OD accepts the bundle, the price 𝑝𝑏 =
𝛽𝑏 + 𝛥𝑏) ∗ 𝜁𝑏 is paid to the third-party delivery company, with 𝜁𝑏 > 1.

The following analysis is based on determining an analytical for-
ula for the optimal compensation 𝜂𝑏 that should be offered for each

undle 𝑏, i.e., the compensation that minimizes the expected cost. We
ote that a similar approach has been used in Yildiz and Savelsbergh
2019). However, the setting of the problem in the latter paper is
ifferent. Specifically, in Yildiz and Savelsbergh (2019), the authors
onsider a setting where the compensation is fixed at a flat rate and
Ds are associated with a willingness-to-wait function, i.e., a function

hat determines how long they are willing to wait before being offered
service (and thus obtaining the flat rate compensation). The authors

hen make a theoretical study to determine the best radius for service
ssignment, taking into account the willingness-to-wait, and they derive
n analytical formula, as we do in the following for determining the
ptimal compensation.

Let us call 𝜂𝑏 the compensation offered to serve bundle 𝑏. Given the
ssumptions above, the expected cost for the company associated with
undle 𝑏 is:
(𝜂𝑏) = 𝜂𝑏𝐹 (𝜂𝑏) + (1 − 𝐹 (𝜂𝑏))((𝛽𝑏 + 𝛥𝑏) ∗ 𝜁𝑏). (3)
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Thus, the company should aim to determine:

min
𝜂𝑏

{E(𝜂𝑏)|𝛽𝑏 ≤ 𝜂𝑏 ≤ 𝛽𝑏 + 𝛥𝑏}. (4)

Note that in (3), the first term, 𝜂𝑏𝐹 (𝜂𝑏), is monotonically increasing
in 𝜂𝑏 while the second term, (1 −𝐹 (𝜂𝑏))((𝛽𝑏 +𝛥𝑏) ∗ 𝜁𝑏), is monotonically
decreasing. Thus, we might expect some ‘regularity’ in the shape of
function (3). This is indeed confirmed in the following proposition.

Proposition 1. In the interval 𝛽𝑏 ≤ 𝜂𝑏 ≤ 𝛽𝑏 + 𝛥𝑏, function (3) is first
convex and then concave. Thus, it changes convexity just once.

Proof. The first derivative of (3) is

E′(𝜂𝑏) = 𝜂𝑏𝑓 (𝜂𝑏) + 𝐹 (𝜂𝑏) − ((𝛽𝑏 + 𝛥𝑏) ∗ 𝜁𝑏)𝑓 (𝜂𝑏)

= 𝐹 (𝜂𝑏) + 𝑓 (𝜂𝑏)(𝜂𝑏 − (𝛽𝑏 + 𝛥𝑏) ∗ 𝜁𝑏)

and the second derivative is

E′′(𝜂𝑏) = 2𝑓 (𝜂𝑏) + 𝑓 ′(𝜂𝑏)(𝜂𝑏 − (𝛽𝑏 + 𝛥𝑏) ∗ 𝜁𝑏)

= 𝑓 (𝜂𝑏)(2 −
𝜂𝑏 − 𝜇𝑏

𝜎𝑏
(𝜂𝑏 − (𝛽𝑏 + 𝛥𝑏) ∗ 𝜁𝑏)). (5)

As 𝑓 (𝜂𝑏) > 0 for each 𝜂𝑏, the sign of E′′(𝜂𝑏) depends on the
second term of the product only. Now, 2 − 𝜂𝑏−𝜇𝑏

𝜎𝑏
(𝜂𝑏 − (𝛽𝑏 + 𝛥𝑏) ∗ 𝜁𝑏)

is quadratic in 𝜂𝑏 and its positive for −𝜇𝑏−(𝛽𝑏+𝛥𝑏)∗𝜁𝑏−
√

(𝜇𝑏+(𝛽𝑏+𝛥𝑏)∗𝜁𝑏)2+8𝜎
2

≤ 𝜂𝑏 ≤
−𝜇𝑏−(𝛽𝑏+𝛥𝑏)∗𝜁𝑏+

√

(𝜇𝑏+(𝛽𝑏+𝛥𝑏)∗𝜁𝑏)2+8𝜎
2 . However,

−𝜇𝑏−(𝛽𝑏+𝛥𝑏)∗𝜁𝑏−
√

(𝜇𝑏+(𝛽𝑏+𝛥𝑏)∗𝜁𝑏)2+8𝜎
2 < 𝛽𝑏. Thus, in the interval considered,

(𝜂𝑏) is convex in [𝛽𝑏,min{𝛽𝑏 + 𝛥𝑏,
−𝜇𝑏−(𝛽𝑏+𝛥𝑏)∗𝜁𝑏+

√

(−𝜇𝑏−(𝛽𝑏+𝛥𝑏)∗𝜁𝑏)2+8𝜎
2 }]

and concave in [min{𝛽𝑏 + 𝛥𝑏,
−𝜇𝑏−(𝛽𝑏+𝛥𝑏)∗𝜁𝑏+

√

(−𝜇𝑏−(𝛽𝑏+𝛥𝑏)∗𝜁𝑏)2+8𝜎
2 }, 𝛽𝑏 +

𝛥𝑏]. □

This helps in searching for the value of 𝜂𝑏 providing the minimum
expected cost in (4). Indeed, due to Proposition 1, this value is either at
interval limits 𝛽𝑏 and 𝛽𝑏+𝛥𝑏 or at its unique local minimum in between.

In order to determine the value 𝜂𝑏 minimizing the expected cost (4),
we proceed through a bisection method working as follows. We start
by fixing the value of 𝜂𝑏 corresponding to 𝜇𝑏. We calculate the cor-
responding value of the cumulative distribution function 𝐹 (𝜂𝑏). Then,

e search for the minimum expected value of (4) by moving on the
eft and on the right on the cumulative function with a step equal to 𝜔.
pecifically, we calculate the cost (4) associated with the corresponding
alue of the cumulative function. We terminate once we determine a
ocal minimum, which, thanks to Proposition 1, approximates the value
f the minimum of the function (4). A graphical example is given in
ig. 2 where the cumulative distribution function 𝐹 (𝜂𝑏) is represented.
o find the minimum expected value of (4), we first start by fixing
𝑏 = 𝜇𝑏. We then move on the left and the right on the 𝐹 (𝜂𝑏) function

by using a step equal to 𝜔. We find the associated prices, i.e., 𝜂𝑙𝑏 and
𝑟
𝑏. Then, we calculate the value of 𝐸(𝜂𝑙𝑏) and 𝐸(𝜂𝑟𝑏), respectively. In the

example, we assume that 𝐸(𝜂𝑙𝑏) > 𝐸(𝜇𝑏) hence, we stop the search on
the left side. On the right side instead, we assume to have 𝐸(𝜂𝑟𝑏) < 𝐸(𝜇𝑏)
hence, we continue the search on 𝐹 (𝜂𝑏) with a step equal to 2𝜔. We
calculate the corresponding price 𝜂2𝑟𝑏 and then 𝐸(𝜂2𝑟𝑏 ), we observe that
𝐸(𝜂2𝑟𝑏 ) > 𝐸(𝜂𝑟𝑏), hence the search ends and the minimum value is set to
𝜂𝑟𝑏.

