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Abstract
We propose and develop a new algorithm for trading wind energy in electricity 
markets, within an online learning and optimization framework. In particular, we 
combine a component-wise adaptive variant of the gradient descent algorithm with 
recent advances in the feature-driven newsvendor model. This results in an online 
offering approach capable of leveraging data-rich environments, while adapting to 
the nonstationary characteristics of energy generation and electricity markets, also 
with a minimal computational burden. The performance of our approach is analyzed 
based on several numerical experiments, showing both better adaptability to nonsta-
tionary uncertain parameters and significant economic gains.

Keywords  Decision making under uncertainty · Online learning · Electricity 
market · Newsvendor model

1  Introduction

1.1 � Problem statement

Traditionally, the way in which trading wind energy has been considered relied 
on a two-step approach. These start with the predictive modeling of future energy 
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generation (within either deterministic or probabilistic frameworks). Such forecasts 
are subsequently used as input to expected utility maximization strategies or, alter-
natively, some more general forms of optimization problems, e.g., within a stochas-
tic framework and accommodating risk aversion. Although fruitful, these method-
ologies may be computationally expensive. As a representative recent example, for 
a scenario-based stochastic optimization setup to offer in electricity markets, Kraft 
et  al (2023) mentions that computational costs may reach 3 h for a single trading 
instance. In addition, the value of the final decisions is highly affected by the quality 
of the forecasts employed. This fact was looked at for the general case of newsven-
dor problems (which are the type of stochastic opimization problems at hand here) 
by Maggioni et  al (2019), while a detailed investigation of the impact of forecast 
quality on optimization in electricity markets (though, not exactly for market partici-
pation problems), was detailed in Ordoudis and Pinson (2016). As a consequence, 
it may be beneficial to integrate the forecasting and decision-making steps, within 
a so-called prescriptive analytics framework (Bertsimas and Kallus 2019). In paral-
lel, electricity markets are amid rapid transformations towards reducing granular-
ity and lead times, facilitating the integration of non-dispatchable energy sources 
but increasing the computational and adaptability requirements of the offering 
algorithms.

In a data-rich and nonstationary environment, approaches relying on online learn-
ing and online convex optimization are of direct relevance. For a very complete 
introduction to these topics, the reader is referred to Shalev-Shwartz et al (2012). On 
the one hand, online learning algorithms free the decision-maker from most assump-
tions about the wind or market dynamics, since it does not require specific proba-
bilistic forecasts or models about such dynamics. This is more generally the case 
for a broad range of prescriptive analytics approaches that bypass the forecasting 
step. On the other hand, online learning algorithms are typically efficient methods 
capable of adapting to the increasing computational needs (as will be illustrated by 
the numerical case study in this paper). Furthermore, the online learning analysis is 
based on regret as opposed to the classical maximization of the expected utility, pos-
sibly allowing to derive additional insights into the properties of trading strategies.

1.2 � Status quo with trading wind energy and underlying newsvendor problems

Most wind energy is traded in wholesale electricity markets (referred to as forward 
markets in this paper), where an offer is submitted prior to the actual delivery of 
energy. However, the stochastic nature of wind energy entails incurring devia-
tions from the original offer. There are countless ways of approaching this problem 
depending on the market structure and how uncertainty is accommodated, and there-
fore, it is infeasible to fully address such a vast literature. However, let us provide an 
overview in the following. As a starting point, and since there is no single authorita-
tive review that covers this topic of renewable energy offering in electricity markets, 
we refer the reader to Morales et al (2014), where the authors study different market 
variants and strategies assuming a classical stochastic programming framework, as 
well as Conejo et al (2010), which introduces general concepts of decision-making 
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under uncertainty within electricity markets. We deal, in particular, with markets 
with a dual-price settlement for imbalances, under which there is no possibility of 
benefiting from a deviation and where imbalance penalties are asymmetric.

Early works in this area proposed an optimal quantile strategy based on probabil-
istic forecasts for wind energy production (Bremnes 2004). Specifically, Pinson et al 
(2007) showed that, in its simplest version of a risk-neutral wind farm without any 
other assets (e.g., storage, conventional generation), the offering problem necessar-
ily takes the form of a newsvendor problem. Various generalizations were explored 
by others. Zugno et  al (2013a) proposed constraining the offer in both power and 
probability spaces in order to accommodate risk aversion and behavioral aspects of 
trading (e.g., anchoring effects towards traditional single-valued forecasts). In paral-
lel, Mazzi and Pinson (2016) devised and tested a reinforcement learning algorithm 
to track the optimal quantile in a nonstationary environment. Similarly, Dent et al 
(2011) revisited the problem by accounting for the possibility of a population-based 
price-making behavior. And, for more complex versions of the offering problems, 
one can revert to a stochastic programming setup (Morales et al 2010), for instance, 
owing to inter-temporal constraints, or risk-aversion. If generally considering mar-
ket offering problems where renewable energy producers are not price-takers (i.e., 
their decision can then affect market outcomes), Baringo and Conejo (2013), as well 
as Zugno et  al (2013b), have proposed approaches based on bilevel optimization. 
Recently, Kakhbod et al (2021) have investigated the population effect of renewable 
energy producers and how this affects their offering strategies. Even though these 
varied approaches explore alternative angles to generalizing the underlying news-
vendor problems in wind energy offering in electricity markets, they still require 
a two-step procedure (i.e., “predict, then optimize"). In contrast, a prescriptive 
approach does not require a forecasting step, since it directly goes from input data 
to decision. Consequently, there is no need to describe future wind power generation 
and market quantities. Hence, no assumption is made about their dynamics.

Inspired by new advances in decision making under uncertainty in data-rich 
environments, this problem regained interest in recent years within a prescriptive 
analytics framework (hence, by integrating forecasting and optimization steps). As 
a representative example, Stratigakos et  al (2022) used an ensemble of decision 
trees that considers the objective function to estimate the energy production. From 
the modeling perspective, the work of Muñoz et al (2020) is one of the closest to 
ours, also aligned with the new stream of research that utilizes features to produce 
context-specific decisions in a fully data-driven environment. They built upon 
recent advances with data-driven newsvendor problems (Ban and Rudin 2019), and 
proposed an approach that iteratively solves a linear optimization problem to update 
offering decisions. Although relatively inexpensive, the computation time involved 
may become an issue in electricity markets like the Australian NEM,1 where 
trading and dispatching is based on 5-minute time steps and updates. Moreover, this 
approach seems redundant in the sense that the complete optimization problem is 
solved at each and every trading session, even though consecutive training sets may 

1  Australian National Electricity Market (NEM). See https://​aemo.​com.​au/.

https://aemo.com.au/
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only differ by one or a few samples. Such pitfalls motivates our proposal to explore 
alternative approaches to wind energy offering in electricity markets.

1.3 � From optimization to online learning

Instead of using optimization directly, we introduce an offering approach within an 
online learning paradigm. Online learning can be seen as a special case of online 
convex optimization (OCO – considering convex loss functions only) where, instead 
of tracking optimal decisions, one adaptively and recursively estimate parameters 
of decision rules (often also referred to as policies). Decision rules are functions 
that yield decisions based on values of relevant input features. For an introduction 
to online optimization, we refer the reader to the surveys of Shalev-Shwartz et  al 
(2012) and Hazan et al (2016). In addition, for the case of online learning, a recent 
extensive textbook-like coverage is given by Orabona (2022).

Within OCO, we place emphasis on algorithms that continuously update vari-
ables based on gradients (or subgradients) of a convex objective function. Whenever 
new values of input features and outcomes become available, these algorithms make 
a step along the gradient, towards the optimum. They ideally accommodate prob-
lems for which a closed-form expression to evaluate the sub-gradient exists (and 
fast to compute) (Duchi et al 2011; Zheng 2011). The well-known online gradient 
descent approach can be traced back to Zinkevich (2003) and inspired many further 
developments. Among those are numerous applications within power system opera-
tion and electricity markets (Gan and Low 2016; Hauswirth et al 2017; Colombino 
et al 2019; Guo et al 2021; Yuan et al 2022). These methods offer long-term regret 
guarantees (Orabona 2022).

Within the frame of decision-making under uncertainty, the strategy followed by 
online gradient descent algorithms is in sharp contrast with optimization approaches. 
These latter approaches solve an independent optimization problem with a differ-
ent training set (a batch of data) every time a decision has to be updated, e.g., the 
parameter of the decision rule in Muñoz et al (2020). Under convexity assumptions, 
an optimal solution can be found to each optimization problem, meaning that no 
single decision can ever achieve better performance on average in that training set. 
However, there is no certainty that the out-of-sample performance of such a decision 
enjoys the same privilege in finite sample sets. Instead, only probability guarantees 
can be offered even if the samples are i.i.d. (Van Parys et al 2021).

