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a b s t r a c t 

Covering problems constitute a fundamental family of facility location problems. This paper introduces a 

new exact algorithm for two important members of this family: (i) the maximal covering location prob- 

lem (MCLP), which requires finding a subset of facilities that maximizes the amount of customer demand 

covered while respecting a budget constraint on the cost of the facilities; and (ii) the partial set covering 

location problem (PSCLP), which minimizes the cost of the open facilities while forcing a certain amount 

of customer demand to be covered. We study an effective decomposition approach to the two problems 

based on the branch-and-Benders-cut reformulation. Our new approach is designed for the realistic case 

in which the number of customers is much larger than the number of potential facility locations. We 

report the results of a series of computational experiments demonstrating that, thanks to this decompo- 

sition techniques, optimal solutions can be found very quickly for some benchmark instances with one 

hundred potential facility locations and involving up to 15 and 40 million customer demand points for 

the MCLP and the PSCLP, respectively. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Covering problems constitute an important family of facility

ocation problems with widespread applications. These problems

mbed a notion of proximity (or coverage radius) that specifies

hether a given demand point can be served or “covered” by a po-

ential facility location. Proximity is often defined in terms of dis-

ance or travel time between points. A demand point is then said

o be covered by a facility if it lies within the coverage radius of

his facility. One of the best known members of this family is the

et covering location problem (SCLP) in which one must choose a

inimum cost set of facilities so that every demand point is cov-

red at least once. 

The drawback of the SCLP is that it often leads to costly or

nrealistic solutions because it gives the same importance to ev-

ry demand point, regardless of its position and size. To overcome

his weakness, two main variants have been studied in the lo-

ation theory literature: (i) the maximal covering location prob-

em (MCLP) requires choosing a subset of facilities that maximize

he demand covered while respecting a budget constraint on the
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ost of the facilities; (ii) the partial set covering location problem

PSCLP) minimizes the cost of the open facilities while forcing a

ertain amount of demand to be covered. The MCLP is often de-

ned as the problem of maximizing demand coverage with a fixed

umber of facilities, which is actually a special case of the MCLP

ddressed here obtained by assigning a cost of 1 to every facility

nd setting the available budget to the number of desired facilities.

Location problems with covering objectives or constraints are

ommonplace in the service sector (schools, hospitals, libraries,

estaurants, retail outlets, bank branches) as well as in the location

f emergency facilities or vehicles (fire stations, ambulances, oil

pill equipments) (see, e.g., Farahani, Asgari, Heidari, Hosseininia, &

oh, 2012; García & Marín, 2015; Snyder, 2011 ). They also find ap-

lications in many other areas such as in the location of telecom-

unications antennas and the installation of watchtowers or mon-

toring equipment ( Murray, 2016 ). While many applications involve

 relatively small number of demand points and potential facil-

ty locations, and can therefore be solved in a satisfactory way

y existing heuristics or by general-purpose solvers, there are also

ases where the number of demand points can run in the thou-

ands or even millions. As noted by Murray (2016) , discrete cover-

ng problems are often an attempt to discretize location planning

roblems with discrete potential facility locations but continuously

istributed customer demand. Even though there exist algorithms
composition for very large scale partial set covering and maximal 
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to handle continuous space covering location problems ( Plastria,

2002; Wei & Murray, 2015 ), it is often more practical to approx-

imate these problems and solve them as if they were discrete.

The optimal solution obtained by this discretization process can

be very sensitive to the level of discretization of the continuous

demand (see, e.g., Daskin, Haghani, Khanal, & Malandraki, 1989 ).

However, the finer the discretization, the harder it is to solve the

resulting optimization problem. 

It has often been observed that the LP relaxation value of a

mixed integer programming (MIP) formulation to the SCLP pro-

vides a very good lower bound and that the continuous solution

has few fractional variables ( ReVelle, 1993; Snyder, 2011; Toregas,

Swain, ReVelle, & Bergman, 1971 ). In particular, for the case where

the objective is to minimize the number of open facilities, the LP

relaxation solution is often integral. This makes it relatively easy

to solve the SCLP exactly or to obtain high quality heuristic solu-

tions. Church and ReVelle (1974) and Snyder (2011) also report that

the LP relaxation of the MCLP is often integer. Nevertheless, the

integrality gap tends to grow with the size of the instances, mak-

ing the solution of large-scale instances a challenge for general-

purpose mixed-integer programming solvers. Surprisingly, very few

exact algorithms have been developed to solve the MCLP and the

PSCLP. 

The primary aim of this paper is to introduce a new decompo-

sition technique based on Benders decomposition that is capable of

solving large-scale instances of the two problems for the realistic

case where the number of demand points is much larger than the

number potential facility locations. As mentioned above, discrete

location problems are often used to model situations that inher-

ently involve information and decisions associated to a continuous

customer demand. Hence, if one can afford to handle large sets of

demand points, the quality of the resulting solution can be signif-

icantly improved. While many heuristics have been described for

the MCLP, exact algorithms are very scarce. In addition, the PSCLP

has received very little attention in the scientific literature despite

its practical relevance. Because these two problems have similar

features, we propose to solve them with a unified methodology

that takes advantage of their particular structure. The resulting al-

gorithm yields optimal solutions to instances with huge sets of

demand points in reasonable computing times. We also introduce

and make available new large-scale instances that can be used as

benchmark by other authors interested in covering location prob-

lems. 

The remainder of the paper is organized as follows.

Section 2 first reviews the relevant literature on the SCLP, MCLP

and PSCLP. This is followed in Section 3 by the formal definition

and mathematical formulation of the two problems under study.

Sections 4 and 5 then describe our Benders decomposition ap-

proach. Computational results are presented in Section 6 and the

conclusion follows in Section 7 . 

2. Literature review 

To the best of our knowledge, the first mention of the mini-

mum cost covering problem in the context of location can be at-

tributed to Hakimi (1965) , who gave as an example the problem

of locating the minimum number of policemen so that everyone

is within a given distance d from a policeman. Hakimi represents

the problem with a Boolean function defined over the vertices of

a graph and suggests a solution procedure based on enumeration.

A few years later, Toregas et al. (1971) introduced the first integer

programming formulation of the problem and discussed its appli-

cation to the location of emergency service facilities in a discrete

space. In related research, Walker (1974) formulated the problem

of assigning ladder trucks to fire stations as a minimum cost cov-

ering problem and proposed a heuristic to solve it. 
Please cite this article as: J.-F. Cordeau, F. Furini and I. Ljubi ́c, Benders de

covering location problems, European Journal of Operational Research, 
The MCLP was first introduced by Church and ReVelle

1974) who provide an integer programming formulation of the

roblem. Megiddo, Zemel, and Hakimi (1983) explain that the

roblem is NP-hard by reduction from the minimum dominating

et problem. Murray (2016) provides a recent survey of the MCLP

nd lists a wide array of applications. It should be noted that most

apers on this problem impose an upper bound on the number of

acilities instead of the more general budget constraint considered

ere. 