5. Auction systems

Once all bundles are priced according to the procedure described
above, they are offered to ODs through the dedicated platform. In
practice, the company offers the bundles on the platform, accessed
by all ODs, where each bundle is associated with the corresponding
compensation. When the bundles are available on the platform, the

auctions starts and bundles are offered to ODs. All ODs have access
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to all bundles, meaning that they can see their composition and com-
pensation. Then, for each bundle, the first OD who accepts it gets the
corresponding compensation (once the service is performed). When
the auction ends, the company determines which bundles have been
accepted by ODs. The remaining will be served by the third-party
delivery company. Given that each bundle is independent of the others
(due to the assumptions described above), we now describe the auction
system for each bundle individually.

We propose two auction mechanisms. The first one is static, i.e., the
price is defined initially and the auction is composed of a single round.
This means that the system works exactly as described above: the
auction starts, the bundles are offered with the corresponding compen-
sation, and when the auction terminates the company determines which
ones have been accepted. For the accepted bundles, the corresponding
compensation is paid to the ODs who accepted them once the service
is completed. For the non-accepted bundles, the corresponding parcels
are served by the third-party delivery company.

The second auction is a dynamic auction, specifically, an ascending-
price auction. In this case, the auction is composed of multiple runs
where, in each run, all bundles that have not been accepted in previous
runs (thus, the entire set of bundles in the first run) are offered.
Then, the accepted bundles are assigned to the corresponding ODs and
removed from the auction. For the remaining bundles, the compensa-
tion is increased and they are offered again on the next run. When
the auction reaches the last run, all parcels associated with bundles
that have not been accepted are assigned to the third-party delivery
company.

Static auction. The value of 𝜂𝑏 that minimizes the expected cost is
evaluated using the bisection method described in Section 4.2. The
static auction is a single round of bidding at this value of compensation.

Dynamic auction. Let us assume that the company opens the bundles’
auction on day 𝑑, say from 6 to 8 pm, for the bundles that should be
served on day 𝑑 + 1. The company starts with an initial estimation of
the ODs willingness-to-serve function as described above and determines
the initial compensation through the bisection method, as above in the
static auction. The idea of the dynamic auction is to have multiple
runs of offers so that, in case the bundle is not accepted in a run,
the company can react accordingly for the next run, for example by
increasing the compensation offered. The auction starts in a first run
by offering the same compensation determined in the static auction
(which can be seen as a dynamic auction with one run only). The
auction repeats at every runs on the bundles that were not assigned
in the former runs.

There might be two reasons why the bundle 𝑏 has not yet been
accepted (by any OD) at time 𝜏𝑡, where 𝑡 is the 𝑡th run:

1. the compensation 𝜂𝑏 is too low;
2. the distribution function 𝑓 (𝑏) has been badly estimated.

As we assume to have no updated information to correct a bad
estimation of the function 𝑓 (𝑏), we focus on a strategy based on
updating the value of 𝜂𝑏. Specifically, let 𝜂𝑡𝑏 be the compensation
offered at run 𝑡. If the bundle 𝑏 is not assigned at 𝑡 < 𝐾, then the
corresponding compensation in the following run 𝜂𝑡+1𝑏 is increased by
a certain percentage. In case 𝜂𝑡+1𝑏 ≥ 𝛽𝑏 + 𝛥𝑏, then its value is set to
𝜂𝑡+1𝑏 = 𝛽𝑏 + 𝛥𝑏. This procedure is repeated until either the bundle is
assigned or the auction terminates. If the auction terminates and bundle
𝑏 is not assigned, the parcels included are assigned to the third-party
delivery company at a cost equal to (𝛽𝑏 + 𝛥𝑏) ∗ 𝜁𝑏.

6. Computational results

In this section, we discuss the simulation experiments we performed
in order to evaluate the pricing strategy and the auction mechanisms

presented above. The main scope of this computational study is to
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Fig. 2. Example of the bisection method used to find the minimum value of Eq. (4).
compare the following four strategies, in which we consider different
approaches to calculate 𝜂, i.e., the compensation offered to the OD, and
the two auction systems presented in Section 5:

1. BasePriceStat : the value of 𝜂 is equal to 𝛽, that is the minimum
compensation that can be offered, through a static auction.

2. OptPriceStat : the value of 𝜂 is determined according to (4), that
is the compensation that minimizes the expected cost, through a
static auction.

3. BasePriceDyn: the value of 𝜂 is equal to 𝛽 through a dynamic
auction.

4. OptPriceDyn: the value of 𝜂 is determined according to (4)
through a dynamic auction.

The rest of the section is organized as follows. We first describe in
Section 6.1 the settings of the simulation environment. Then, we focus
on the analysis of the static and dynamic auctions in Sections 6.2 and
6.3, respectively. The two auction systems are compared in Section 6.4.
In Section 6.5 we present a case study based on a real network.