Indeed, when the underlying data generating processes are nonstationary, the out-
of-sample performance can be very poor. This issue can be partly compensated by 
using a rolling window setting (Bashir and Lehtonen 2018) that updates the vari-
ables frequently. However, there can also be substantial changes within the training 
set. In that case, the performance of batch optimization approaches may be affected 
by old samples that do not reflect current conditions. On the contrary, online gra-
dient descent algorithms update the parameters of decision rules through a point-
wise update that involves the most recent information only, which enables capturing 
changes in the characteristics of the underlying data generating processes. Therefore, 
online gradient methods do not only offer computational advantages. They may also 
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outperform established approaches, e.g., using linear programming with contextual 
information (even if using a sliding window scheme). This is illustrated based on the 
toy model examples in Sect. 4, as well as the case study in Sect. 5. Their superiority 
eventually is in terms of both (i) better tracking of the optimal solution within a non-
stationary environment, as well as (ii) an increase in market revenues.

1.4 � Contributions and structure

The Australian NEM is an example of the existing trend towards shortening lead 
times and increasing granularity in electricity markets. These developments reduce 
operational and forecast uncertainty, hence facilitating the integration of stochastic 
renewable energy sources.2 At the same time, they increase computational needs and 
require methodologies that adapt to changes in rapid manner. To face these new chal-
lenges, we propose an algorithm that combines a feature-driven newsvendor model 
inspired by Ban and Rudin (2019) with a variant of the online gradient descent algo-
rithm presented in Zeiler (2012). We conceive a case study in which we analyze an 
hourly forward market that closes just before the start of the next period. It relies 
on actual data from the Danish Transmission System Operator (TSO), Energinet,3 
and provide a relevant test bench to illustrate and discussion the salient features of 
our approach. To the best of our knowledge, this is the first paper that analyzes the 
problem of trading wind energy in an online learning setting. The contributions of 
our work are threefold:

•	 we develop an online offering algorithm within an online learning framework. 
Results show that this algorithm is computationally inexpensive and achieves 
substantial economic profits;

•	 we propose a new nonstationary regret benchmark against which we empirically 
compare our algorithm;

•	 we showcase the ability of the proposed algorithm to adapt to nonstationary sce-
narios through a concise illustrative example. In addition, we analyze the supe-
rior economic performance and computational efficiency of our approach based 
on a case study using real-world data (published by the Danish TSO, Energinet) 
for a period of more than five.

The remaining of the manuscript is structured as follows: Sect.  2 introduces the 
problem of a wind farm offering in the forward market, and for which balancing 
using a two-price imbalance settlement. Section 3 develops a new offering algorithm 
based on an adaptive gradient descent algorithm and explores several performance 
metrics. Section  4 is built upon two illustrative examples that investigate the 
behavior of an alternative online implementation and the dynamic response of 
this algorithm in comparison with previous rolling window approaches. Section 5 
empirically analyzes the performance of our proposed algorithm in a case study 

2  Increasing time granularity in electricity markets, innovation landscape brief, International Renewable 
Energy Agency (IRENA), Report, 2019.
3  See https://​energ​inet.​dk/.

https://energinet.dk/
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based on real data retrieved from the Danish TSO, Energinet. Finally, conclusions 
and perspectives for future work are gathered in Sect. 6.

2 � Preliminaries

2.1 � Mathematical notations

We introduce here some of the most relevant mathematical notations used 
throughout the paper. These are placed into context when further describing the 
optimization and learning problems at hand in the following. In terms of indices and 
sets, we use j as an index for features and auxiliary information, while t is an index 
for time periods (hours in practice, or programme time units in the electricity market 
of interest). These time indices are gathered within 2 sets T in and T oos , which are 
for training (in-sample) and testing (out-of-sample), respectively.

When looking at newsvendor problems and offering in electricity markets, key 
parameters include �+

t
 , the marginal opportunity cost for overproduction at hour t 

(€/MWh), and �−
t

 , the marginal opportunity cost for underproduction at hour t (€/
MWh). These are defined based on �F, �UP , and �DW ∈ ℝ , which are the forward, 
up-regulation and down-regulation prices, respectively. In terms of the renewable 
energy producer, the asset or portfolio at hand has a nominal capacity E , also 
translating to a maximum offer in terms of energy in the market for each and every 
programme time unit (hence, we express E in MWh eventually). The decision 
variable is then the energy bid EF

t
 (MWh) for that time, while the amount of energy 

actually produced is Et (MWh). Within our data-driven framework, that decision is 
based on a vector xt of auxiliary information (i.e., features), associated to a decision 
rule vector qt.

Finally, for the type of online learning approach described in the following, the 
method and resulting algorithm rely on the gradient or subgradient of the objective 
function at hand, which we denote by gt , as well as a dynamic learning vector �t . We 
write gt,j and �t,j the jth components of these vectors. The algorithm has a number 
of hyperparameters involved, i.e., � as a forgetting factor to temporally smooth the 
marginal opportunity costs �+

t
 and �−

t
 , � to control the learning rate, � to smooth the 

discontinuity in the derivative of the pinball loss function, and � as a decay constant 
that controls the adaptation to new gradients. A strictly positive, though small, 
constant � is used in the definition of the dynamic learning vector �t in order to avoid 
dividing by 0.

2.2 � Newsvendor problem on a rolling time‑window

We first introduce the problem of a wind farm offering in a forward market, which 
is cleared some time before their actual production is realized. Therefore, the 
producer is likely to suffer deviations from her offer. These are settled ex-post in a 
real-time (balancing) market under a two-price imbalance settlement mechanism. 
Furthermore, the offer is assumed to be always accepted, as the marginal 
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operational cost of wind farms is close to zero and therefore this technology is 
usually prioritized for being scheduled. The eventual market revenue � ∈ ℝ of a 
wind farm is given by the summation of the amounts obtained in the forward ( �F ) 
and in the balancing markets ( �B ), i.e.,

where (a)+ = max(a, 0) . In addition, the unknown parameters �F, �UP , and �DW ∈ ℝ 
are the forward, up-regulation and down-regulation prices, respectively. The key 
decision variable for the wind farm is her offer EF ∈ ℝ

+ at the forward stage. Note 
that E ∈ ℝ

+ denotes the actual realization of her stochastic energy production, 
which is obviously unknown at the forward stage. In accordance to (1), the revenue 
( �FEF ) from the forward stage is then altered when the producer deviates from her 
offer EF . When the production is greater than expected E ≥ EF , the producer is to 
sell excess energy generation E − EF > 0 at the downward regulation at price �DW . 
On the contrary, if she produces less than her forward offer E ≤ EF , the wind farm 
has to buy the missing energy EF − E > 0 at teh upward regulation at price �UP . 
Under a two-price imbalance settlement, one has �UP ≥ �F and �DW ≤ �F , with at 
most one of them different from �F (Morales et al 2014, Ch. 7). In accordance with 
the aforementioned description, let �+,�− ∈ ℝ

+ denote penalties for over- or under-
production as

Using (2) and (3) and the equivalence E − EF = (E − EF)+ − (EF − E)+ , we 
reformulate (1) as

Note that the first term of (4) is out of the control of the price-taker wind farm, 
as both �F and E are uncertain parameters. Therefore, the profit-maximizing offer 
EF∗ of the wind farm in the forward market can be computed by minimizing the 
expected deviation cost as

where �[⋅] is the expectation operator. The optimization program (5) solves an 
instance of the very well-studied newsvendor model (Qin et al 2011). Under a price-
taker scenario, i.e., when the market participant’s decision are assumed not to affect 
market outcomes, an analytical solution to (5) can be computed with (Bremnes 
2004; Pinson et al 2007)

(1)� = �F + �B = �FEF − �UP
(
EF − E

)+
+ �DW

(
E − EF

)+
,

(2)�+ = �F − �DW,

(3)�− = �UP − �F .

(4)� = �FE −
(
�+

(
E − EF

)+
+ �−

(
EF − E

)+)
.

(5)EF∗ = argmin
EF∈[0,E]

�

[
�+

(
E − EF

)+
+ �−

(
EF − E

)+]
,
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where F−1
E
(.) is the cumulative distribution function (cdf) of the renewable energy 

production and the overline denotes the expected value of the random variable 
(estimated as the average over available data). The reader is referred to Maggioni 
et  al (2019) for a discussion about the value of right distribution in newsvendor 
applications.