Because the LP relaxation of the standard MIP formulation of

he MCLP provides good lower bounds, the problem is often solved

y a branch-and-bound algorithm in which the bounds are com-

uted by solving the continuous relaxation of the problem by the

implex algorithm. In the computational experiments performed

y Snyder (2011) , for more than 95% of the instances solved the

P relaxation of the problem was integral and no branching was

equired. These experiments were performed on instances with up

o 800 demand points and facility locations and a limit of 16 on

he number of open facilities. The more general budget constraint

hat we consider here may lead to more fractional solutions than

hen one imposes a simple upper bound on the number of facili-

ies. In addition, instances with millions of demand points become

ntractable for general-purpose solvers and just solving their LP re-

axation can be a challenge. 

We are aware of only one exact algorithm for the MCLP. Downs

nd Camm (1996) dualize the covering constraints by Lagrangian

elaxation to obtain a binary knapsack problem. They then use sub-

radient optimization to solve the Lagrangean dual. Since the La-

rangean subproblem has the integrality property, the best bound

btained in this way is equal to the LP relaxation lower bound. This

ethod is embedded in a branch-and-bound tree to obtain an op-

imal integer solution. The authors reported results on several data

ets and the largest instance considered had 2241 demand points

nd 74 potential facility locations. 

Several heuristics exist for the MCLP, many of which rely

n a Lagrangean relaxation of the covering constraints. Church

nd ReVelle (1974) describe a greedy heuristic that adds at each

teration the facility that increases the most the objective function

alue. They also introduce a variant of the heuristic that checks

t each iteration whether swapping an open facility for a closed

ne can improve the solution. Galvão and ReVelle (1996) de-

cribe a Lagrangean heuristic that uses the same relaxation of

he covering constraints as Downs and Camm (1996) . They also

mploy subgradient optimization to solve the Lagrangean dual.

easible integer solutions are obtained by using a heuristic similar

o that of Church and ReVelle (1974) . Galvão, Espejo, and Boffey

20 0 0) compare heuristics based on Lagrangean relaxation or a

urrogate relaxation. Senne, Pereira, and Lorena (2010) introduce

 decomposition heuristic that relies on a partial relaxation of

he covering constraints, which yields stronger bounds than those

btained from the LP relaxation. 

Several metaheuristics have also been described for the MCLP.

n particular, ReVelle, Scholssberg, and Williams (2008) apply the

oncept of heuristic concentration to the MCLP. Heuristic concen-

ration consists in first reducing the solution space by discarding

otential facility locations that are not likely to appear in an opti-

al solution, before applying branch-and-bound or a local search

euristic to the reduced problem. Zarandi, Davari, and Sisakht

2011) use a genetic algorithm to solve large-scale instances of the

roblem with up to 2500 nodes. Finally, Máximo, Nascimento, and

arvalho (2017) describe a guided adaptive search algorithm which

hey apply to instances with up to 7730 nodes. 

As mentioned in the previous section, the PCSLP has been the

bject of little research after its introduction by Daskin and Owen

1999) , who solved the problem with a Lagrangian heuristic sim-

lar to that of Galvão and ReVelle (1996) and reported results on
composition for very large scale partial set covering and maximal 
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Fig. 1. Example instance with 4 potential facilities and 8 customers. 
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nstances with up to 150 nodes. There are nonetheless other

tudies addressing similar partial set covering problems in other

ontexts than location. For example, Bilal, Galinier, and Guibault

2014) describe an iterated tabu search heuristic for a variant of

he problem arising in a mining application. Finally, Berman, Krass,

nd Drezner (2003) study a related problem in which customers

hose distance falls between a lower and an upper bound from

heir nearest facility are only partially covered. 

We refer to the recent book of Laporte, Nickel, and Gama

2015) for a general overview of location problems and to the

urvey chapters of Snyder (2011) and García and Marín (2015) for

pecific reviews on covering problems. Farahani et al. (2012) also

rovide a classification and survey of many variants of covering

ocation problems. 

. Problem definition 

In this section, we formally define the two problems that are

onsidered throughout the paper and we provide a mathematical

ormulation for each one. 

In the covering facility location problems studied in this paper,

e are given a set of potential facility locations I with opening

osts f i ≥ 0, i ∈ I , and a set of customer locations J such that each

ustomer j ∈ J is associated with a demand d j ≥ 0. For each cus-

omer j , we are also given a subset I ( j ) ⊆I of facility locations that

an “cover” j , i.e., that can fully serve the demand d j . Similarly, let

 ( K ) ⊆J for a subset of facilities K ⊆I , be the subset of customers cov-

red by K , and let J(i ) = J({ i } ) , for i ∈ I . For a subset of customers

 

′ ⊆J , let D (J ′ ) = 

∑ 

j∈ J ′ d j be the total demand of the customers in

 

′ . Finally, let J s ⊂ J be the set of customers that are covered by a

ingle facility, i.e., J s = { j ∈ J : | I( j) | = 1 } . In particular, for j ∈ J s , let

 ( j ) be the single facility that can cover this customer. Similarly, for

 subset of facilities K ⊂ I , let J s ( K ) be the set of all customers that

re covered by a single facility from K , i.e.: 

 s (K) = { j ∈ J : | I( j) ∩ K| = 1 } . 
In Fig. 1 , we provide an example with 4 facilities (represented

y the white vertices) and 8 customers (represented by the grey

ertices). The incident edges to a customer vertex are linked to

he facilities covering this customer, i.e., to the set I ( j ); while the

ncident edges to a facility vertex represent the set of customers

overed by the facility i , i.e., the set J ( i ). For a subset of facilities

 = { 1 , 2 } , we graphically illustrate definitions of the terms intro-

uced above. 
Please cite this article as: J.-F. Cordeau, F. Furini and I. Ljubi ́c, Benders de

covering location problems, European Journal of Operational Research, 
.1. The partial set covering location problem (PSCLP) 

Given a parameter D > 0, the PSCLP asks for a subset of facilities

o open so as to make sure that the covered customer demand is

t least D and the cost for opening the facilities is minimized. 

The problem can be formulated with two sets of binary vari-

bles. For every potential facility location i ∈ I , let y i take value 1

f and only if facility i is open and, for every customer j ∈ J , let z j 
ake value 1 if and only if customer j is covered by at least one

pen facility. The problem can then be formulated as the following

nteger linear programming model: 

in 

∑ 

i ∈ I 
f i y i (1) 

∑ 

 ∈ I( j) 

y i ≥ z j j ∈ J (2) 

 

j∈ J 
d j z j ≥ D (3) 

 i ∈ { 0 , 1 } i ∈ I (4) 

 j ∈ { 0 , 1 } j ∈ J. (5) 

In this model, the objective function (1) minimizes the cost

f open facilities, whereas constraint (3) ensures that the covered

ustomer demand is larger than or equal to D . The linking con-

traints (2) guarantee that whenever a customer j is covered, at

east one of the facilities from its neighborhood is open. Finally,

onstraints (4) and (5) impose binary restrictions on decision vari-

bles y and z , respectively. 