6.1. Simulation environment and parameters setting

We generated our instances starting from Solomon’s benchmark
set of VRPTW instances (see Solomon (1987)). We considered two
instances, namely R101 and RC101, with 100 customers which are ran-
domly distributed in R101 and partially clustered in RC101. This allows
us to verify if and how the results are affected by customers’ locations.
Then, we generated two additional instances with 1000 customers, by
adding 900 random customers to R101 and RC101, respectively, in the
same geometric area, obtaining more dense instances, referred to as
‘‘R1001’’ and ‘‘RC1001’’. We randomly generated the time windows
for the additional customers in R1001 and RC1001, considering the
time required to reach the customer from the depot, thus guaranteeing
feasibility. We considered a planning horizon [0, 𝑇𝑚𝑎𝑥], corresponding to
a working shift. Then, we divided it into 𝑚 identical slots of duration
equal to 𝑇𝑚𝑎𝑥∕𝑚. We set 𝑚 = 4 in the experiments. This setting fits with
the case where the horizon represents either the morning (i.e., 8:00
am–12:00 am) or the afternoon (i.e., 2:00 pm–6:00 pm) delivery shift,
in which each slot is one hour long. In the considered instances, 𝑇𝑚𝑎𝑥
is equal to 230 and 240 for R101 and RC101, respectively. The values
of 𝑇𝑚𝑎𝑥 were kept unchanged for the generated instances R1001 and
RC1001. Each OD is available for two consecutive time slots, i.e., 𝑇̄ =
𝑇𝑚𝑎𝑥∕2. This is in line with practical applications of crowdshipping
where drivers are available for short time slots and thus can deliver
a reduced number of parcels.
7 
Pricing parameters. We fixed the value of the minimum compensation
for each bundle 𝛽𝑏 equal to the cost of the associated greedy feasible
route. The maximum cost 𝛽𝑏+𝛥𝑏 is fixed to 3 ∗ 𝛽𝑏. The price 𝐶𝑏 paid to
the third-party delivery company is set to (𝛽𝑏 + 𝛥𝑏) ∗ 𝜁𝑏, where 𝜁𝑏 = 2.
We carried out a first set of simulations in which the expected value 𝜇𝑏
of 𝑓 (𝑖) is centered in the interval associated with [𝛽𝑏, 𝛽𝑏 +𝛥𝑏]. Then, we
considered three confidence intervals corresponding to the probabilities
associated with 𝛽𝑏 and 𝛽𝑏 + 𝛥𝑏, respectively. In particular, the three
considered intervals are: [30%− 70%], [15%− 85%] and [5%− 95%]. The
idea is to assess the effect of a different variance of the willingness-to-
serve function 𝑓 (𝑏): the first interval corresponds to a higher variance
while the last one is associated with the smallest variance. In the rest
of the paper we will indicate these three confidence intervals as 𝜎𝑙𝑜𝑤,
𝜎𝑚𝑒𝑑 and 𝜎ℎ𝑖𝑔ℎ, respectively. Note that in the first set of simulations the
value of 𝜇𝑏 is equal to ((𝛽𝑏 + 𝛥) + 𝛽𝑏)∕2, as it is in the center of the
interval [𝛽𝑏, 𝛽𝑏 + 𝛥𝑏]. We named this value of 𝜇𝑏 as 𝜇𝑚𝑒𝑑 .

Fig. 3 represents the shape of the distribution when varying the
variance 𝜎𝑏. Looking at the figure we may observe that the higher the
variance, the broader and lower the peak. Hence, a higher variance
indicates that the points are more spread out from the mean, while
when it is lower they are closer to it. Focusing on our setting, having
a higher variance corresponds to a higher variability in the ODs’
behavior, whereas a lower variance indicates a more homogeneous
behavior.

We also conducted two additional sets of simulations where we
varied the value of 𝜇𝑏. Specifically, we set:

1. 𝜇𝑏 = 𝜇𝑚𝑒𝑑 +(20%𝜇𝑚𝑒𝑑 ): the value of 𝜇𝑏 is shifted on the right. We
denoted it as 𝜇ℎ𝑖𝑔ℎ;

2. 𝜇𝑏 = 𝜇𝑚𝑒𝑑 − (20%𝜇𝑚𝑒𝑑 ): the value of 𝜇𝑏 is shifted on the left. We
denoted it as 𝜇𝑙𝑜𝑤.

As shown in Fig. 4, which represents the Gaussian distribution
curve when varying the value of 𝜇𝑏, shifting 𝜇𝑏 to the left (𝜇𝑙𝑜𝑤)
and to the right (𝜇ℎ𝑖𝑔ℎ) allows to represent different behaviors of
the ODs’ willingness-to-serve. Due to its symmetrical and bell-shaped
nature, the probability of a Gaussian distribution has a maximum at
its mean. Hence, when shifting 𝜇𝑏 to 𝜇𝑙𝑜𝑤, the probability that an OD
accepts to deliver a bundle at a lower compensation is higher; on the
contrary, when shifting to 𝜇ℎ𝑖𝑔ℎ, the ODs accept a delivery when the
compensation offered is higher.

Note that, for these two additional sets of simulations, we kept
the same three values of the variance of 𝑓 (𝑏). As a consequence, the
confidence intervals have the same width as above but are associated
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Fig. 3. Representation of the curves associated with the ODs willingness-to-serve function when varying the variance 𝜎𝑏. In particular, 𝜎𝑙𝑜𝑤 < 𝜎𝑚𝑒𝑑 < 𝜎ℎ𝑖𝑔ℎ.
Fig. 4. Representation of the curves associated with the ODs willingness-to-serve function when shifting 𝜇𝑏 to the left and right.
with different lower and upper limits. For the sake of completeness,
we report a graphical representation of the nine settings we have
considered, depicted in Fig. 5, obtained by combining the different
values of 𝜇𝑏 and 𝜎𝑏.

As stated at the beginning of this section, we compare two pricing
strategies that differ on how the value of the compensation 𝜂𝑏 is set.
In the first one, we set 𝜂𝑏 = 𝛽𝑏, while in the second 𝜂𝑏 corresponds
to the value that minimizes the expected cost (4) and is calculated as
described in Section 5. Thus, we compare a strategy in which we reduce
the compensation value to the minimum (𝜂𝑏 = 𝛽𝑏) but we increase the
probability of not assigning the bundle, with the strategy in which we
minimize the expected cost through (4). In the latter case, the value of
parameter 𝜔 used in the bisection method is fixed at 0.005. Note that
we made preliminary tests by using a step equal to 0.05. The results
were similar but less accurate. By setting the step equal to 0.005 the
simulation is still fast (always runs in milliseconds), so we decided to
keep the latter to gain accuracy.

As for the dynamic auction, the starting value of the compensation
𝜂𝑏 is determined with either of the two pricing strategies mentioned
above (thus giving rise to two dynamic pricing auctions).

Static auction. We simulated 5000 realizations of the willingness-to-serve
value for each bundle, according to the Gaussian distribution. If the
realization value is equal to or lower than the value of 𝜂𝑏, the bundle is
assigned to the OD, otherwise, the bundle is not assigned and its cost
is equal to (𝛽 + 𝛥 ) ∗ 𝜁 .
𝑏 𝑏 𝑏
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Dynamic auction. The setting is the same as for the static auction. In
addition, in the dynamic auction, up to 8 runs are performed. Thus, in
each run, either the bundle is assigned, or the compensation is updated
according to the rule: 𝜂𝑡𝑏 = 𝜂0𝑏 ∗ (1 + 0.05𝑡), where 𝜂0𝑏 is the initial
compensation. Thus, the compensation is increased by 5% of the initial
compensation in each run. If after 8 runs the bundle is still unassigned,
then the cost (𝛽𝑏 + 𝛥𝑏) ∗ 𝜁𝑏 is paid.

For ease of reading, in the following we remove index 𝑏 from all
notations as we present aggregated results over all bundles.

In the next sections, we analyze the results obtained by the static
and dynamic auctions, respectively. In both cases, bundles are gen-
erated according to the approach described in Section 4.1. In the
following, we concentrate on the KPI for both auctions. Some statistics
about the generated bundles can be found in Appendix A.1, whereas
Table 2 reports the parameter settings.

6.2. Static auction analysis

In this section we present the results associated with static auction
system, considering the two pricing strategies, namely, BasePriceStat
and OptPriceStat.