On top of the fact that the true distribution of the wind production and 
the optimal quotient are generally unknown, (6) suffers from another major 
drawback, which is its inability to directly profit of additional information that 
may be available, e.g., wind energy forecasts for neighboring areas, or additional 
information about the state of the electricity market. In fact, it is usually the case 
that the wind farm operator has access to a vector of auxiliary information, also 
known as features x ⊆ X ∈ ℝ

p , where p denotes the dimension of the feature 
vector. This feature vector may help explaining the behavior of the uncertain 
parameters in (5). As proposed by Ban and Rudin (2019), this information can 
be exploited in newsvendor instances assuming that the optimal offer follows 
a linear decision rule of the form EF ∶ X → ℝ , EF = x

⊤
q with q ∈ ℝ

p being a 
decision vector that parameterizes the linear model. This decision rule can easily 
reproduce an intercept setting a component of the feature vector x equal to one. 
Then, considering that a set of historical samples 

{

(Et,�−
t ,�

+
t , xt), ∀t ∈  in} is 

available, we compute the best decision qLP for this set by solving the following 
linear program: 

 where | ⋅ | denotes the cardinality of a set. Note that this model does not implicitly 
assume a price-taker scenario. In fact, correlations between penalties and wind fea-
tures may be captured in systems with high wind power penetration. Although the 
linear structure of the mapping may seem restrictive, more complex relationships 
can be obtained by transforming the feature space, e.g., using a Taylor approxima-
tion (Ban and Rudin 2019) or a spline basis. Next, by defining the box projection

the optimal offer derived from new contextual information xt′ can be computed 
as EF

t�
= �(xt� , q

LP) . As discussed in Muñoz et  al (2020), when new points are 
incorporated into the dataset Tin , the problem (7) can be iteratively solved to update 
the value of qLP . In the remaining of the manuscript, we refer to this approach as LP 
(from Linear Programming).

(6)EF∗ = F−1
E

(
𝜓̄+

𝜓̄+ + 𝜓̄−

)
,

(7a)q
LP∗ = argmin

q

1

|Tin|
∑
t∈Tin

𝜓+
t

(
Et − x

⊤

t
q
)+

+ 𝜓−
t

(
x
⊤

t
q − Et

)+

(7b)s.t. 0 ≤ x
⊤

t
q ≤ E, ∀t ∈ T

in
,

(8)𝜋(x, q) = min

(
max(0, x⊤q),E

)
,



1 3

Online decision making for trading wind energy﻿	 Page 9 of 31  33

3 � Online learning in newsvendor problems

In the Online Convex Optimization (OCO) framework, a decision-maker faces an online 
learning problem where iterative decisions are to be made. The cost of each decision 
is determined by a convex loss function ft ∶ ℝ

dz → ℝ unknown beforehand. After a 
decision zt ∈ Z ⊆ ℝ

dz is made, the decision-maker learns ft and pays ft(zt) . Within 
OCO the Online Gradient Descent (OGD) algorithm, introduced by Zinkevich (2003), 
has proven to be very effective and versatile (Gan and Low 2016; Narayanaswamy 
et al 2012; Hauswirth et al 2016; Nonhoff and Müller 2020; Wood et al 2021). Starting 
from an initial value, the OGD performs iterative updates zt based on (sub-)gradients 
of ft , denoted as gt from hereon. The magnitude of the step is controlled through a 
variable learning rate �t . On each round, the updated vector is forced to lie within the 
feasible region Z through the Euclidean projection. In the OGD we rely on just the 
last point learned to obtain a gradient, thus resulting in a computationally inexpensive 
method, especially if the gradient and projection can be computed through a closed-
form expression.

The selection of the learning rate is of paramount importance. The original proposal 
by Zinkevich (2003) presents two main alternatives, namely, a variable and a fixed 
learning rate. In a dynamic environment, the classical choice �t ∈ ℝ

+ , �t ∝ t−1∕2 where 
∝ denotes the proportional operator, is not suitable due to the fact that limt→∞ = 0 , 
reducing the ability to track changes as t increases. Alternatively, one could select a 
fixed value �t = � that keeps this capacity unaltered but may lose the fast convergence 
that the initial high values of �t provide. Regardless of the selection, both choices are 
scale-dependent and treat each component of the gradient vector equally. To tackle this, 
McMahan and Streeter (2010) and Duchi et al (2011) propose to use a component-wise 
adaptive rate �t ∈ ℝ

p and �t,j = �(
∑t

k=1
g2
k,j
)−1∕2 where gt,j is a component of the 

gradient vector gt = [gt,1, ..., gt,j, ..., gt,p]
⊤ . As in the case of �t ∝ t−1∕2 , the previous 

expression is monotonically decreasing (component-wise), again limiting the long-term 
ability to learn. Aware of this limitation, Zeiler (2012) suggests an exponentially 
decaying average of the squared gradients to modulate the learning rate based on the 
most recent information. We employ this gradient descent variant to implement our 
algorithm in Sect. 3.1.

In the online learning community, the de facto metric to evaluate the performance 
of a series of decision vectors z1, ..., zT is the regret RT ∈ ℝ . The regret provides 
a versatile and, in a sense, normalized metric to compare an algorithm through 
different problems with the advantage that little assumption is made about the oracle 
that generates the decisions. Traditionally, the benchmark used to compute regret 
is the best single action in hindsight that can be obtained as the solution to an offline 
optimization problem under perfect information. However, in a dynamic environment, 
this benchmark can be beaten easily. In Sect. 3.3 we propose an alternative benchmark 
more suitable for the nonstationary context of the wind energy problem.
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3.1 � Online newsvendor

In this section, we particularize the gradient descent introduced in the previous 
paragraphs to the context of the wind farm offering in a forward market, 
incorporating elements of the rolling window problem presented in Sect.  2. We 
name the resulting algorithm OLNV (from OnLine NewsVendor). Contrary to the 
rolling window approach, the OLNV algorithm updates q based on the information 
provided by the last realization. The objective function (7a) when the set Tin reduces 
to one sample yields

The OLNV method requires computing a gradient of the objective function, for 
which we analyze two alternative procedures in the following paragraphs.

The first approach is inspired by the work of Zheng (2011) on the pinball loss, 
a particular case of the objective function found in newsvendor models. Since the 
pinball loss is not strictly differentiable, the authors propose an alternative smooth 
approximation to ensure that computing gradients is always possible. Note that in 
our case the objective function (9) is not differentiable at Et = x

⊤
t
q . Therefore, we 

first propose to circumvent this issue extending the approach in Zheng (2011) to the 
more general expression (9) that considers arbitrary (positive) penalties as

where 𝛼 > 0 is a parameter that controls the approximation and where higher values 
of this parameter result in smoother functions. The function NVt,� is convex in q and 
upper bounds NVt for any value of q as proven in Propositions 1 and 2 in Appendix, 
respectively. Then, we derive a closed-form solution to obtain gradients of (10), 
yielding

The second approach deals directly with the objective function as formulated in 
(9). Even though the original objective is not strictly differentiable, a variant of the 
OLNV algorithm is readily applicable to subdifferentiable functions, provided that a 
subgradient can be computed instead (Orabona 2022). In this case, the mapping that 
returns a subdifferential of (9) is given by

Note that, when Et − x
⊤
t
q = 0 , any value in the interval [−�+

t
xt,�

−
t
xt] is a legitimate 

subgradient belonging to �NVt(q) . For the sake of simplicity and reproducibility, the 
implementation of our algorithm returns zero whenever this condition is fulfilled.

(9)NVt(q) = 𝜓+
t

(
Et − x

⊤

t
q
)+

+ 𝜓−
t

(
x
⊤

t
q − Et

)+
.

(10)NVt,𝛼(q) = 𝜓+
t

(
Et − x

⊤

t
q
)
+ 𝛼

(
𝜓+
t
+ 𝜓−

t

)
log

(
1 + e−(Et−x

⊤
t
q)∕𝛼

)
,

(11)∇NVt,𝛼(q) =

(
− 𝜓+

t
+ (𝜓+

t
+ 𝜓−

t
)

1

1 + e(Et−x
⊤
t q)∕𝛼

)
xt .

(12)𝜕NVt(q) =

⎧
⎪⎨⎪⎩

−𝜓+
t
xt, Et − x

⊤
t
q > 0,

𝜓−
t
xt, Et − x

⊤
t
q < 0,

[ − 𝜓+
t
xt,𝜓

−
t
xt], Et − x

⊤
t
q = 0 .
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Once a gradient as in (11) or a subgradient as in (12) has been computed, the key 
step of OLNV is to update qt using a multidimensional learning rate �t ∈ ℝ

p through

where ◦ denotes the element-wise product, gt = ∇NVt,�(qt) or gt = �NVt(qt) 
depending on the implementation of OLNV, and Π is a projection operator defined 
as Π ∶ ℝ

p × X → ℝ
p . Precisely, Π maps its arguments into the solution of the 

following optimization problem:

where o represents a candidate to update the decision vector and is computed 
o = qt − �t◦gt . The feasible set in (P) is defined by the set-valued mapping 
Q ∶ X ⇉ ℝ

p , Q(x) = {q ∶ 0 ≤ x
⊤
q ≤ E} . Note that, for any input x the output of 

Q is a convex region bounded by two parallel hyperplanes. As the Euclidean norm 
is used, a unique solution is guaranteed to exist for any instance of (P) . Generally, 
the Euclidean projection of a point into a convex set requires solving a convex 
optimization problem, however the definition of Q allows us to find a closed-form 
expression, yielding

This reduces the resolution of the optimization problem (P) to evaluating the above 
expression. Even though the operator Π guarantees the feasibility of qt under the 
realization xt−1 , we need to resort to (8) setting EF

t
= �(xt, qt) to guarantee EF

t
 

remains feasible for any new arbitrary xt.
The last remaining aspect is to compute the vector �t following the ideas in Zeiler 

(2012). Let gt = [gt,1, ..., gt,j, ..., gt,p]
⊤ be a gradient or subgradient vector computed 

through (11) and (12). Then, we can define the squared running average of each 
component as

where � ∈ [0, 1) is a decay constant and g2
0,j

= 0 . The auxiliary variable g2
t,j

 is then 
used to compute the independent learning rate applied to the associated decision 
vector component following

where � ∈ ℝ
+ helps better conditioning the denominator (by avoiding division by 0)

and 𝜂 > 0 is a constant. We use the update given by (15) and (16) in the proposed 

(13)qt+1 = Π
(
qt − �t◦gt, xt

)
,

Π(o, x) = argmin
q∈Q(x)

1

2
||q − o||2 , (P)

(14)Π(o, x) =

⎧⎪⎨⎪⎩

o, 0 ≤ x
⊤
o ≤ E ,

o +
E−x⊤o

��x��2
2

x, x⊤o > E ,

o +
−x⊤o

��x��2
2

x, x
⊤
o < 0 .