.2. The maximal covering location problem (MCLP) 

The second problem that we consider is the maximal covering

ocation problem (MCLP). This problem consists of selecting a sub-

et of facilities to open so as to maximize the covered customer

emand, subject to available budget B > 0 on the cost of open fa-

ilities. 

Using the same variables as for the PSCLP, the MCLP can be for-

ulated as follows: 

ax 
∑ 

j∈ J 
d j z j (6) 
composition for very large scale partial set covering and maximal 
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∑ 

i ∈ I 
f i y i ≤ B (7)

(2), (4), (5). 

Compared to the PSCLP, we observe that the objective function

and the demand coverage constraint are swapped, so that now the

objective function defined by (6) maximizes the covered demand,

whereas the knapsack-like constraint (7) ensures that the available

budget of B for opening the facilities is not exceeded. The remain-

ing constraints are the same as for the PSCLP. 

We now make an observation that is valid for both the PSCLP

and the MCLP. 

Property 1. In both ILP formulations for the PSCLP and MCLP, inte-

grality conditions (5) can be relaxed to z j ≤ 1, j ∈ J. 

To see that this property holds for the PSCLP, assume that we

relax the integrality conditions on the z variables and that we ob-

tain an optimal solution ( y ∗, z ∗) such that for some j ∈ J ′ ⊆J , 0 <

z ∗
j 
< 1 holds. In that case, for each customer j ∈ J ′ one can redefine

z ∗
j 
= 1 , without changing the value of the objective function. Sim-

ilarly, assume that an optimal MCLP solution ( y ∗, z ∗) is such that

for some j ∈ J ′ ⊆J , 0 < z ∗
j 
< 1 holds. Then by setting z ∗

j 
= 1 for each

customer j ∈ J ′ , we obtain a strictly better objective function value

and hence such a solution cannot be optimal. 

Based on Property 1 , we study a Benders decomposition ap-

proach in which z variables are projected out from the model and

replaced by corresponding Benders feasibility cuts (for the PSCLP)

and Benders optimality cuts (for the MCLP). 

For the PSCLP and MCLP, observe that the value of the z

variables can be computed as a function of y by setting z j =
max i ∈ I( j) { y i } , for each j ∈ J . Furthermore, for any given solution vec-

tor ˜ y , let 

˜ I j = 

∑ 

i ∈ I( j) 

˜ y i 

represent the number of facilities covering customer j . Conse-

quently, the value of z j for any j ∈ J can be set as 

˜ z j = min 

{
1 , ̃  I j 

}
. 

In the following, we propose a linear way to project out the z vari-

ables from the model, using the Benders decomposition approach. 

4. Benders decomposition for the PSCLP 

In the following, we focus on the PSCLP and describe several

types of Benders cuts. We start with those obtained in a standard

way, i.e., by dualizing the Benders subproblem. We refer to these

cuts as LP-based Benders cuts . Later, in Section 4.2 , we propose a

normalization technique that yields several closed formulas for de-

riving valid Benders cuts. We show that the latter can be separated

in linear time, and we compare their relative strength. Finally, in

Section 4.3 , we apply a technique recently proposed by Conforti

and Wolsey (2016) , to derive facet-defining Benders cuts . 

4.1. LP-based Benders cuts 

By projecting out the z variables from the model, we obtain the

following Benders master problem: 

min 

{ ∑ 

i ∈ I 
f i y i : B t (y ) ≥ 0 , t ∈ P, y i ∈ { 0 , 1 } , i ∈ I 

} 

, (8)

where B t ( y ) refers to Benders feasibility cuts corresponding to ex-

treme rays t of the polyhedron P associated to the linear pro-

gramming dual of the Benders subproblem. For a given vector
Please cite this article as: J.-F. Cordeau, F. Furini and I. Ljubi ́c, Benders de

covering location problems, European Journal of Operational Research, 
˜  ∈ [0 , 1] | I| , the Benders primal subproblem reads as follows: 

in 

{ 

0 : z j ≤ ˜ I j , j ∈ J, 
∑ 

j∈ J 
d j z j ≥ D, 0 ≤ z j ≤ 1 , j ∈ J 

} 

. (9)

ts dual is given as: 

ax 

{ 

Dγ −
∑ 

j∈ J 

(
˜ I j π j + σ j 

)
: (π, σ, γ ) ∈ P 

} 

, (10)

here π , γ and σ are dual variables associated to the constraints

f (9) , respectively. These variables are constrained to belong to the

olyhedron P which is defined as: 

 = 

{ 

(π, γ , σ ) ≥ 0 : π j + σ j ≥ d j γ , j ∈ J 

} 

. (11)

From the LP duality theory we know that the primal subprob-

em (9) is infeasible if its dual is unbounded. Let ( ̃  π, ˜ γ , ˜ σ ) be an

xtreme ray of the unbounded dual subproblem. Then the associ-

ted Benders feasibility cut can be written as: 

 

i ∈ I 

( ∑ 

j∈ J(i ) 

˜ π j 

) 

y i ≥ D ̃  γ −
∑ 

j∈ J 
˜ σ j . (B)

There is an exponential number of extreme rays t ∈ P , which

akes it impractical to enumerate all of them in advance. Since

ot all Benders feasibility cuts are necessary to find an optimal

olution, only a subset of them will be separated by the decom-

osition approach. The formulation (8) containing only a subset of

enders cuts will be referred to as the relaxed master problem . 

There are two ways of implementing a Benders decomposition

pproach: (1) using a cutting plane procedure, where each time a

enders cut is generated, the master problem is solved again as

n ILP, or (2) using a branch-and-Benders-cut approach in which a

ingle enumeration tree is created and Benders cuts are separated

s in a classical branch-and-cut procedure. The latter approach has

ecome more popular in the recent literature (see, e.g., Fischetti,

jubi ́c, & Sinnl, 2016; Fischetti, Ljubi ́c, & Sinnl, 2017; Ljubi ́c, Putz,

 González, 2012 ), primarily because it involves solving only one

aster problem to optimality, unlike the cutting plane method,

hich solves a master problem to optimality at each iteration. In

ddition, standard MILP techniques like primal heuristics, variable

xing, and preprocessing are combined in a more efficient manner

ith the Benders decomposition. Accordingly, we implement the

ormulation (8) by separating constraints (B) on the fly, within a

ranch-and-cut framework. Note that, since z variables do not ap-

ear in the objective function (1) , Benders optimality cuts are not

eeded. 