We focus the analysis on the instances with 1000 requests only,
as the results for instances with 100 requests are similar. We firstly
analyze the percentage of unassigned bundles, on the basis of the
values of 𝜇 and 𝜎, whose trend, for both strategies, is depicted in
Fig. 6. Focusing on Fig. 6(a), which depicts the results obtained using
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Fig. 5. Representation of the shapes of the ODs willingness-to-serve function considered in the computational study.
Table 2
Parameters setting.

Pricing parameters

Parameter Value

𝛽𝑏 Greedy cost
(Appendix A.1, Table A.1)

𝛥𝑏 2*𝛽𝑏
𝜁𝑏 2

Bisection method

Parameter Value

𝜔 0.005

Static auction

Parameter Value

#𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 5000

Dynamic auction

Parameter Value

#𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 5000
#𝑟𝑢𝑛𝑠 8
𝜂𝑡𝑏 𝜂0𝑏 ∗ (1 + 0.05𝑡)

BasePriceStat, we can observe that moving 𝜇 from left to right increases
the percentage of unassigned bundles, and the same happens when
decreasing the variance. This is easily explained by the fact that, in
both cases, the cumulative probability associated with the value of
𝛽 (which corresponds to the compensation offered in BasePriceStat)
decreases. Also, we notice that the percentage of unassigned bundles
is rather high. This is even more evident when comparing Figs. 6(a)
to 6(b), which depicts the results obtained using OptPriceStat. Focusing
on Fig. 6(b), we can observe that the percentage remains stable over
the different values of 𝜇 and changes according to 𝜎, with an average
of 41%, 30% and 42% for 𝜎ℎ𝑖𝑔ℎ, 𝜎𝑚𝑒𝑑 , and 𝜎𝑙𝑜𝑤, respectively. This is
consistent with what is reported in Tables A.2 and A.3 of Appendix A.2
concerning the cumulative probability associated with different values
of 𝜂. Thus, we can conclude that OptPriceStat is more stable than
BasePriceStat with respect to ODs’ behavior in terms of unassigned
bundles.
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Table 3
Comparison between BasePriceStat and OptPriceStat.
𝜇 𝜎 𝐺𝑎𝑝𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 (%) 𝐺𝑎𝑝𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 (%)

𝜎ℎ𝑖𝑔ℎ 44.8% 5.0%
𝜇𝑙𝑜𝑤 𝜎𝑚𝑒𝑑 121.7% 27.6%

𝜎𝑙𝑜𝑤 78.9% 34.8%

𝜎ℎ𝑖𝑔ℎ 68.0% 15.6%
𝜇𝑚𝑒𝑑 𝜎𝑚𝑒𝑑 180.1% 47.6%

𝜎𝑙𝑜𝑤 123.3% 52.7%

𝜎ℎ𝑖𝑔ℎ 113.9% 35.1%
𝜇ℎ𝑖𝑔ℎ 𝜎𝑚𝑒𝑑 226.7% 61.1%

𝜎𝑙𝑜𝑤 135.2% 51.1%

Then, we focus on the auction cost. As done for the unassigned
bundles, Fig. 7 depicts the trend by varying 𝜇 and 𝜎. For 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡,
focusing on Fig. 7(a), we see that the observed trend is similar to
that observed for the unassigned bundles, i.e., the cost increases with
respect to 𝜇 and decreases with respect to 𝜎. This is due to the fact that
the number of unassigned bundles increases and, thus, the cost asso-
ciated with paying the third-party delivery company increases as well.
𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡 (Fig. 7(b)) is instead more stable and, most importantly,
the cost is always lower than 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡.

We now compare the two strategies in more detail by measuring
the gap between the solutions obtained, in terms of both unassigned
bundles and total auction cost. Results are summarized in Table 3,
which reports the following two statistics, in percentage:

• 𝐺𝑎𝑝𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 measured as 𝑈 (𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡)−𝑈 (𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡)
𝑈 (𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡) , where

𝑈 (⋅) is the number of unassigned bundles for strategy ⋅,
• 𝐺𝑎𝑝𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 measured as 𝐴𝐶(𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡)−𝐴𝐶(𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡)

𝐴𝐶(𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡) ,
where 𝐴𝐶(⋅) is the auction cost for strategy ⋅.

We notice that the percentage of unassigned bundles is much larger
in BasePriceStat , being sometimes even more than 3 times larger than
the one of OptPriceStat (when 𝜎 = 𝜎𝑚𝑒𝑑 and 𝜇 = 𝜇ℎ𝑖𝑔ℎ), and on average
it is two times larger. Focusing on cost, we observe that the auction cost
is smaller for OptPriceStat and the gap increases with increasing values
of 𝜎 and 𝜇. Overall, OptPriceStat allows to assign a higher number of
bundles at a lower cost.
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Fig. 6. Percentage of unassigned bundles for R1001 and RC1001 instances by varying 𝜎 and 𝜇 in the static auction system.
Fig. 7. Auction cost for R1001 and RC1001 instances by varying 𝜎 and 𝜇 in the static auction system.
Thus, the following conclusions hold concerning the comparison of
the two pricing strategies when using a static auction:

• OptPriceStat is less sensitive than BasePriceStat to the mean and
the variance of the willingness-to-serve function, in terms of both
unassigned bundles and auction cost.

• BasePriceStat might be too risky in terms of the number of unas-
signed bundles. Indeed, this percentage reaches almost 100% in
some cases. This might clearly have a negative impact on the
customer service. Also, the risk of missed service increases, as
the third-party delivery company might not be able to serve all
unassigned bundles.

• In all scenarios, OptPriceStat outperforms BasePriceStat in terms
of both the number of assigned requests and cost.

6.3. Dynamic auction analysis

We now move to the analysis of the dynamic auction, hence focus-
ing on the BasePriceDyn and OptPriceDyn strategies. As done above, we
consider instances with 1000 requests as the results on the instances
with 100 requests are similar. As previously mentioned, in the dynamic
auction, up to 8 runs are performed where, each time a run is unsuc-
cessful (i.e., the bundle is not assigned), the compensation is updated.
Fig. 8, depicts the trend of unassigned bundles by varying 𝜎 and 𝜇
using BasePriceDyn, considering the 8 runs. Looking at Fig. 8 it is clear
that the trend observed for the static auction is maintained. When we
consider a low variance, we expect that the majority of the ODs accept
to deliver a bundle if the compensation offered is close to the mean
value. In this case, using BasePriceDyn is not convenient, since the com-
pensation offered is too low, resulting in a high number of unassigned
bundles. We do not report the statistic related to unassigned bundles
for OptPriceDyn as this strategy nearly always assigns all bundles, with
10 
Fig. 8. Average percentage of unassigned bundles for R1001 and RC1001 instances by
varying 𝜎 and 𝜇 and using BasePriceDyn.

very few exceptions. This leads to an average of 0% unassigned bundles
across all cases, calculated to the second decimal place.