(15)g
2

t,j
= �g

2

t−1,j
+ (1 − �)g2

t,j
,

(16)
�t,j =

�√
g
2

t,j
+ �

,
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OLNV algorithm with the values � = 10−6 and � = 0.95 , as originally suggested 
in Zeiler (2012). The benefits of this update is twofold. On the one hand, OLNV 
adapts each learning rate component to the scale of the incumbent feature. On the 
other hand, OLNV tracks the most recent dynamic between the uncertain vector 
[Et,�

+
t
,�−

t
 ] and the feature vector xt . The OLNV algorithm for the feature-driven 

wind energy trading problem is compiled in Algorithm 1.

Despite the fact we have considered a single wind farm in the derivation, the 
proposed OLNV algorithm is general enough to be exploited for an aggregation 
of wind farms, or in general, for a portfolio of diverse renewable energy sources 
with uncertain production, just by combining the capacity and generation of 
the assets. Equally, the potential spatial correlation among production of wind 
farms does not affect the feasible region of the newsvendor model, and therefore 
does not complicate the OLNV algorithm. On the contrary, adding storage to the 
generation portfolio forces the model to include inter-temporal constraints that 
dramatically reshape the feasible region, implying that the current decision will 
affect future outcomes. In this case, the decision-maker can resort to classical 
dynamic programming (Hargreaves and Hobbs 2012) or more advanced learning 
algorithms such as budget-constrained online learning (Liakopoulos et al 2019; 
Sherman and Koren 2021) or reinforcement learning algorithms (Kuznetsova 
et al 2013; Sutton and Barto 2018).

Finally, even if a population effect may be present for renewables in 
electricity markets (i.e., even if price-taker individually, the sum of individual 
actions of these producers may impact market outcomes), several wind power 
producers can effectively use the OLNV algorithm to improve the profitability 
of their offer within the same region. The fact that each competing producer has 
different contextual information available and may process it in alternative ways 
mitigates possible increases in the volatility of their outcomes that could arise 
from correlated generation.
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3.2 � Regularization through average penalty anchoring

In an electricity market with a two-price imbalance settlement scheme, it is common 
that �+

t
= �−

t
= 0 over a significant number of hours, meaning that load and generation 

are close to being balanced. In this situation, from (9), the producer experiences no cost 
no matter the deviation from the actual production. Moreover, the gradients computed 
through  (9) are zero and therefore the variable vector qt is not updated, wasting 
information about the relationship between EF

t
 and xt . And, when penalties are different 

from zero, they typically exhibit random behavior with sharp spikes representing highly 
imbalanced scenarios which, in turn, yields destabilizing updates of the vector qt . To 
tackle both issues, we propose performing the following convex transformation of the 
original penalties:

where 0 ≤ � ≤ 1 and �+
,�

−
∈ ℝ

+ are the historical average penalties. This convex 
transformation is inspired by the concept of constraining the optimal offer around 
the point forecast proposed by Zugno et al (2013a). In contrast though, we do not 
impose hard constraints on the decision vector qt . Instead, we smooth the objective 
function using as anchor the sample average optimal market quantile determined 
by the average market penalties �+ and �− . To do so, we consider a convex 
combination of the original objective function (7a) with an additional term that 
minimizes such a quantile,

Then, using (17) and (18), the original objective structure is recovered, i.e.,

Therefore, by replacing �+
t
,�−

t
 with � �+

t
,� �−

t
 in the original objective function, we 

regularize the learning procedure at no extra computational cost. When the available 
samples are not sufficient to provide reliable estimates of the true �+ and �− , the 
producer can resort to assume a balanced market with penalties �+

= �
−
= 1 . 

Thus, with 𝜇 < 1 , provided that 𝜓+
,𝜓

−
> 0 , the algorithm utilizes the information 

contained in samples with both penalties equal to zero, potentially accelerating 
the convergence and obtaining smoother updates through the gradient. The same 
reasoning applies to the smooth objective function.

(17)�+�

t
= ��+

t
+ (1 − �)�

+
,

(18)�−�

t
= ��−

t
+ (1 − �)�

−
,

(19)
NV

R

t
=𝜇𝜓+

t

(
E
t
− x

⊤

t
q
)+

+ 𝜇𝜓−
t

(
x
⊤

t
q − E

t

)+
+ (1 − 𝜇)𝜓

+(
E
t
− x

⊤

t
q
)+

+ (1 − 𝜇)𝜓
−(
x
⊤

t
q − E

t

)+
.

(20)NVR
t
= 𝜓+�

t

(
Et − x

⊤

t
q
)+

+ 𝜓−�

t

(
x
⊤

t
q − Et

)+
.
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3.3 � Performance evaluation

In order to assess the economic performance of our algorithm over a set of testing 
samples 

{

(Et,�−
t ,�

+
t , xt),∀t ∈  oos} , we use the average deviation cost. To lighten 

the notation, we write T = |Toos| . Consider that we have obtained successive offers 
EF
1
, ...,EF

T
 over the test set, by using (7) and (8) or from Algorithm 1, after iteratively 

going through all the samples belonging to the test set Toos . We then calculate the 
average deviation cost as

The value of this metric gives limited information about how a particular method is 
performing. A natural benchmark is the score obtained when a forecast of the wind 
energy production (in the sense of minimizing the root mean square error) is directly 
used as an offer in the market. We refer to this method as FO (from FOrecast). Let 
NVoos

FO
 be the deviation cost incurred by FO . We then redefine the original metric in 

relative terms, i.e.,

Consequently, the metric expresses an improvement (as a percentage), where a value 
of 100% means perfect performance with zero deviation cost.

For online learning problems the customary performance measure is the regret. 
Traditionally, the regret compares a sequence of decision q1, ..., qT against the best 
single vector in hindsight qH . The latter is computed ex-post solving a problem 
analogous to (7) once the whole collection of samples belonging to Toos is known. 
Let QH be the intersection of all feasible sets Q(xt) , more precisely QH ∶ X ⇉ ℝ

p , 
Q

H = {q ∶ 0 ≤ x
⊤
t
q ≤ E, ∀t ∈ T

oos} . The static regret is

Given the assumption of a nonstationary environment, outperforming a constant qH 
can be a relatively easy task even though it is determined under perfect information. 
Alternatively, one may consider the worst-case regret (Besbes et  al 2015) 
interchanging the sum and minimum, i.e.,

where the second term of (24) gives the best individual decision 
q
H

t
∈ argmin

q∈Q(x
t
) NVt

(q) . The regret computed in this way can be very pessimistic 
and unrealistic. Note that in the context of the wind farm, it is always possible to 
find a value for q such that Et − x

⊤
t
q = 0 , and therefore (24) readily reduces to the 

summation of the original objective function Rw
T
=
∑

t∈Toos NVt(qt) . Alternatively, 

(21)NVoos =
1

T

∑
t∈Toos

�−
t

(
Et − EF

t

)+
+�+

t

(
EF

t
− Et

)+
.

(22)NVoos(%) = 100
NVoos

FO
− NVoos

NVoos

FO

.

(23)R
s
T
=

∑
t∈Toos

NVt(qt) − min
q∈QH

∑
t∈Toos

NVt(q) .