It is well-known that the LP relaxation of (8) gives the same

ower bounds as the corresponding compact formulation (1) –(5) .

owever, the way in which the separation of these Benders cuts is

mplemented heavily affects the overall performance of a branch-

nd-Benders-cut approach and the overall number of cuts neces-

ary to obtain this bound. A straightforward implementation re-

uires solving the dual subproblem (10) as an LP and deriving

uts from the respective extreme rays. As already observed e.g.,

n Benders (1962) , Fischetti, Salvagnin, and Zanette (2010) , and

jubi ́c et al. (2012) , this approach has a significant drawback: it

eturns an arbitrarily chosen extreme ray without having any pos-

tive influence on the quality of the violated cut found. As a con-

equence, convergence may be slowed down due to the fact that

hallow cuts are often generated. Among the successful strate-

ies to overcome these difficulties are the normalization techniques.

n general, normalization of Benders cuts consists of solving an

P over a bounded polyhedron, as opposed to optimizing over

n unbounded cone. There is an abundant literature on differ-

nt normalization techniques for Benders feasibility cuts, see, e.g.,
composition for very large scale partial set covering and maximal 
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ischetti et al. (2010) , Ljubi ́c et al. (2012) , Magnanti and Wong

1981) , and Papadakos (2008) . In our work, we consider two nor-

alization approaches for bounding the dual cone. 

.2. Normalized Benders feasibility cuts for the PSCLP 

In this section we focus on a particular normalization of Ben-

ers cuts that appears very natural in the context of the PSCLP.

e namely exploit the fact that the solution ˜ y of the relaxed mas-

er problem is infeasible if and only if the demand covered by ˜ y is

trictly less than D . Hence, instead of solving a feasibility LP given

y (9) , we search for the maximum demand that can be covered

y ˜ y . This results in the following LP: 

( ̃  y ) = max 

{ ∑ 

j∈ J 
d j z j : z j ≤ ˜ I j , j ∈ J, 0 ≤ z j ≤ 1 , j ∈ J 

} 

. (12) 

The latter LP is always feasible and its optimal solution can be

alculated as ˜ z j = min { 1 , ̃  I j } , j ∈ J . After associating π j , j ∈ J to the

rst, and σ j , j ∈ J to the second group of constraints, respectively,

he dual of this problem becomes: 

( ̃ y ) = min 

{ ∑ 

j∈ J 
π j ̃

 I j + 

∑ 

j∈ J 
σ j : π j + σ j ≥ d j j ∈ J, (π, σ ) ≥ 0 

} 

, (13) 

nd Benders feasibility cuts are now derived from the extreme

oints of the underlying polyhedron. Let ( ̃  π, ˜ σ ) be the optimal so-

ution of (13) . If �( ̃  y ) < D, the violated Benders feasibility cut can

ow be derived as: 

 

j∈ J 
˜ π j 

( ∑ 

i ∈ I( j) 

y i 

) 

+ 

∑ 

j∈ J 
˜ σ j ≥ D, (14) 

nd this cut can be equivalently restated as: 

 

i ∈ I 

( ∑ 

j∈ J(i ) 

˜ π j 

) 

y i + 

∑ 

j∈ J 
˜ σ j ≥ D. (15) 

Comparing (15) with the Benders feasibility cut (B) , we ob-

erve that the extreme point ( ̃  π, ˜ σ ) corresponds to an extreme

ay of (10) , in which the dual cone is intersected with the hyper-

lane γ = 1 . This is one of the possible normalization techniques

or Benders feasibility cuts. Given the relatively simple structure of

he dual polyhedron, in the following we derive combinatorial al-

orithms for the separation of (15) . 

.2.1. Combinatorial separation approach 

In this section, we propose several analytical ways to derive

uts of type (15) by calculating the optimal dual multipliers ( ̃  π, ˜ σ )

sing a closed formula. Let ˜ z be the optimal solution of the primal

enders subproblem (12) . Given that (12) is affected by degener-

cy, 1 there may be infinitely many Benders feasibility cuts associ-

ted to a given infeasible point of the relaxed master problem ˜ y . In

he following, Propositions 1, 2 and 4 provide closed formulas for

alculating optimal dual solutions corresponding to extreme points

f the dual polyhedron given by (13) and, hence, they allow us to

erive three particular types of Benders feasibility cuts. 

roposition 1. An optimal solution ( ̃  π, ˜ σ ) of the subproblem

13) can be computed as: 

˜ j = 

{
d j , if ˜ I j < 1 

0 , otherwise 
˜ σ j = 

{
0 , if ˜ I j < 1 

d j , otherwise 
j ∈ J. (16) 

roof. Given j ∈ J , one of the following two situations can occur: 
1 An LP is degenerate if in a basic feasible solution, at least one of the basic vari- 

bles takes on a zero value and it is caused by redundant constraint(s). 
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• ˜ z j = 

∑ 

i ∈ I( j) ˜ y i < 1 : Due to the complementary slackness condi-

tions, it follows that ˜ σ j = 0 , and hence ˜ π j = d j . 
• ˜ z j = 1 ≤ ∑ 

i ∈ I( j) ˜ y i : We set ˜ π j = 0 and ˜ σ j = d j in order to obtain

a feasible dual solution. 

It is not difficult to see that the constructed dual solution is

easible and that its objective function value is 
∑ 

j∈ J d j ̃  z j . It is thus

ptimal. �

The latter result gives us an algorithm to derive Benders fea-

ibility cuts (for both fractional and integer points). Once the val-

es ˜ I j are provided, the calculation of dual multipliers (and hence

he separation of the associated Benders cut) can be performed in

inear time , which can have a significant advantage over a generic

P-based separation technique. 

For an infeasible point ˜ y , the cut reads as 

∑ 

j∈ J: ̃ I j < 1 
d j 

( ∑ 

i ∈ I( j) 

y i 

) 

≥ D −
∑ 

j∈ J: ̃ I j ≥1 

d j . (B0f) 

A more intuitive interpretation of these cuts can be given by

onsidering an integer vector ˜ y . Let ˜ K ⊆ I be the set of open facil-

ties whose incidence vector is given by ˜ y , and let J( ̃  K ) be the set

f customers covered by ˜ K . Benders cut (B0f) is then: 

∑ 

j 
∈ J( ̃ K ) 

d j 

( ∑ 

i ∈ I( j) 

y i 

) 

≥ D − D (J( ̃  K )) . (B0)

This cut simply states that the residual demand (which is ex-

ressed by the value on the right-hand-side) has to be satisfied by

hoosing a subset of currently uncovered customers ( J \ J( ̃  K ) ) and

aking sure that they are covered by opening additional facilities.

fter some reordering of terms, the cut can be also written as: 

 

i 
∈ ̃ K 

( ∑ 

j∈ J (i ) \ J ( ̃ K ) 

d j 

) 

y i ≥ D − D (J( ̃  K )) , 

hich means that the residual demand has to be covered by open-

ng some of the currently closed facilities ( i 
∈ 

˜ K ) and by consider-

ng only currently uncovered customers from their neighborhood

( j ∈ J(i ) \ J( ̃  K ) ). 