In terms of auction costs, results are illustrated in Fig. 9. The trends
for 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 are shown in Fig. 9(a) and those for 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 are
depicted in Fig. 9(b). Looking at Fig. 9(a) we may observe a similar
trend to that obtained for 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡. Indeed, moving 𝜇 from left
to right increases the auction cost. Furthermore, the variance has a
significant impact, with the auction cost increasing as the variance
decreases. This is consistent with the trend of unassigned bundles,
in fact, the higher the number of unassigned bundles, the higher the
auction costs. Focusing on 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 in Fig. 9(b), we observe that
the cost variation is not significant. We highlight a slight increase in
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Fig. 9. Auction cost for R1001 and RC1001 instances by varying 𝜎 and 𝜇 in the dynamic auction system.
Table 4
Comparison between BasePriceDyn and OptPriceDyn in terms of auction cost.
𝜇 𝜎 𝐺𝑎𝑝𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 (%)

𝜎ℎ𝑖𝑔ℎ −54.6%
𝜇𝑙𝑜𝑤 𝜎𝑚𝑒𝑑 −53.6%

𝜎𝑙𝑜𝑤 −33.6%

𝜎ℎ𝑖𝑔ℎ −50.5%
𝜇𝑚𝑒𝑑 𝜎𝑚𝑒𝑑 −24.9%

𝜎𝑙𝑜𝑤 62.0%

𝜎ℎ𝑖𝑔ℎ −6.6%
𝜇ℎ𝑖𝑔ℎ 𝜎𝑚𝑒𝑑 97.1%

𝜎𝑙𝑜𝑤 139.7%

cost when using 𝜎𝑚𝑒𝑑 . This is an expected result since we have shown
that when using 𝜎𝑚𝑒𝑑 the final value of 𝜂 is higher with respect to the
ones obtained using 𝜎𝑙𝑜𝑤 and 𝜎ℎ𝑖𝑔ℎ (see Appendix A.2).

Comparing Figs. 9(a) and 9(b), we highlight that the auction cost
for 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 strongly depends on the ODs behavior. However,
when considering 𝜎ℎ𝑖𝑔ℎ, 𝜎𝑚𝑒𝑑 and 𝜇𝑚𝑒𝑑 , 𝜇𝑙𝑜𝑤, it outperforms 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛
in terms of cost. This is confirmed also by the results summarized
in Table 4, in which we report the 𝐺𝑎𝑝𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡, calculated as in
the former section (see Table 3). We do not report 𝐺𝑎𝑝𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 as
𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 assigns always almost all bundles, as mentioned above.
The results highlight that OptPriceDyn performs better when the mean
𝜇 is shifted on the right, and, in general, when the variance 𝜎 is low;
in other words, when the ODs require in general a relatively high
compensation and their willingness-to-serve is not sparse.

In conclusion, the results of the comparison between the two pricing
strategies when using a dynamic auction can be summarized as follows:

• OptPriceDyn assigns almost all bundles in any scenario related to
ODs behavior, while the number of unassigned bundles is largely
impacted by ODs behavior in BasePriceDyn.

• As for the static auction, BasePriceDyn might be too risky in
terms of number of unassigned bundles, particularly in specific
scenarios where this number reaches 90%.

• In terms of costs, BasePriceDyn outperforms OptPriceDyn when
the number of unassigned bundles for BasePriceDyn is lower.
The overall cost of the auction is reduced due to the lower
compensation offered to the ODs. This occurs when the mean of
the willingness-to-serve is shifted to the left and when the variance
is high, resulting in the expected value of the willingness-to-serve
being positioned close to the minimum compensation that can be
offered to the ODs.

• Overall, as observed in the static auction, OptPriceDyn is more
stable and less sensitive to ODs behavior.
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Table 5
Percentage of unassigned bundles when varying the number of runs, 𝜎, and 𝜇 for both
𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒 and 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒.

𝜎 Unassigned (%) Unassigned (%)
BasePrice OptPrice

𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ 𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ

1 run

𝜎ℎ𝑖𝑔ℎ 58.9% 70.2% 89.2% 40.7% 41.8% 41.7%
𝜎𝑚𝑒𝑑 62.7% 85.1% 99.2% 28.3% 28.3% 28.3%
𝜎𝑙𝑜𝑤 76.1% 95.0% 100.0% 39.7% 39.7% 39.7%

𝜎 𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ 𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ

2 runs

𝜎ℎ𝑖𝑔ℎ 20.3% 34.3% 70.4% 7.2% 7.6% 7.6%
𝜎𝑚𝑒𝑑 29.8% 60.9% 97.6% 2.9% 2.9% 2.8%
𝜎𝑙𝑜𝑤 43.1% 85.2% 100.0% 7.9% 7.8% 7.4%

𝜎 𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ 𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ

4 runs

𝜎ℎ𝑖𝑔ℎ 6.8% 16.4% 54.7% 1.1% 1.2% 1.2%
𝜎𝑚𝑒𝑑 12.8% 42.5% 95.6% 0.3% 0.2% 0.2%
𝜎𝑙𝑜𝑤 23.4% 75.2% 100.0% 1.2% 1.2% 1.0%

𝜎 𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ 𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ

8 runs

𝜎ℎ𝑖𝑔ℎ 0.7% 3.0% 27.7% 0.0% 0.0% 0.0%
𝜎𝑚𝑒𝑑 1.7% 15.9% 85.7% 0.0% 0.0% 0.0%
𝜎𝑙𝑜𝑤 4.5% 46.5% 98.8% 0.0% 0.0% 0.0%

6.4. Static vs. dynamic auction analysis

While in the former two sections, we focused on the two auctions
separately and compared the behavior of the two pricing strategies in
each, we now compare the two auction systems. We point out that a
dynamic auction with a single run reduces to the static auction.

Table 5 shows the results of the comparison between the static and
the dynamic auctions for both 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒 and 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒, in terms of the
percentage of unassigned bundles. Static auction corresponds to having
one run. Focusing on 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒 we can see that the dynamic auction al-
lows a higher number of bundles to be assigned than the static auction.
The dynamic auction mechanism is extremely efficient in improving
the system performance: the overall percentage of unassigned bundles
decreases from 82% to 24% with respect to the static auction. More
specifically, we observe that:

• Increasing the number of runs has a large impact on the number
of unassigned bundles in all scenarios except the worst case,
which is the one where 𝜇 = 𝜇ℎ𝑖𝑔ℎ and 𝜎 = 𝜎𝑙𝑜𝑤.

• Still, the percentage of unassigned bundles remains rather high
even after 8 runs for 𝜇 = 𝜇ℎ𝑖𝑔ℎ, 𝜇ℎ𝑖𝑔ℎ and 𝜎 = 𝜎𝑚𝑒𝑑 , 𝜎𝑙𝑜𝑤.