(24)R
w
T
=

∑
t∈Toos

NVt(qt) −
∑
t∈Toos

min
q∈Q(xt)

NVt(q) ,
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Zinkevich (2003) proposed to compare the performance of online algorithms against 
a sequence of arbitrary decisions u1, ..., uT , ut ∈ Q(xt),

We refer to this approach as dynamic regret. This formulation allows to define a 
metric with an adjustable difficulty between the previous benchmarks. Note that (23) 
and (24) are special cases of (25) with ut = q

H∀t and ut = q
H

t
∀t , respectively. Then, 

the question is how to choose a reasonable series of reference benchmarks ut to use 
against OLNV. To this end, we propose dividing T oos in k adjacent partitions of 
equal length l, except possibly the last one. Without loss of generality, by assuming 
T − kl = 0 , we have T oos

i
= {t ∶ (i − 1)l + 1 ≤ t ≤ il}, i = 1, ..., k . Let us define the 

feasible sets QH

i
= {q ∶ 0 ≤ x

⊤
t
q ≤ E, ∀t ∈ T

oos

i
} . Accordingly, we can compute 

q
H

i
= argmin

q∈QH

i

∑
t∈Toos

i

NV
t
(q) . Finally, the sequence of reference benchmarks 

that we propose to use in this paper is u
t
= q

H

i
,∀t ∈ T

oos

i
 . We will empirically 

investigate the regret performance of OLNV in the case study presented in Sect. 5.

4 � Illustrative examples

This section analyzes several illustrative examples to gain insight into the behavior 
of OLNV. The first case compares the two alternative implementations introduced in 
Sect. 3.1 and discusses their main properties. As a result of this analysis, we select 
the subgradient objective function as the default procedure to perform the update of 
qt in OLNV. One of the key features of online learning algorithms is their tracking 
ability, given the chronological order in which the updates are performed. In the 
second illustrative example, we deal with alternating penalty scenarios, showing the 
salient properties of OLNV to adapt to a changing environment.

4.1 � Comparing the smooth and subgradient implementations

This illustrative example aims to elucidate whether the smooth approximation pre-
sented in (10) provides any advantage over the direct subgradient implementation of 
OLNV. This will allow us to determine which implementation to be used for further 
numerical experiments.

We consider a simplified setting with a single feature, a forecast of the wind 
power generation that we also use as the baseline for the FO method, and a single 
regressor qt ∈ ℝ . No intercept is considered to ease the representation and analysis 
of qt . We sample the feature from a uniform distribution xt ∼ U[10, 90] (MW) and 
the true wind generation series is built adding a Gaussian noise, Et = xt + �t with 
�t ∼ N(0, 6) (MW). We generate a dataset of a 1-year duration (8760 samples, as 
if of hourly temporal resolution). Given that the penalties �+

t
 and �−

t
 are difficult 

to simulate, we compute them based on real day-ahead and regulation prices of the 

(25)R
d

T
=

∑
t∈T oos

NV
t
(q

t
) −

∑
t∈T oos

NV
t
(u

t
) .
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Danish DK1 bidding zone. We retrieve data corresponding to the year 2017 from the 
data portal of the Danish TSO, Energinet.4 Four implementations of Algorithm 1 
are executed, three of them computing gradients of the smooth objective function 
through (11) with � = 0.05 , 5 and 20 and the last one using subgradients of the orig-
inal cost mapping as in (12), to which we refer to as � . All instances are initialized 
with q1 = 1 , which means that the first offer produced by FO and OLNV are the 
same. In this section we do not use any convex transformation of the prices, i.e., 
� = 1 , and we set � = 0.005 . We run the OLNV algorithm throughout the dataset, 
performing updates of qt every hour.

In this section, we accompany the numerical results with some theoretical 
analysis. The function NVt,�(q) approximates well the original function NVt(q) 
when ||Et − x

⊤
t
q|| → ∞ as shown in Proposition 3 in Appendix. Then, an interesting 

point of analysis related to the behavior of both functions in the neighborhood of 
Et − x

⊤
t
q = 0 , defined by 𝜑 = {q ∶ −𝛿 ≤ Et − x

⊤
t
q ≤ 𝛿} with 𝛿 > 0 . Let q1 and q2 

be two vectors with Et − x
⊤
t
q1 ≤ 0 , Et − x

⊤
t
q2 ≥ 0 and q1, q2 ∈ � . The subgradient 

that OLNV computes for each vector changes substantially with �NVt(q1) = �−
t
xt 

and NVt(q2) = −�+
t
xt , which may result in very different updates of the vector q 

for similar values of xt or qt . Conversely, NVt,� is everywhere differentiable, which 
ensures a smooth change of ∇NVt,�(q) for similar values of q − T  and xt.

Figure 1 shows a sample of �NVt and ∇NVt,20 that corresponds to the subgradient 
and gradient of the smooth objective function with � = 20 . Only NVt and NVt,20 are 

Fig. 1   Sample of �NVt and ∇NVt,20 computed in the dataset of the illustrative example

Table 1   Average absolute value ||g|| and standard deviation � of the (sub-) gradients and the metric 
NV

oos(%) computed for three smooth ( � ) and one subgradient ( � ) implementations of the OLNV

� � = 0.05 � = 5 � = 20

||g|| 121.7 122.0 125.6 133.5
� 380.8 379.7 310.4 293.3
NV

oos(%) 5.3 5.2 0.8 −14.5

4  See https://​www.​energ​idata​servi​ce.​dk/.

https://www.energidataservice.dk/
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represented, for the sake of clarity. Most of the spikes in the case of NVt,20 are com-
paratively lower due to the aforementioned smoothing effect in the neighborhood of 
Et − x

⊤
t
q = 0 . This is aligned with the decreasing value of the standard deviation of 

the (sub-)gradients � collated in Table 1 as � increases.
On the contrary, the mean absolute value of the (sub-)gradients, denoted as ||g|| , 

follows the opposite evolution. To understand the rationale behind this evolution, 
we provide Fig. 2 showing three instances of the original and smooth losses. In all 
cases, we see that NVt,� is an upper bound for NVt by a finite amount as expressed 
in Proposition 2 (with a proof available in Appendix). However, Fig. 2(a) shows that 
the minimum of NVt,� is not aligned with the minimum of the original pinball loss 
function. This is true whenever �+

t
≠ �−

t
 (i.e., asymmetric penalties in the market), 

a common situation in markets with a two-price imbalance settlement. Furthermore, 
when one penalty is equal to zero, the minimum is never attained.

Consequently, the gradient computed through (11) almost always introduces a 
deviation that is positive, compared to the true value returned by (12). The value of 
this error is given by the following expression:

The imperfect approximation of NVt,� distorts the magnitude and even the sign 
of the gradients, causing a long-term drift of qt that increases with the smoothing 
parameter � as shown in Fig. 3.

Finally, the last row of Table 1 presents the NVoos(%) obtained by each imple-
mentation with respect to FO. One sees that NVoos(%) deteriorates when � increases. 
The smooth approach increasingly dampens the evolution of the decision vector for 
higher values of � , but at the expense of a biased qt and with non-negligible eco-
nomic losses. Therefore, the smooth approximation does not provide any substantial 

(26)∇NV
t,𝛼−𝜕NVt

(q) =

⎧
⎪⎨⎪⎩

(𝜓+
t
+ 𝜓−

t
)(1 + e

(E
t
−x⊤

t
q)∕𝛼)−1x

t
, E

t
− x

⊤
t
q > 0 ,

−(𝜓+
t
+ 𝜓−

t
)(1 + e

−(E
t
−x⊤

t
q)∕𝛼)−1x

t
, E

t
− x

⊤
t
q < 0 ,

[ −
𝜓+
t
+𝜓−

t

2
x
t
,
𝜓+
t
+𝜓−

t

2
x
t
], E

t
− x

⊤
t
q = 0 .

Fig. 2   Different instances of the original NV and smooth NV0.3 objective function with � = 0.3 and 
u = Et − xtq
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advantage over the subgradient implementation in this application, given that the 
producer is neutral to risk and volatility (only being concerned with expected prof-
its), while there is no technical constraint that encourages a smooth evolution of q. 
As a consequence, we will only use subgradients to implement the OLNV method 
throughout the remainder of the manuscript.

4.2 � Dynamic behavior

In this illustrative example, we compare the tracking ability of OLNV and LP 
approaches in a nonstationary environment. Similar to the previous case, we assume 
that the producer has access to a unique feature and considers a model with a single 
regressor. Again, we sample the forecast from a uniform distribution xt ∼ U(10, 90) 
(MW) and the true wind power generation series is obtained by adding a normal 
noise Et = xt + �t with �t ∼ N(0, 6) (MW). Instead of the real DK1 data, we consider 
two possible scenarios with penalties �+

t
= 1,�−

t
= 3 and �+

t
= 3,�−

t
= 1 , alternat-

ing every two months. This process yields 8 months of data (5760 h) using the last 4 
months (2880 h) as the test set. The start of the test set is aligned with the beginning 
of a two-month scenario with �+

t
= 1 and �−

t
= 3 . The rolling window approach is 

implemented solving the optimization problem (7) with a set of historical samples 
T
in . Then, we use (8) to cast an offer based on the context EF

t
= �(xt, q

LP
t
) . The coef-

ficient qLP
t

 is refreshed every 24 h by solving problem (7), and based on a rolling 
window. The reason for a 24-hour update is twofold: it is aligned with the original 
proposal in Muñoz et al (2020) and we empirically checked that there was little eco-
nomic gain to be obtained with more frequent updates. The computing time in the 
case of an hourly update, for example, took 24 times longer. As will be shown in 
the following, LP based on a rolling window approach only produces small changes 
over the training set, resulting in similar qLP

t
 . We train four versions of the LP model 

Fig. 3   Example of the evolution of the coefficient q for different implementations of OLNV
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with |Tin| = 720 , 1440, 2160 and 2880 (1, 2, 3, or 4 months), denoted as LP-1 M to 
LP-4 M, respectively. We use the first four months of the dataset to construct the ini-
tial training sets. Although the concept of training is not strictly the same for OLNV 
(since it always learns on the fly, as new samples become available), only the last 
month of the training set is used to update the value of qt , originally initialized with 
q1 = 1 , to resemble a model that has been operating for some time.