In the following, we discuss two more possibilities to construct

alid Benders cuts in a combinatorial way. Looking at the structure

f the dual (13) , we observe that whenever ˜ I j = 1 , j ∈ J , we have

he freedom of assigning d j to either π j or σ j . This allows us to

erive two additional families of Benders cuts, which can be seen

s lifted versions of (B0f) . 

roposition 2. An optimal solution ( ̃  π, ˜ σ ) of the subproblem

13) can be computed as: 

˜ j = 

{ 

d j , if ˜ I j < 1 or j ∈ J s 

0 , otherwise 
j ∈ J, 

˜ σ j = 

{ 

0 , if ˜ I j < 1 or j ∈ J s 

d j , otherwise 
j ∈ J. (17) 

roof. We distinguish between the following situations: 

• ˜ z j = 

∑ 

i ∈ I( j) ˜ y i < 1 : Due to the complementary slackness condi-

tions, it follows that ˜ σ j = 0 , and hence ˜ π j = d j . 
• ˜ z j = 1 and | I( j) | = 1 (and hence 

∑ 

i ∈ I( j) ˜ y i = 1 ): In that case we

can set ˜ π j = d j and ˜ σ j = 0 . 
• Otherwise (i.e., ˜ z j = 1 ≤ ∑ 

i ∈ I( j) ˜ y i and | I ( j )| > 1): Due to the

complementary slackness conditions, it follows that ˜ π j = 0 and
˜ σ j = d j . 

composition for very large scale partial set covering and maximal 
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By plugging the dual feasible solution obtained from (17) into

the Benders cut (14) and after subtracting from both sides the

quantity 
∑ 

j∈ J s : ̃ I j =1 d j , we obtain: 

∑ 

j∈ J: ̃ I j < 1 
d j 

( ∑ 

i ∈ I( j) 

y i 

) 

+ 

∑ 

j∈ J s : ̃ I j =1 

d j 

(
y i ( j) − 1 

)
≥ D −

∑ 

j∈ J: ̃ I j ≥1 

d j . (B1f)

Similarly, given an integer point ˜ y (with the associated set of

open facilities ˜ K ), after plugging the dual feasible solution obtained

from (17) into (15) , the associate Benders cut becomes: 

∑ 

i 
∈ ̃ K 

( ∑ 

j∈ J (i ) \ J ( ̃ K ) 

d j 

) 

y i + 

∑ 

i ∈ ̃ K 

( ∑ 

j∈ J s ∩ J(i ) 

d j 

) 

y i ≥ D − D (J( ̃  K ) \ J s ) . (B1)

We observe that separating all possible cuts of type (B0f) or

(B1f) results in the same quality of lower bound at the root node

of the branch-and-Benders-cut tree, as both cuts are derived from

solving the same dual Benders subproblem. However, the follow-

ing proposition indicates that separating (B1f) instead of (B0f) may

result in a smaller number of separating iterations, due to the fact

that (B1f) may cut off a larger portion of the infeasible region com-

pared to (B0f) . 

Proposition 3. Given a solution of the relaxed master problem ˜ y , the

associated Benders cut (B1f) dominates the cut (B0f) unless J s = ∅ , in
which case the two cuts are identical. 

Proof. Observe that for a given ˜ y , cut (B1f) is obtained by adding ∑ 

j∈ J s : ̃ I j =1 

d j 

(
y i ( j) − 1 

)
to the left-hand-side of (B0f) . So, if J s = ∅ , the two cuts are the

same. However, if J s 
 = ∅ , the value of this summation can some-

times be negative, which will result in a stronger cut. �

Finally, using similar arguments as in Proposition 2 , we propose

a third family of Benders cuts that can be derived from another

optimal dual solution. 

Proposition 4. An optimal solution ( ̃  π, ˜ σ ) of the subproblem

(13) can be computed as: 

˜ π j = 

{
d j , if ˜ I j ≤ 1 

0 , otherwise 
j ∈ J 

˜ σ j = 

{
0 , if ˜ I j ≤ 1 

d j , otherwise 
j ∈ J. (18)

The associated Benders cuts can be written as: 

∑ 

j∈ J: ̃ I j < 1 
d j 

( ∑ 

i ∈ I( j) 

y i 

) 

+ 

∑ 

j∈ J s : ̃ I j =1 

d j 

(
y i ( j) − 1 

)

+ 

∑ 

j∈ J\ J s : ̃ I j =1 

d j 

( ∑ 

i ∈ I( j) 

y i − 1 

) 

≥ D −
∑ 

j∈ J: ̃ I j ≥1 

d j . 

(B2f)

Given an integer solution ˜ y , and the associated set ˜ K , the cor-

responding Benders cut reads as follows: 

∑ 

i 
∈ ̃ K 

( ∑ 

j∈ J (i ) \ J ( ̃ K ) 

d j + 

∑ 

j∈ J(i ) ∩ J s ( ̃ K ) 

d j 

) 

y i + 

∑ 

i ∈ ̃ K 

( ∑ 

j∈ J s ( ̃ K ) ∩ J(i ) 

d j 

) 

y i 

≥ D − D (J( ̃  K ) \ J s ( ̃  K )) . (B2)

Our next result compares the quality of Benders cuts of type

(B1f) and (B2f) . 
Please cite this article as: J.-F. Cordeau, F. Furini and I. Ljubi ́c, Benders de

covering location problems, European Journal of Operational Research, 
roposition 5. Given a solution ˜ y of the relaxed master problem,

either of the associated Benders cuts (B2f) and (B1f) dominates the

ther. 

roof. Comparing the left-hand-side of cuts (B1f) and (B2f) , we

bserve that they differ in the term 

∑ 

j∈ J\ J s : ̃ I j =1 

d j 

( ∑ 

i ∈ I( j) 

y i − 1 

) 

, 

hich is added to the left-hand-side of the cut (B2f) , whereas the

ight-hand-sides of both cuts are identical. The value of this sum-

ation can have an arbitrary sign (depending on the current value

f the y variables). Hence, when this value is strictly negative the

ut (B2f) will dominate the cut (B1f) , and for the positive value it

ill be the other way around. �

In our computational study we assess the computational effi-

iency of the cuts (B1f) and (B2f) , and compare them with standard

P-based separation procedures. Given that the computational ef-

ort to calculate all three cuts, (B0f) –(B2f) , is the same, and the fact

hat (B0f) are strictly dominated by (B1f) , we refrain from study-

ng the computational relevance of (B0f) . We nevertheless decide

o keep cuts (B0f) and (B0) , as they are the most intuitive ones

nd, after all, they are even sufficient to derive a valid model in

he natural space of y variables. 