Focusing on the 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒, the number of unassigned bundles de-
creases with the increase in the number of runs. As already mentioned,
𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 is able to assign almost all bundles.

Fig. 10 shows the average trend of the auction costs when varying
the number of runs, for both the 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 and the 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛.
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Fig. 10. Average auction cost: comparison between static (1 run) and dynamic auctions with 2, 4, and 8 runs, for BasePrice and OptPrice.
Looking at Fig. 10 we observe a decrease of the gap in the auction cost
between the two strategies, with the increase in the number of runs.
On average 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 outperforms 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛, however, the gap
tends to decrease as the number of runs increases.

The comparison between the static and the dynamic auction re-
sults, averaged on 𝜇 and 𝜎, clearly shows that the dynamic auction
outperforms the static one. In particular:

• The number of unassigned bundles decreases significantly from
approximately 80% to 60% when comparing one run to two runs
using 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛, and from about 40% to about 6% when
using 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛. Consequently, the dynamic auction for both
pricing strategies results in a higher number of bundles being
assigned in a few runs.

• Overall, the costs are reduced of about 45% and 36% after 8 runs,
for 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 and 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛, respectively.

• If it is not possible to perform more than one run, 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡
outperforms 𝐵𝑎𝑠𝑒𝑂𝑝𝑡𝑆𝑡𝑎𝑡 in terms of both the number of unas-
signed bundles and cost.

6.5. Real network case study

We tested our approach on a real network, using one of the Capac-
itated VRP (CVRP) urban deliveries dataset provided in Loggi (2021).
This dataset simulates the case of a large delivery company that oper-
ates in last-mile delivery in Rio de Janeiro. Customers are unevenly
distributed over the area. Distances among customer locations are
calculated considering the real road network distances. In particular,
we focused on Loggi-n601-k42, an instance composed of 600 customers
and one depot, depicted in Fig. 11. To adapt the CVRP instance to
our problem, we generated the work shift and the time windows for
the customers. Starting from the optimal solution provided by the
DIMACS repository at http://dimacs.rutgers.edu, we considered the
longest route and set 𝑇𝑚𝑎𝑥 to the value of its duration; i.e., 𝑇𝑚𝑎𝑥 =
19102. Then, we divided the planning horizon into 𝑚 = 4 intervals
of identical duration, as in the Solomon’s-based benchmark instances,
and we generated the time windows for the customers according to
these four intervals. We calculated the distance from the depot, then we
randomly assigned a compatible and feasible period to each customer.
Each OD is available for two consecutive slots, i.e., 𝑇̄ = 9551.

We then constructed the bundles according to the greedy algorithm
presented in Section 4.1 (results are summarized in Appendix B.1)
and performed several computational tests, considering the strategies
presented in Section 6, i.e., BasePriceStat, OptPriceStat, BasePriceDyn
and OptPriceDyn.
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Table 6
Comparison between 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡 and 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡 for the static auction on the
Loggy-n601-k42 instance.
𝜇 𝜎 𝐺𝑎𝑝𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 (%) 𝐺𝑎𝑝𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 (%)

𝜎ℎ𝑖𝑔ℎ 44.6% 4.9%
𝜇𝑙𝑜𝑤 𝜎𝑚𝑒𝑑 122.0% 27.7%

𝜎𝑙𝑜𝑤 79.2% 34.9%
𝜎ℎ𝑖𝑔ℎ 67.8% 15.6%

𝜇𝑚𝑒𝑑 𝜎𝑚𝑒𝑑 181.3% 47.8%
𝜎𝑙𝑜𝑤 123.5% 52.7%
𝜎ℎ𝑖𝑔ℎ 113.8% 35.1%

𝜇ℎ𝑖𝑔ℎ 𝜎𝑚𝑒𝑑 228.8% 61.4%
𝜎𝑙𝑜𝑤 134.8% 51.0%

Static auction analysis. Fig. 12 depicts the trend of the percentage of
unassigned bundles for 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡 and 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡. The observed
trends in Section 6.2 are confirmed. For 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡, see Fig. 12(a),
moving 𝜇 from left to right increases the percentage of unassigned
bundles. The value of 𝜎 also affects the number of unassigned bundles.
In fact, the lower the value of 𝜎, the higher the number of unassigned
bundles. Fig. 12(b) depicts the trend for 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡 and we observe
that the percentage remains stable over the different values of 𝜇.
Overall, 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡 assigns more bundles regardless of the scenario.

Focusing on the auction cost, whose trend is depicted in Fig. 13, it
can be observed that the trend is consistent with the findings presented
in Section 6.2. Fig. 7(a) illustrates that the auction cost follows a similar
trend to the one observed for the unassigned bundles for 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡.
Specifically, the auction cost increases with increasing values of 𝜇 and
decreasing 𝜎, whereas for 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡 the auction cost is more stable.

To conclude, we report in Table 6 the percentage values of
𝐺𝑎𝑝𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 and 𝐺𝑎𝑝𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 for the static auction. Looking at
Table 6, it is clear that in the case of a static auction, the best strategy
is 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡.

Dynamic auction analysis. Fig. 14 shows the trend of unassigned bun-
dles for BasePriceDyn. We do not report the trend for OptPriceDyn since
it assigns almost all bundles. The trend depicted in Fig. 14 is similar
to the one observed for the static auction. However, the increase is
sharpened when moving 𝜇 from the left to the right. When considering
𝜇𝑙𝑜𝑤, the value of the compensation offered to the ODs is closest to the
peak of the bell of their willingness-to-serve function, therefore carrying
out several runs will allow to increase the compensation and thus the
probability of acceptance. On the contrary, when considering 𝜇ℎ𝑖𝑔ℎ the
peak of the bell is significantly distant from the initial compensation.
Consequently, even with multiple runs, the increase in compensation is
insufficient to fit the behavior of the ODs. This results in a large number
of unassigned bundles, as observed for the static auction.

Now we move on to the analysis of the auction cost, whose trend is
depicted in Fig. 15. If we focus on BasePriceDyn, reported in Fig. 15(a),

http://dimacs.rutgers.edu
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Fig. 11. Loggi-n601-k42 representation provided by Loggi (2021). Blue circles represent customer locations, the red circle is the depot. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Percentage of unassigned bundles for Loggi-n601-k42 instance by varying 𝜎 and 𝜇 in the static auction system.

Fig. 13. Auction cost for Loggi-n601-k42 instance by varying 𝜎 and 𝜇 in the static auction system.
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Fig. 14. Average percentage of unassigned bundles for the Loggy-n601-k42 instance. by varying 𝜎 and 𝜇 and using BasePriceDyn.
Fig. 15. Auction cost for Loggi-n601-k42 instance by varying 𝜎 and 𝜇 in the dynamic auction system.
and compare this trend with the one shown in Fig. 14, we can observe
the similarities. The auction cost increases as the number of unassigned
bundles increases. Instead, the trend depicted in Fig. 15, which repre-
sents the auction cost for OptPriceDyn, is more stable, as the impact of
𝜇 and 𝜎 is minimal.