Figure 4 depicts the evolution of the single regressor qt over the test set, together 
with the optimal q∗ for each penalty scenario. Over the first two months, the higher 
value of �−

t
 penalizes offers above the true production EF

t
> Et and, consequently, 

the optimal strategy is to underestimate EF
t
 with q∗ < 1 . Over the final months, we 

observe the opposite.
As one may expect, the evolution of the decision vector of LP models is smoother 

than in the case of OLNV, given that the former approach considers many historical 
samples at once to perform the update. However, Fig. 4 also shows that the trajectory 
of qt produced by the rolling window models LP-1  M to LP-4  M is substantially 
lagged with respect to the change in the penalty scenario (emphasized by different 
background colors). This delay increases with the length of the training set, to the 
point that LP-4 M completely overlooks it. Note that the length of the training set in 
LP-4 M and the period of the penalty scenarios are identical. Therefore, the number 
of samples that penalizes under- or overproduction is equal and remains constant. As 
a result, LP-4 M offers no incentive to overestimate or underestimate the forecast, 
yielding the same value as FO (neglecting slight deviations due to the finite sample 
and noise).

Figure  4 additionally shows that OLNV is substantially faster at tracking the 
optimal q∗ . In contrast, the LP problem  (7) determines the decision qt with the 
best performance on average in the training set, assuming that all the samples in 
the set are equally probable representations of future outcomes. Conversely, OLNV 
only uses the most recent information to perform a point-wise update that swiftly 
captures changes in the environment.

The tracking capability of both approaches has an impact on their economic 
performance. Table  2 summarizes the out-of-sample NVoos(%) obtained by each 
approach in the test set. In line with the previous analysis, LP-4 M obtains the same 
performance as FO. The other three LP methods experience decreasing NVoos(%) as 
the length of the training set and the lag of qt increase. Finally, the adaptability of 
OLNV allows outperforming the LP approaches.

In this simplified example, we could have analyzed LP models with a shorter 
training set, probably resulting in reduced lag and better performances. However, in 
a realistic situation with a huge feature space and random penalties, months of data 
are typically required to capture the underlying relationships and generalize well in 
the out-of-sample set (Muñoz et al 2020). Therefore, the length of the training set 

Table 2   Out-of-sample NVoos 
(%) obtained in the test set of 
the illustrative example

OLNV LP-1M LP-2M LP-3M LP-4M

NV
oos (%) 13 5 −5 −6 0
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of the LP models has to be selected as a trade-off; enough data is required to learn 
a policy that generalizes well, but shorter sets capture dynamics better. On the con-
trary, the OLNV approach completely avoids this dichotomy, providing a fast and 
effective method that adapts to uncertain parameters generated by nonstationary 
environment.

5 � Case study

Electricity markets are in the midst of a rapid development towards reducing the 
time between market transactions and the actual exchange of electricity. Examples 
of this transformation are given, i.e., by the reduction of the electricity lead time 
(Australian NEM or the Californian CAISO5) or by the development of new intraday 
markets (OMIE intraday markets or NordPool ELBAS6). Inspired by this trend, we 
analyze a case study that considers an online forward market that takes place every 
hour followed by a balancing market with a two-price imbalance settlement. The 
gate closure of the forward market happens just before the start of the next period. 
We assume that the wind farm continuously participates in the market and her offer 
is always accepted.

In the following we first describe the data used in this case study. Then, several 
benchmark methods are proposed to compare against OLNV. Finally, in a last part, 
we analyze the numerical results obtained, based on regret, economic performance 
and computational costs.

Fig. 4   Evolution of q produced by five models over the test set. The blue and orange shaded periods 
correspond to the penalty scenarios �+

t
= 1,�−

t
= 3 and �+

t
= 3,�−

t
= 1 , respectively. The entry q∗ cor-

responds to the best single vector for each penalty scenario

5  See https://​aemo.​com.​au and http://​www.​caiso.​com/.
6  See https://​www.​omie.​es/ and https://​www.​nordp​oolgr​oup.​com/.

https://aemo.com.au
http://www.caiso.com/
https://www.omie.es/
https://www.nordpoolgroup.com/
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5.1 � Data and experimental setup

This case study is based on historical data compiled by the Danish TSO, Energi-
net.dk, since it includes market prices and several wind power forecasts that can 
be employed as input features. We collect the true and day-ahead forecast issued 
by Energinet for the on- and offshore wind power production of both DK1 and 
DK2 Danish bidding zones together with the day-ahead and regulation prices of 
DK1 for the period 01/07/2015 to 06/04/2021 (mm/dd/yyyy). The day-ahead spot 
and regulation prices are mapped into hourly penalties through equations (2) and 
(3) and some small negative values, obtained due to rounding errors, are filtered 
out.

The raw wind power forecast series are also processed to suit our needs. Given 
that the installed capacity of the four wind categories shown in Table  3 varies 
differently over the dataset, we independently normalize each series to lie between 
0 and 100 MW, a figure that can easily represent the capacity of a large wind farm. 
According to the Danish TSO, the raw wind power forecasts are issued between 12 
to 36 h ahead, although the exact time is difficult to know because no timestamp is 
provided. To overcome this issue, we use a standard ordinary least square regression 
model to produce enhanced forecasts with an accuracy comparable to an hour-ahead 
forecast and, therefore, suitable for our case study. We feed each raw wind power 
forecast into an independent linear regression model together with the last three 
lags of the true historical wind realization of the pertaining series. Finally, we use 

Table 3   Installed capacity 
in MW by bidding zone and 
technology

DK1 DK2

Years Onshore Offshore Onshore Offshore

2015 2966 843 608 428
2016 2966 843 608 428
2017 2966 843 608 428
2018 3664 1277 759 423
2019 3669 1277 757 423
2020 3645 1277 757 423
2021 3725 1277 756 423

Table 4   Average RMSE (MWh) of the original forecast, the persistent (naive 1  h lag) and improved 
1 h-ahead forecast computed on the out-of-sample period 07/01/2015 to 06/04/2021 with a normalized 
generation capacity of 100 MW

Model DK1 DK2

Onshore Offshore Onshore Offshore

Original 6.19 9.55 6.77 10.68
Persistent 3.36 6.39 3.90 7.49
Improved 2.72 5.70 3.34 6.66
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the first 6 months of our dataset to independently train each of the four predictive 
models, one per column of Table 3.

Table  4 compares the root mean square error (RMSE) of the original and 
improved out-of-sample forecast against the naive benchmark provided by the first 
lag of each series (the wind power production of the previous hour), also known 
in the literature as persistence. Results show that the improved hour-ahead series 
significantly outperforms both original forecasts and persistence. As a byproduct, 
note that the wind power forecasts issued by the Danish TSO have quality metrics 
(e.g., RMSE) that are consistent with expectation, i.e., with offshore conditions 
being harder to predict than onshore conditions, while DK2 also having lower 
predictability since having small capacity and coverage area.

Once we have processed the wind power production series, we explain how we 
use them in our case study. The power generation of the wind farm offering in the 
market is simulated using the normalized onshore time-series of the Danish DK1 
bidding zone, which is consistent with the bidding zone of the imbalance penalties 
utilized. The four hour-ahead forecasts of the wind power production of DK1 and 
DK2 are available to the producer as contextual information. Although additional 
wind power forecasts of neighboring bidding zones could have been used as fea-
tures, we restrict ourselves to the ones produced by the Danish TSO to avoid poten-
tial inconsistencies regarding the issuing time that could cast doubt on the results 
obtained (Muñoz et al 2020).

Given that our goal is to reduce the imbalance cost incurred by the wind 
farm, we also consider several price-related features to be used as contextual 
information. To this end, we include the first lag of the imbalance penalties �+

t−1
 

and �−
t−1

 in the vector of contextual information. As commented in Sect.  2, it is 
well known that the ratio between the penalties provides valuable information 
about the optimal decision of the newsvendor model and, therefore, we add the 
series rt−1 = �+

t−1
∕(�+

t−1
+ �−

t−1
+ �) where � = 10−5 is a constant that helps better 

condition the denominator. Finally, we add a column of ones that enable one of the 
regressors to become an intercept, completing our feature set.