.3. Facet-defining Benders feasibility cuts for the PSCLP 

Conforti and Wolsey (2016) recently proposed the following

dea. Given an infeasible point ˜ y and a core point y 0 (a point in

he relative interior of the convex hull of all feasible vectors y ),

t is possible to derive a Benders feasibility cut which is either

 facet or an improper face of the LP-relaxation of (8) (we refer

he interested reader to Conforti & Wolsey, 2016 for further details

n this topic). This procedure is particularly useful when the Ben-

ers subproblem is degenerate, which is often the case. The pro-

edure requires finding an optimal multiplier λ that defines a new

oint on the segment between ˜ y and y 0 , which is supposed to be

he furthest point (with respect to y 0 ) on this line segment which

s still within the LP relaxation polyhedron. The authors derive a

ut-generating LP whose optimal solution almost surely induces a

acet-defining Benders feasibility cut. For PSCLP, this cut-generating

P reads as follows: 

in λ (19)

 j ≤ λI 0 j + 

(
1 − λ

)
˜ I j j ∈ J (20)

 

j∈ J 
d j z j ≥ D (21)

 ≤ z j ≤ 1 j ∈ J (22)

 ≤ λ ≤ 1 , (23)

here I 0 
j 

= 

∑ 

i ∈ I( j) y 
0 
i 
, j ∈ J . 

This LP always has a feasible solution. For λ = 1 , we obtain

he solution z 0 associated to the core point y 0 ( z 0 
j 
= min { 1 , I 0 

j 
} ).

y minimizing the value of λ we are searching for a “minimal

odification” of the point ˜ z that will result in a feasible subprob-

em. Since with λ = 1 we can obtain a feasible solution, constraint
composition for very large scale partial set covering and maximal 
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23) can be relaxed to λ≥ 0. To derive the associated Benders fea-

ibility cut, we actually solve the associated dual: 

ax Dγ −
∑ 

j∈ J 
σ j −

∑ 

j∈ J 
˜ I j π j (24) 

j + σ j ≥ d j γ j ∈ J (25) 

 

j∈ J 

(
I 0 j − ˜ I j 

)
π j ≤ 1 (26) 

(π, σ, γ ) ≥ 0 . (27) 

f the optimal solution to this problem is equal to zero, the point ỹ

s feasible and, hence, no Benders cut will be generated. Otherwise,

he optimal solution ( ̃  π, ˜ γ , ˜ σ ) of this LP is plugged into (B) . 

We observe that this approach gives us an alternative normal-

zation technique to derive Benders feasibility cuts. Indeed, the un-

ounded dual Benders subproblem given by (10) is simply modi-

ed by adding the normalization hyperplane 
∑ 

j∈ J 
(

I 0 
j 
− ˜ I j 

)
π j ≤ 1

o the model. 

In our implementation, we initialize the core point y 0 by find-

ng a feasible solution, i.e., a subset of facilities I ′ ⊆I such that

 ( J ( I ′ )) ≥ D . For all i ∈ I ′ we then set y 0 
i 

= 1 . 1 and y 0 
i 

= 0 , for i 
∈ I ′
note that y 0 is a core point due to the fact that, without loss of

enerality, constraints y i ∈ {0, 1} can be replaced by y i ∈ Z + , i ∈ I ).

ach time the branch-and-cut algorithm finds a new incumbent

olution I ′ , we update the core point accordingly. 

.4. Strengthening of Benders cuts 

We would like to highlight the property that, because all of the

bove families of cuts are derived from the extreme points of the

ame polyhedron, they yield the same LP relaxation value. 

bservation 1. The LP relaxation bound of the relaxed master

roblem obtained by separating any of Benders cuts introduced

bove (i.e., (B0f) –(B2f) or facet-defining ones) is equal to the LP

elaxation bound obtained by solving the compact model (1) –(5) . 

In general, one could strengthen Benders cuts by applying a co-

fficient down-lifting formula. For example, the normalized Ben-

ers cuts (15) can be down-lifted thanks to the fact that the y vari-

bles are binary and all coefficients are not negative, as follows: 

 

i ∈ I 
min 

{ 

˜ D , 
∑ 

j∈ J(i ) 

˜ π j 

} 

y i ≥ ˜ D , (28) 

here ˜ D = D − ∑ 

j∈ J ˜ σ j . In particular, if we are given a set ˜ K ⊂ I,

uch that 

∑ 

j∈ J(i ) 

˜ π j = 

{ 

≥ ˜ D , for all i ∈ 

˜ K , 

0 , otherwise 

his constraint boils down to 
 

i ∈ ̃ K 

y i ≥ 1 , 

hich is a set-union knapsack cover inequality introduced by

rulselvan, Bley, and Ljubi ́c (2018) in the context of solving the in-

remental connected facility location problem. The interpretation

f these cuts is that opening all facilities from I \ ˜ K is not suffi-

ient to cover the whole demand D , and hence, at least one more

acility from 

˜ K needs to be open. 

In general, applying this rounding procedure to all Benders cuts

ntroduced in this paper can theoretically lead to stronger lower

ounds than those obtained from the LP relaxation of the compact

ormulation. 
Please cite this article as: J.-F. Cordeau, F. Furini and I. Ljubi ́c, Benders de
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. Benders decomposition for the MCLP 

For modeling and solving the MCLP, we exploit the fact that

he Benders subproblem associated to a given point ˜ y (represent-

ng a subset of open facilities) has a very similar structure to the

enders subproblem of the PSCLP. Hence, using the closed formu-

as given in Propositions 1 –4 , one can derive Benders cuts for the

CLP. Recall that with the single exact method available in the

revious literature on the MCLP ( Downs & Camm, 1996 ), optimal

olutions were reported for instances with up to 2241 demand

oints and 74 potential facility locations. With our new approach,

ue to the fact that the separation of Benders cuts can be per-

ormed in linear time, we are able to derive a first exact method

apable of dealing with massive data sets. 

We start by formulating the problem in the natural space of

ariables. Since the variables z (that will be projected out) appear

n the objective function, Benders optimality cuts are introduced,

nd the value of the objective function is modeled using an aux-

liary variable θ ≥ 0. The Benders master problem is now given as

ax 

{ 

θ : 
∑ 

i ∈ I 
f i y i ≤ B, B 

′ 
t (y, θ ) ≥ 0 , t ∈ P ′ , y i ∈ { 0 , 1 } , i ∈ I 

} 

. 

(29) 

ariable θ captures the upper bound on the demand covered by

he choice of y variables, P ′ is the polyhedron of the dual of the

enders subbproblem and t are extreme points of this polyhedron.

bserve that any binary vector y that satisfies the budget con-

traint of (29) leads to a feasible MCLP solution. Hence, no Ben-

ers feasibility cut is required. For a given solution ˜ y of the relaxed

aster, one has to solve the following dual LP to derive the asso-

iated Benders optimality cut: 

in 

{ ∑ 

j∈ J 

(
˜ I j π j + σ j 

)
: (π, σ ) ∈ P ′ 

} 

, (30) 

here 

 

′ = 

{ 

(π, σ ) : π j + σ j ≥ d j , j ∈ J, (π, σ ) ≥ 0 

} 

. 

e notice that the Benders subproblem (30) is exactly the same

s the Benders subproblem for the PSCLP obtained after normaliza-

ion with γ = 1 , presented by (13) . Hence, our results for obtaining

ptimal dual multipliers in linear time hold for the MCLP as well.

o, for example, Benders cuts derived from Proposition 1 are: 

∑ 

j∈ J: ̃ I j < 1 
d j 

( ∑ 

i ∈ I( j) 

y i 

) 

≥ θ −
∑ 

j∈ J: ̃ I j ≥1 

d j . (B0f) 

Similarly, the cuts derived from Propositions 2 and 4 are ob-

ained from their counterparts (B1f) and (B2f) by replacing the

alue of the constant D on the right-hand-side, by the new vari-

ble θ . 