In Table 7 we summarize the results obtained using 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛
and 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 in terms of the percentage 𝐺𝑎𝑝𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 (%). Since
when using 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 all bundles are always assigned, we do not
show the gap value on unassigned bundles. The results confirm the
trend observed in Section 6.3. The cost of the solutions obtained
using 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 is on average lower than that obtained using
𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 when the number of unassigned requests is low. In partic-
ular, 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 performs better than 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 in terms of costs,
when 𝜇𝑙𝑜𝑤 and 𝜇𝑚𝑒𝑑 and high and medium values of variance. In other
words, if the OD behavior is sparse and the expected OD compensation
is low, the strategy of starting with a lower price and increasing it
through a dynamic auction is more profitable. However, the number
of unassigned bundles is larger for 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛, especially with low
values of variance.

We may conclude that using 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 allows to assign all the
bundles to the ODs, even if the parameters related to the willingness-to-
serve function vary. This result confirms that:

• using 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 to define the price of the bundles is the most
reliable strategy, even if there is scarce information about the ODs
behavior;

• if there is detailed information related to the ODs’ behavior and
their willingness-to-serve function, the company may choose to use
𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛, minimizing the costs.
14 
Table 7
Comparison between 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 and 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 for the dynamic auction with 8
runs on the Loggy-n601-k42 instance.

𝐺𝑎𝑝𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 (%)

𝜎ℎ𝑖𝑔ℎ −53.0%
𝜇𝑙𝑜𝑤 𝜎𝑚𝑒𝑑 −50.3%

𝜎𝑙𝑜𝑤 −19.5%

𝜎ℎ𝑖𝑔ℎ −49.6%
𝜇𝑚𝑒𝑑 𝜎𝑚𝑒𝑑 −13.5%

𝜎𝑙𝑜𝑤 96.3%

𝜎ℎ𝑖𝑔ℎ 5.4%
𝜇ℎ𝑖𝑔ℎ 𝜎𝑚𝑒𝑑 110.0%

𝜎𝑙𝑜𝑤 142.7%

Static auction vs. dynamic auction. It is clear that 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 assigns
a higher number of bundles compared to the 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡. This trend
is confirmed when comparing the unassigned bundles for 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛
and 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡.

Focusing on auction cost, Table 8 summarizes the results in terms
of 𝐺𝑎𝑝𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 (%), evaluated as

𝐴𝐶(𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡)−𝐴𝐶(𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛)
𝐴𝐶(𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛) and 𝐴𝐶(𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡)−𝐴𝐶(𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛)

𝐴𝐶(𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛) ,

where 𝐴𝐶(⋅) is the auction cost for strategy ⋅, for the 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒 and
𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒 strategies, respectively. Looking at the first column, i.e., fo-
cusing on the 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡 vs. 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 comparison, the trend
confirms the assessment outlined in Section 6.4. The dynamic auction
allows to minimize the auction costs, the only exception is when almost
all bundles are not assigned, i.e., when 𝜇 and 𝜎 . Moving to the
ℎ𝑖𝑔ℎ 𝑙𝑜𝑤
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Table 8
Comparison between static and dynamic auctions for the Loggy-n601-k42 instance.
𝜇 𝜎 𝐺𝑎𝑝𝐴𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 (%)

𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡 vs. 𝐵𝑎𝑠𝑒𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡 vs. 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛

𝜎ℎ𝑖𝑔ℎ 277.7% 69.2%
𝜇𝑙𝑜𝑤 𝜎𝑚𝑒𝑑 282.4% 48.9%

𝜎𝑙𝑜𝑤 238.5% 102.1%

𝜎ℎ𝑖𝑔ℎ 273.6% 62.9%
𝜇𝑚𝑒𝑑 𝜎𝑚𝑒𝑑 143.4% 42.5%

𝜎𝑙𝑜𝑤 38.5% 78.0%

𝜎ℎ𝑖𝑔ℎ 96.1% 53.1%
𝜇ℎ𝑖𝑔ℎ 𝜎𝑚𝑒𝑑 5.3% 37.0%

𝜎𝑙𝑜𝑤 0.0% 60.8%

comparison between 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝑆𝑡𝑎𝑡 and 𝑂𝑝𝑡𝑃 𝑟𝑖𝑐𝑒𝐷𝑦𝑛, whose gap values
re reported in the second column, we may observe that the dynamic
uction outperforms the static one in terms of total cost. The average
ost gap is on average equal to 62%.

To conclude, comparing the static and the dynamic auctions, it is
lear that the dynamic one outperforms the static one. The dynamic
uction allows to better exploit the ODs service, assigning a larger
umber of bundles while minimizing the overall costs.

. Conclusions

We presented a framework to handle the problem of managing
ustomer requests in a crowdshipping platform. In particular, we ad-
ressed the pricing problem, to maximize the number of assigned
arcels and minimize the costs. After generating the bundles to be
ssigned to occasional drivers, using a greedy algorithm, we developed
wo pricing strategies and two types of auctions: static and dynamic.
n the static auction the price is fixed and there is a single run. The
ynamic auction is instead an ascending-auction with multiple runs.
s for pricing, we compared two strategies: in the first one the price is
alculated by considering a base cost, that is an estimation of the cost of
he route associated with the bundle, while in the second one, the price
s evaluated considering the willingness-to-serve function associated with
ccasional drivers. We carried out a computational study on instances
ith 100 and 1000 customers as well as on an instance derived from

eal data. The results suggested that the dynamic auction is more
fficient than the static one in reducing the auction cost and the number
f unassigned bundles. Focusing on the pricing strategies, they behave
ifferently in static and dynamic auctions. In the static auction, the
econd strategy outperforms the first one in terms of both reducing
osts and unassigned requests. In the dynamic one, instead, even if the
ost using the first pricing strategy is in several cases lower than the
econd one, the percentage of unassigned bundles is much higher. The
econd strategy assigns all the requests in almost all cases. Hence, the
ecision maker has to handle the trade-off between service quality and
ost, by selecting the most appropriate pricing mechanism. As a final
bservation, we remark that the pricing strategy is robust with respect
o the instance size as the tests provided similar results on instances
ith 100 and 1000 customers as well as on the real case instance with
00 customers.