As a summary, let Eon1
t

,E
of1
t ,Eon2

t
,E

of2
t  denote the hour-ahead wind power forecast 

of DK1 onshore, DK1 offshore, DK2 onshore and DK2 offshore, respectively. Then, 
at the moment of delivering the offer, the producer has available a feature vector 
xt = [1,Eon1

t
,E

of1
t ,Eon2

t
,E

of2
t ,𝜓+

t−1
,𝜓−

t−1
, rt−1]

⊤ to infer the optimal offer EF
t
.

5.2 � Benchmark methods and implementation details

In this section, we describe several benchmark methods against which we com-
pare the performance of OLNV. The first benchmark approach is the enhanced 
hourly forecast of DK1 itself, produced through the ordinary least square regres-
sion model described before. Although a prediction that minimizes the RMSE may 
seem naive, one can expect that the deviation cost incurred by the producer vanishes 
as the RMSE of the forecast approaches zero. Therefore, an hour-ahead forecast 
is expected to perform relatively well. We also use this hour-ahead forecast as the 
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baseline to compute the metric NVoos(%) for the rest of the approaches in the way 
described in Sect. 3.3.

The second benchmark is that of Muñoz et al (2020), based on two-step approach 
using two variants of (7). In the first step, the first model only considers wind-related 
features plus the intercept and set �+

t
= �−

t
= 1, ∀t . The series resulting from such 

model can be interpreted as an enhanced forecast of the wind energy production 
with a reduced mean absolute error. In a second step, this enhanced forecast is fed 
into  (7), considering this time the true historical penalties �+

t
 and �−

t
 to correct 

for market patterns but neglecting the capacity constraint (7b). The training set is 
updated following a rolling window, adding new samples and eliminating the same 
amount of the oldest. We replicate this method, called LP2 (Linear Programming 
2-steps), considering the four-hour-ahead enhanced wind power forecasts of DK1 
and DK2 as the input of the first step, this is, xt = [1,Eon1

t
,E

of1
t ,Eon2

t
,E

of2
t ]⊤ . In line 

with their findings, we choose a training set of |Tin| = 4320 (6 months) and a rolling 
window step of 24 h.

In addition, we analyze a rolling window model, called LP, that solves exactly (7) 
and (8) using the full vector of available contextual information. This method is the 
one from the illustrative example in Sect. 4.2, but with different inputs. Given the 
similarities with the other rolling window approach LP2, we also choose a training 
set length of 6 months and a rolling window step of 24 h.

Finally, we discuss a benchmark that cannot be implemented in practice, inspired 
by the static regret metric defined in (23). We assume perfect information about the 
whole out-of-sample dataset and consider (7) to compute the best linear model in 
hindsight, determined by the vector qH . Once this optimal single vector is computed, 
the whole sequence of offers is determined through EF

t
= �(xt, q

H) . We name this 
benchmark FX (for FiXed).

Next, we discuss the implementation of OLNV in this case study. The OLNV 
algorithm does not need to solve an optimization problem but requires initializing 
two parameters. To choose � and � , we perform an offline grid search on the chunk 
of data spanning 07/01/2015 to 12/31/2015. As candidate values for � we consider 
[0, 0.1,… , 1] and for � we analyze [10−2, 10−3, 10−4] . The grid search is carried out 
executing 3 × 11 = 33 independent instances of the OLNV algorithm, initializing 
each time the OLNV regressor associated with the onshore DK1 forecast to 1 and 
the rest of the values to 0.01. The average NVoos(%) obtained by each instance is 

Table 5   Out-of-sample NVoos (%) for different combinations of parameters � and �0 over the span 
07/01/2015 to 12/31/2015

 Highlighted in black are shown the best result and parameters selected

� �

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−2 −13.8 19.2 33.7 19.2 27.7 8.4 39.7 29.2 32.3 32.3 42.0

10−3 12.5 27.1 33.7 36.9 39.2 39.9 42.1 42.2 42.0 41.6 41.5

10−4 −5.2 1.3 4.4 6.0 7.0 7.7 8.2 8.6 8.9 9.4 9.4
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collated in Table 5. After analyzing the results, we select the combination of values 
� = 0.7 and � = 0.001 which achieve the highest NVoos(%) . Even though in this 
case study a grid search was used for the sake of clarity, other more complex cross-
validation techniques (Refaeilzadeh 2009) can be used instead to select the values of 
� and � , including repeating this process periodically to update the values of � and � 
after a change in the environment.

In this case study, we assume a balanced penalty anchor �+
= �

−
= 1 . Again, we 

initialize the OLNV regressor associated with the onshore DK1 forecast to 1 and the 
rest of the values to 0.01. In other words, we start the online offering with a strategy 
very close to FO, mainly relying on the forecast of the wind energy production. We 
use the next 6 months (01/01/2016 to 06/30/2016) to update (initialize) qOL with the 
aim of having a fair comparison against LP and LP2.

The performance of all the methods presented in this section is evaluated using 
the dataset spanning from 07/01/2016 to 06/04/2021 (5 years with 43 200 samples). 
The optimization models LP, LP2, and FX are implemented with the Python 
package Pyomo (Bynum et  al 2021) and solved through the optimization solver 
CPLEX,7 whereas the implementation OLNV is developed by the authors based on 
standard Python packages and uploaded to an open repository.8

5.3 � Numerical results

Next, we discuss the results obtained in this case study. We start examining the 
regret suffered by OLNV over the aforementioned out-of-sample dataset with a 

Fig. 5   Average dynamic regret Rd
T
∕T  for l = 3, 6, 12 months and static regret Rs

T
∕T  updated every 3 

months (denoted as s) of the OLNV method

7  IBM ILOG CPLEX Optimization Studio. See https://​www.​ibm.​com/​analy​tics/​cplex-​optim​izer.
8  Experiment’s code and data available at: https://​github.​com/​Migue​l897/​online-​tradi​ng-​wind-​energy.

https://www.ibm.com/analytics/cplex-optimizer
https://github.com/Miguel897/online-trading-wind-energy
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length of D = 43, 200 hours (60 months). Let T
oos

j
= ∪

j

i=1
T

oos

i
 and recall 

ut = qi , ∀t ∈  oos
i  . We assess the average dynamic regret Rd

T
∕T  for each sequence 

T
oos

j
, j = 1, ...,D∕l with partition length l = 2160 , 4320, 8640 hours (3, 6, 12 

months). As an additional case, we compute the evolution of the static regret for a 
sequence T oos

j
, j = 1, ..., 20 with a step of l = 2160 hours (3 months). In each step, 

we refresh the best single action in hindsight as qH
j
= argmin

q∈QH

j

∑
t∈T oos

j
NVt(q) 

and ut = q
H

j
∀t.

The four aforementioned regret series are depicted in Fig.  5. As expected, the 
average dynamic regret incurred by OLNV deteriorates quickly as l decreases since 
lower values of l translate in a more challenging benchmark closer to the the worst-
case regret defined in (24). Nevertheless, Fig. 5 clearly shows that OLNV achieves 
a sublinear static regret, i.e., limT→∞ supRs

T
∕T ≤ 0 . This is also the case for the 

dynamic regret with partitions of length l ≥ 6 months, proving the ability of OLNV 
to track dynamic environments.

The economic gains obtained by each method are assessed through the NVoos(%) . 
The average values achieved over the evaluation dataset are collated in Table 6. First, 
note that all methods outperform the naive FO strategy of offering the DK1 forecast, 
obtaining positive values and demonstrating that this set of features contributes to 
reducing the deviation cost.

The LP2 method is developed in a context where recent lags in the penalties are 
not available. Indeed, the lack of penalty-related features translates into a modest 
score, showing the evident benefits of disclosing recent information in electricity 
markets, i.e., reducing the lead time. Even though FX determines the optimal qH in 
hindsight (i.e., under perfect information), its choice is limited to a single vector for 
the whole horizon. The fact that several approaches perform better than FX proves 
the dynamic behavior of the uncertain parameters and the need for updating the 
decision vector. Therefore, it does not come as a surprise that LP improves the first 
two approaches as it relies on the full vector of features and periodically updates 
q
LP
t

 . However, the superior adaptability of OLNV allows it to obtain the best score, 
achieving an additional 7.6% compared to LP and a total 38.6% deviation cost 
reduction compared to FO. The latter figure translates into an extra 25,930.22 €/year 
on average for a wind farm with a capacity of 100 MW.

Finally, the last row of Table 6 summarizes the computational time corresponding 
to four approaches. The FX method requires little time as it only solves a single 
optimization problem for the whole horizon. This contrasts with the significant 
amount of time required by the constant re-optimization of LP and LP2. It is 
noteworthy that even though OLNV produces 24 times more updates of the vector 
qt , the time invested is several orders of magnitude lower. In conclusion, OLNV is 

Table 6   Out-of-sample NVoos 
(%) and execution time (s) 
over the span 07/01/2016 to 
06/04/2021

LP2 FX LP OLNV

NV
oos(%) 3.8 24.6 31.0 38.6

Time (s) 23366 53 16077 179
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up to the challenge of the electricity markets transformation achieving significant 
cost reduction together with exceptional computational performance.