. Computational study 

In this computational section, we first introduce our benchmark

et of instances and provide implementation details, before we

iscuss the obtained computational results. All the experiments

ave been performed on a computer equipped with a 3.40 gi-

ahertz 8-core Intel Core i7-3770 processor and 16 gigabytes of

AM, running a 64-bit Linux operating system. The source codes

ere compiled with gcc 4.8.4 and using -O3 flag, for com-

iler optimization. We used CPLEX 12.7.0 (called just CPLEX
or brevity in what follows) and the CALLABLE LIBRARIES
composition for very large scale partial set covering and maximal 
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Table 1 

Random-coordinate data set parameters. 

Budget Covering demand Radius of coverage 

B = 10 D = 50% ̄D ˆ R ∈ { 5 . 5 ; 5 . 75 ; 6 ; 6 . 25 } 
B = 15 D = 60% ̄D ˆ R ∈ { 4 ; 4 . 25 ; 4 . 5 ; 4 . 75 ; 5 } 
B = 20 D = 70% ̄D ˆ R ∈ { 3 . 25 ; 3 . 5 ; 3 . 75 ; 4 ; 4 . 25 } 
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framework to implement our branch-and-cut algorithms. CPLEX
was run in single-threaded mode and all CPLEX parameters were

set to their default values, except Preprocessing_Linear
and MIP_Strategy_CallbackReducedLP , which were

set to zero as recommended by the CPLEX user man-

ual to use the CPXsetusercutcallbackfunc and

CPXsetlazyconstraintcallbackfunc callback functions.

The latter two functions allow to separate the Benders cuts de-

scribed in Sections 4 and 5 , for fractional and integer solutions,

respectively. 

6.1. Benchmarking data set and massive data set 

We have created our testbed of instances following and extend-

ing the procedure proposed in by ReVelle et al. (2008) , where ran-

domly generated PSCLP instances have been introduced with up to

900 points, i.e., | I| = | J| ≤ 900 (each point representing both a cus-

tomer and a potential facility location). As mentioned in the intro-

duction of this article, our exact approach is specifically designed

for the realistic case in which the number of customers is much

larger than the number of potential facility locations (i.e., | J | � | I |).

For this reason we have created our instances by setting the num-

ber of customers at different values ranging between 10,0 0 0 and

up to 20 millions, and fixing the number of potential facility lo-

cations to 100. The customer demand is generated by drawing a

number from the range [1,100] uniformly at random and round-

ing it to the nearest integer value. The ( x , y ) coordinates of the

customer and the potential facility locations are chosen uniformly

at random from [0, 30]. We set the maximum number of facil-

ities to be open to 10, 15 and 20, i.e., we set f i = 1 ( i ∈ I ) and

B ∈ {10; 15; 20}. For each potential facility location i , the set J ( i )

is comprised by all customers whose Euclidean distance from i is

at most ˆ R (called the radius of coverage of a facility). The values of
ˆ R considered in our study depend on the budget level as shown in

Table 1 . All chosen parameters exactly reflect the instance gener-

ation procedure of ReVelle et al. (2008) . In order to create PSCLP

instances, the covering demand D is defined as a percentage of the

total demand D̄ = 

∑ 

j∈ J d j . We choose D ∈ { 50% ̄D ; 60% ̄D ; 70% ̄D } (see

Table 1 ). We keep the same values for ˆ R as for the MCLP instances.

Finally, for each combination of the instance generation input pa-

rameters, we create five instances with the same characteristics,

varying only the random seed generator. 

We divide the testbed of instances into two groups: the first

one, called benchmarking data set (BDS), has | J | ∈ {10,0 0 0; 50,0 0 0;

10 0,0 0 0}. This set is composed of 210 instances and its major pur-

pose is to serve for a comparison of the relative performance of

the different Benders cuts introduced in Section 4 . Moreover, BDS

is also used to assess the performance of CPLEX directly applied

to the compact formulations of Section 3 and to assess the per-

formance of the default Benders decomposition implemented in

CPLEX (these results are discussed in Sections 6.2 and 6.3 , respec-

tively). 

The second data set, called massive data set (MDS), considers

nine different values of | J |, starting from half a million and go-

ing up to 20 millions (see Tables 7 and 8 ). The major purpose of

this data set, which is composed of a total of 630 instances, is to
Please cite this article as: J.-F. Cordeau, F. Furini and I. Ljubi ́c, Benders de

covering location problems, European Journal of Operational Research, 
est the computational limits of our exact branch-and-Benders-cut

ramework (see Section 6.4 ). 

Given the variability of input parameters and different sizes of

nput data, we believe that our testbed of 840 instances provides

 good representative sample allowing us to determine the im-

act of the main features of the MCLP and PSCLP instances on the

tructure of optimal solutions and the overall computational per-

ormance. All the instances are available upon request from the

uthors. 

Finally, it is worth mentioning that other MCLP instance sets

ere proposed in the literature, but none of them have the de-

ired characteristics which are required by our exact approach,

.e., | J | � | I | and | I | relatively low. For example, in Máximo et al.

2017) the authors tested their metaheuristic approach on a set

f instances with up to ≈ 80 0 0 customers and facilities. In this

estbed, | J| = | I| and | I | is relatively high. Most of these instances

re challenging for general-purpose MIP solvers. We also tested our

ranch-and-Benders-cut algorithms on the instances from Máximo

t al. (2017) and they also failed in finding optimal solutions within

0 minutes of computing time. This is not surprising, as Benders

ecomposition typically draws advantage over a compact formula-

ion, when the size of the relaxed master problem can be signifi-

antly reduced, compared to the size of the compact formulation.

nfortunately, and contrary to the standard facility location prob-

ems, for the MCLP and PSCLP when | I| = | J| the number of de-

ision variables is reduced only by half, which does not allow the

enders approach to draw a competitive advantage. For this reason

e do not report results on this set of instances. 