As a future extension, we aim at considering a combined matching,
ricing and routing problem, including also more complex real-life
eatures such as dynamic arrival of requests, ODs’ behavior, traffic con-
estion, delay in delivery. Another interesting aspect is the correlation
etween bundles generation and expected cost. Therefore, a more so-
histicated approach integrating bundles’ generation and pricing could
e considered as future work. In addition, more sophisticated pricing
echniques are worth being investigated, in particular dynamic pricing
trategies to effectively calculate and adjust prices in real-time.
 v
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ppendix A. Solomon’s based instances computational study

.1. Bundles analysis

Bundles are constructed using the greedy algorithm described in
ection 4.1 (i.e., Algorithm 1). The results for instances R101, RC101,
1001, and RC1001 are given in Table A.1. In particular, for each

nstance, we report in the column #𝑏𝑢𝑛𝑑𝑙𝑒𝑠 the number of bundles
enerated, in #𝑚𝑒𝑎𝑛 the average number of customers (or parcels) in
ach bundle, while the columns #𝑚𝑎𝑥 and #𝑚𝑖𝑛 give the size of the
arger and smaller bundles, respectively. Finally, in the last column, we
eport the average cost of the bundles, i.e., the average routing cost.
e generated 16 bundles for R101, 17 for R101, 71 for R1001 and

2 for RC1001. Focusing on the number of customers in each bundle,
or the instance R101 (RC101) the bundles contain 6 (5) customers on
verage, the smallest bundle contains 1 (2) customers, while the largest
ne 11 (10) customers. Considering instances with 1000 customers, the
umber of parcels in each bundle in R1001 (RC1001) varies on average
rom a minimum of 2 (1) to a maximum of 27 (36), while the average
umber of parcels in each bundle is 14 (12). We point out that we
re not considering an upper limit on the number of customers in each
undle, but there is a limit on the duration of the working shift. As in
ommon practice, bundles with a large number of customers might be
elated to cases where all customers belong to the same neighborhood
r building.

.2. Correlation between 𝜂, 𝜎 and 𝜇 in static auction

Focusing on the results obtained using the Static Auction on
olomon’s based instances, we observe that the value of 𝜂 when using
he OptPriceStat depends on the willingness-to-serve function 𝑓 , while
his is not the case with the BasePriceStat . Thus, we first show the
ffect of the expected value (𝜇) and the variance (𝜎) of the willingness-
o-serve function 𝑓 on the value of 𝜂 for the OptPriceStat . Tables A.2
nd A.3 report, for each value of 𝜇 and 𝜎, the value of the cumulative
robability associated with 𝜂 determined according to the OptPriceStat ,
nd the average value of 𝜂 over all solutions, for instances R and RC,
espectively.

When analyzing the values in Tables A.2 and A.3, we first notice
hat the cumulative probability, i.e., the probability that a bundle will
e accepted at the offered price 𝜂, does not change when comparing
nstances with 100 and 1000 customers. Moving the value of 𝜇 to 𝜇𝑙𝑜𝑤
r 𝜇ℎ𝑖𝑔ℎ has a slight effect on the cumulative probability associated
ith 𝜂. Instead, the variance 𝜎 has a strong impact and the highest
alue of the cumulative probability is associated with the mid value
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Table A.1
Bundles generated for instances R101, RC101, R1001 and RC1001.
R101 RC101

# bundles # mean # max # min avg cost # bundles # mean # max # min avg cost

16 6 11 1 89.53 17 5 10 2 97.15

R1001 RC1001

# bundles # mean # max # min avg cost # bundles # mean # max # min avg cost

71 14 27 2 88.86 82 12 36 1 90.21
Table A.2
Cumulative probability and average value of 𝜂 for R instances using OptPriceStat.
𝜎 Cumulative probability Avg 𝜂 for OptPriceStat

𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ 𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ

100 R customer instances

𝜎ℎ𝑖𝑔ℎ 0.55 0.58 0.63 198.82 214.48 236.13
𝜎𝑚𝑒𝑑 0.62 0.70 0.77 205.38 223.44 241.51
𝜎𝑙𝑜𝑤 0.35 0.58 0.78 157.62 189.33 221.04

1000 R customer instances

𝜎ℎ𝑖𝑔ℎ 0.55 0.58 0.63 197.32 212.87 234.35
𝜎𝑚𝑒𝑑 0.62 0.70 0.77 203.83 221.76 239.69
𝜎𝑙𝑜𝑤 0.35 0.57 0.78 156.43 187.90 219.37

Table A.3
Cumulative probability and average value of 𝜂 for RC instances using OptPriceStat.
𝜎 Cumulative probability Avg 𝜂 for OptPriceStat

𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ 𝜇𝑙𝑜𝑤 𝜇𝑚𝑒𝑑 𝜇ℎ𝑖𝑔ℎ

100 RC customer instances

𝜎ℎ𝑖𝑔ℎ 0.55 0.58 0.63 215.73 232.73 256.22
𝜎𝑚𝑒𝑑 0.62 0.70 0.77 222.85 242.45 262.05
𝜎𝑙𝑜𝑤 0.35 0.58 0.78 171.03 205.43 239.84

1000 RC customer instances

𝜎ℎ𝑖𝑔ℎ 0.55 0.58 0.63 200.33 216.11 237.92
𝜎𝑚𝑒𝑑 0.62 0.70 0.77 206.93 225.13 243.33
𝜎𝑙𝑜𝑤 0.35 0.57 0.78 158.81 190.76 222.71

of the variance. In order to explain this behavior, we have to consider
the link between the cumulative probability and the value of 𝜂. When

oving from a large to a medium value of the variance, with a
light increase in the value of the offered compensation 𝜂 (3%), the
umulative probability increases by around 18%. Thus, the increase in
he value of 𝜂 is compensated by a more than proportional increase
f bundles that are assigned (and, thus, for which the company avoids
aying the high cost (𝛽 + 𝛥) ∗ 𝜁). When moving instead from 𝜎𝑚𝑒𝑑 to
𝑙𝑜𝑤, the cumulative probability decreases by around 14% reaching a
imilar value to the one related to the high variance scenario. However,
he value of 𝜂 is on average 19% smaller than the one associated with
he medium variance scenario. Thus, the smaller number of assigned
undles is compensated by a lower compensation offered to ODs.

ppendix B. Real network case study computational study

.1. Bundles analysis

The results related to the analysis of the bundles are reported in
able B.4. In particular, column #𝑏𝑢𝑛𝑑𝑙𝑒𝑠 reports the number of bundles
enerated, in #𝑚𝑒𝑎𝑛 we have the average number of customers in the
undles, while columns #𝑚𝑎𝑥 and #𝑚𝑖𝑛 report the size of the larger and

smaller bundles, respectively, and finally, in the last column, we report
the average cost of the bundles, i.e., the average routing cost. The total
number of generated bundles is 69. The smallest bundle contains one
customer, while the largest one 36. On average, each bundle contains

8 customers. As in the Solomon’s based instances, we did not consider
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Table B.4
Bundles generated for the Loggi-n601-k42 instance.

Loggi-n601-k42

# bundles # mean # max # min avg cost

69 8 36 1 3523.82

an upper limit to the number of customers in each bundle, but a limit
on the temporal route length.
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