6 � Conclusions

This paper develops a new algorithm, named OLNV, combining a variant of 
the online gradient descent with recent advances that extends the newsvendor 
model to consider contextual information directly. The component-wise update 
of the learning rate enables the use of features with different scales seamlessly. In 
nonstationary environments, conventional stochastic approaches may consider 
misleading old samples in their training sets. On the contrary, our algorithm tracks 
the most recent information of the gradients, adapting the learning rate to follow the 
dynamics of the uncertain parameters and potentially obtaining higher profits. The 
closed-form expressions derived to compute the projection into the feasible region 
and a gradient of the objective function yield a efficient algorithm that can be used 
in computationally expensive problems. We envision the use of OLNV in future 
electricity markets that evolves toward continuous offering with reduced lead time. 
In particular, we apply this algorithm to the wind farm problem offering in an hourly 
forward market with a dual-price settlement for imbalances.

Several numerical experiments are carried out to assess the properties of the pro-
posed OLNV algorithm. In the first illustrative example, we compare the behavior 
of two alternative implementations, namely, a subgradient approach and a smooth 
approximation of the original newsvendor function. The numerical and theoreti-
cal analysis provided in this example indicates that computing subgradient on the 
original objective function proves more profitable since it avoids update errors that 
may be introduced by the smooth approximation. Consequently, we determined that 
the subgradient implementation was the most suitable to this application and used it 
throughout the rest of the numerical experiments. Nevertheless, the smooth approxi-
mation could be utilized in other applications where other technical concerns advice 
a smooth update.

The second example shows the adaptability of the OLNV algorithm to nonsta-
tionary environments, clearly outperforming other stochastic approaches that opti-
mize (using mathematical programming techniques) over a training set of past infor-
mation. This superior performance is justified by the point-wise update that only 
uses the most recent information. Our case study, built upon real data of the Danish 
TSO Energinet, shows that OLNV achieves a 38.6% cost reduction against using a 
point forecast as offer and 7.6% compared to a state-of-the-art method. These sig-
nificant improvements contribute to accelerating the integration of renewable energy 
technologies. Furthermore, we empirically analyze several dynamic definitions of 
regret, showing the desired sublinear convergence against most benchmarks.

Although this research focused on wind energy producers, OLNV is readily 
applicable to managing a portfolio of variable renewable energies with zero 
marginal cost, including wind, solar and other technologies. Similar algorithms 
can be developed when the producer’s portfolio includes other assets such as loads, 
thermal power plants, or energy storage facilities, replacing the aggregated source 
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of uncertainty, i.e., the variable net energy production, by a linear decision rule. 
In this case, the projection step on the feasible region would likely involve solving 
a quadratic optimization program that can still be efficiently solved with modern 
solvers, when the feasible region is convex. Another attractive front is extending 
the OLNV algorithm to address inter-temporal constraints, observing a similar note 
with regard to the feasible region as in the previous case. This may require first 
generalizing the newsvendor framework to offering in electricity markets though.

Future work also includes delving into the theoretical guarantees that this 
algorithm offers in terms of regret. On a different front, a wealth of other algorithms 
within the field of online learning can be applied to this problem, potentially bringing 
additional benefits such as faster convergence rates or improved performance. 
Similarly, variable selection techniques could help determine the subset of the 
available feature streams that provide the most economic value, whereas nonlinear 
mapping, i.e., kernels or generalized additive models (GAMs), can extend the 
regression capabilities of the method. Another exciting line of research concerns 
the risk analysis of the producer, where other metrics can be used instead of the 
expected value to create risk-averse strategies.

Appendix: Smooth function properties

This appendix provides a lemma and several propositions related to the smooth 
approximation NVt,� defined in (10). Some of the proofs in this appendix are based 
on the proofs provided in Zheng (2011). In this appendix we assume that �+

t
,�−

t
≥ 0 

and 𝜓+
t
+ 𝜓−

t
> 0∀t . Next, we define an auxiliary function St,�(u) , St,� ∶ ℝ → ℝ 

with 𝛼 > 0 as follows

where u ∈ ℝ . We use this function in the proofs covered within this appendix. First, 
we prove the convexity of St,�.

Lemma 1  For any given 𝛼 > 0 , the function St,� , defined in (27), is a convex function.

Proof  From the definition of St,� in (27), we calculate that

for any u ∈ ℝ since 𝜓+
t
+ 𝜓−

t
> 0 and 𝛼 > 0.

We use this intermediate result to prove the convexity of NVt,� in the following 
Proposition. 	�  ◻

Proposition 1  For any given 𝛼 > 0 , the function NVt,� , defined in (10), is a convex 
function of q.

(27)St,�(u) = �+
t
u + �(�+

t
+ �−

t
) log(1 + e−u∕�) ,

(28)
d2St,𝛼(u)

du2
=

𝜓+
t
+ 𝜓−

t

𝛼

e
−

u

𝛼

(1 + e
−

u

𝛼 )2
> 0 ,
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Proof  Let u = Et − x
⊤
t
q in (27). Thus,

For 0 ≤ � ≤ 1 and any q1 and q2 , we have

where the inequality in (31) follows from the convexity of St,� , proved in Lemma 1. 
Then, using (A3), the above inequality renders

showing that NVt,� is a convex function on q.
Next, we show that NVt,� asymptotically approaches NVt for � → 0 . We also show 

that the function NVt,� upper bounds NVt for all q ∈ ℝ
p . 	�  ◻

Proposition 2  Let NVt and NVt,� be the functions defined in  (9) and (10), in that 
order, with 𝛼 > 0 . Then, we have

for any q ∈ ℝ
p . Thus,

Proof  When Et − x
⊤
t
q ≥ 0 , we have that

hence,

for Et − x
⊤
t
q ≥ 0 . When Et − x

⊤
t
q < 0,

While

(29)NVt,𝛼(q) = St,𝛼(Et − x
⊤

t
q) .

(30)

NVt,𝛼(𝜔q1 + (1 − 𝜔)q2) = St,𝛼(Et − x
⊤

t
(𝜔q1 + (1 − 𝜔)q2))

= St,𝛼(Et − 𝜔x⊤
t
q1 − (1 − 𝜔)x⊤

t
q2)

= St,𝛼(𝜔(Et − x
⊤

t
q1) − (1 − 𝜔)(Et − x

⊤

t
q2))

(31)≤ 𝜔St,𝛼(Et − x
⊤

t
q1) + (1 − 𝜔)St,𝛼(Et − x

⊤

t
q2) ,

(32)NVt,�(�q1 + (1 − �)q2) ≤ �NVt,�(q1) + (1 + �)NVt,�(q2) ,

(33)0 < NVt,𝛼(q) − NVt(q) ≤ 𝛼(𝜓+
t
+ 𝜓−

t
) log 2 ,

(34)lim
�→0+

NVt,�(q) = NVt(q) .

(35)NVt,𝛼(q) − NVt(q) = 𝛼(𝜓+
t
+ 𝜓−

t
) log(1 + e−(Et−x

⊤
t
q)∕𝛼) ,

(36)0 < NVt,𝛼(q) − NVt(q) ≤ 𝛼(𝜓+
t
+ 𝜓−

t
) log 2 ,

(37)
NVt,𝛼(q) − NVt(q) = (𝜓+

t
+ 𝜓−

t
)(Et − x

⊤

t
q)

+ 𝛼(𝜓+
t
+ 𝜓−

t
) log(1 + e−(Et−x

⊤
t
q)∕𝛼)

(38)= 𝛼(𝜓+
t
+ 𝜓−

t
) log(1 + e(Et−x

⊤
t
q)∕𝛼) .
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since Et − x
⊤
t
q < 0 . This shows that NVt,�(q) − NVt(q) also falls in the range 

(0, �(�+
t
+ �−

t
) log 2) for Et − x

⊤
t
q < 0 . Thus, (33) is proved. Equation (34) follows 

directly by letting � → 0+ in (33).
Finally, we show that for high values of ||Et − x

⊤
t
q|| the function NVt,� 

asymptotically approximate NVt . 	�  ◻

Proposition 3  Let NVt and NVt,� be the functions defined in  (9) and (10), in that 
order, with 𝛼 > 0 . Then, when ||Et − x

⊤
t
q|| → ∞ we have that NVt,� − NVt → 0.

Proof  For the sake of a clearer exposition we define 𝜇(q) = Et − x
⊤
t
q , where 

� ∶ ℝ
p
→ ℝ . When �(q) → +∞ , we have that

When �(q) → −∞ , and using (38), we have that

Combining both cases, this proposition is proved. 	�  ◻
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