.2. Comparing the performance of the different families of Benders 

uts 

In this section we compare the performance of the four differ-

nt Benders cuts presented in Section 4 for the PSCLP. We tested

he following four configurations of our branch-and-Benders-cut

lgorithm: 

• BEN B1 : where both fractional and integer points are sepa-

rated using (B1f) and (B1) Benders cuts, respectively. 
• BEN B2 : where both fractional and integer points are sepa-

rated using (B2f) and (B2) Benders cuts, respectively. 
• BEN RAYS : where both fractional and integer points are sep-

arated using Benders cuts (B) , whose coefficients are derived

from extreme rays of the polyhedron associated to the dual LP

of the Benders subproblem given by (9) (cf. Section 4.1 ). 
• BEN FACETS : where both fractional and integer points are

separated using facet-defining Benders cuts (B) , whose coeffi-

cients are derived by solving the LP (24) –(27) . 

In Table 2 , we report average computing times necessary to

btain optimal solutions for the PSCLP instances with | J| = 10 , 0 0 0 .

he instances are grouped by the three different values of in-

reasing covering demands D and the column # reports the total

umber of instances per row. All four settings manage to solve

ll 70 instances of this set to proven optimality. However, there

s an obvious difference between the computational times of the

wo settings that rely on the separation based on solving an LP

namely, BEN RAYS and BEN FACETS ) and those based on a

ombinatorial approach which runs in linear time (namely, BEN
1 and BEN B2 ). 

From these tests we can notice that increasing the values of D

akes the instances slightly harder to solve. There is no surprise

n the fact that the use of a combinatorial algorithm compares

avorably to the use of the LP-based algorithm to derive Benders

uts. What is surprising is the order of magnitude of this speed-

p which is already impressive for | J| = 10 , 0 0 0 and tends to in-

rease more and more for bigger values of | J |. As far as the BEN
composition for very large scale partial set covering and maximal 
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Table 2 

Computing times to solve PSCLP instances with | J| = 10 , 0 0 0 comparing the performances 

of four families of Benders cuts. 

| J | D # BEN B1 BEN B2 BEN RAYS BEN FACETS 
t [seconds] t [seconds] t [seconds] t [seconds] 

10,0 0 0 50% ̄D 20 0.02 0.02 7.81 25.46 

60% ̄D 25 0.06 0.04 24.60 38.59 

70% ̄D 25 0.17 0.14 16.33 48.22 

Table 3 

LP relaxation bounds for PSCLP instances with | J| = 50 , 0 0 0 . 

| J | D # LP gap [%] CPLEX BEN B1 BEN B2 

t [seconds] t [seconds] # cuts t [seconds] # cuts 

50,0 0 0 50% ̄D 20 3.93 30.06 0.04 19.9 0.02 10.0 

60% ̄D 25 2.78 13.82 0.06 42.3 0.03 21.9 

70% ̄D 25 1.47 14.33 0.11 79.1 0.07 53.4 

Table 4 

LP relaxation bounds for MCLP instances with | J| = 50 , 0 0 0 . 

| J | B # LP gap [%] CPLEX BEN B1 BEN B2 

t [seconds] t [seconds] # cuts t [seconds] # cuts 

50,0 0 0 10 20 0.56 125.18 9.05 1044.5 8.70 1032.4 

15 25 0.40 191.78 13.08 1158.7 13.51 1156.8 

20 25 0.33 101.15 17.03 1205.6 17.45 1184.1 

F  

a  

L  

s  

P  

d  

a  

l

 

o  

a  

p  

t  

r  

4  

t  

u  

p  

 

o  

T  

s  

F  

b  

t  

a  

d  

i

 

p  

s  

c  

M  

t  

M  

f  

t  

P  

i  

r  

t  

t  

t  

c  

t  

c  

n  

f  

q  

c  

w  

b  

a  

i  

i  

p  

s  

w

6

A

 

o  

f  

F  

o  

B  

a  

S  

u  

d  

a  

c  

T  

A  

c  

d

ACETS cuts are concerned, we notice that on average fewer cuts

re generated with respect to the BEN RAYS cuts; however, the

P (24) –(27) is much harder to solve than dual LP of the Benders

ubproblem given by (9) (using in both cases the CPLEX Linear

rogramming solver). Finally, as for the PCSLP, the LP-based Ben-

ers cut are outperformed by Benders cuts BEN B1 and BEN B2
lso for the MCLP (see Tables 4 and 6 for detailed results on the

atter two configurations). 

In the following, we analyze the quality of LP relaxation bound

f the formulations presented in Section 3 for the PSCLP and MCLP,

nd the CPU time needed to obtain it. We focus on the two best-

erforming settings from above, i.e., BEN B1 and BEN B2 . For

hese tests, we consider larger BDS instances with | J| = 50 , 0 0 0 . The

esults obtained for the PSCLP and MCLP are shown in Tables 3 and

 , respectively; where each line reports the average values ob-

ained for instances with the same features (same D or ˆ R val-

es, respectively). The tables report the percentage LP gap com-

uted for the PSCLP as (z(ILP ) − z(LP )) /z(ILP ) and for the MCLP as

(z(LP ) − z(ILP )) /z(LP ) ; where z ( ILP ) is the optimal solution value

f an instance and z ( LP ) is the value of its LP relaxation bound.

he tables report then the computational time required by the LP

olver of CPLEX to solve the LP relaxation of the ILP formulations.

inally, we report the computing time to obtain the same LP bound

y separating the Benders Cuts BEN B1 and BEN B2 . For the lat-

er two configurations we also report the average number of gener-

ted Benders cuts. For these tests we separated all fractional Ben-

ers cuts without considering any violation tolerance, thus obtain-

ng exactly the same bound for all the three methods. 

We first observe that the ILP formulations for both problems

rovide relatively small LP gaps, confirming the results obtained in

everal other papers as discussed in the introduction of this arti-

le. The LP gaps of the PSCLP are on average below 4% and for the

CLP below 1%. The relative difference in the LP gaps between the

wo families of problems can be explained by the fact that optimal

CLP solution values are much bigger than optimal PSCLP ones

or the considered test bed of instances (see Section 6.1 for fur-

her details on how the instances have been constructed). For the

SCLP, we observe that increasing the covering demand D results

n smaller LP gaps. Similarly, increasing the budget B for the MCLP,
Please cite this article as: J.-F. Cordeau, F. Furini and I. Ljubi ́c, Benders de

covering location problems, European Journal of Operational Research, 
educes the LP gaps. As far as the CPU time necessary to compute

he LP relaxation bound is concerned, Tables 3 and 4 clearly show

hat separating the BEN B1 and BEN B2 families of cuts is by far

he best option for both problems. For the PSCLP in Table 3 we

an notice that CPLEX can take up to an average of 30 seconds

o solve PSCLP instances with low covering demand D and in all

ases it takes on average more than 10 seconds. Solving the root

ode of our branch-and-Benders-cut algorithm requires instead a

raction of a second. For all these tested PSCLP instances it re-

uires on average less than approximately 0.1 second. A similar

omparison emerges also from Table 4 for the MCLP instances,

here our branch-and-Benders-cut outperforms CPLEX on average

y more than one order of magnitude in computing the LP relax-

tions. Table 4 also shows that, even if the PSCLP and the MCLP

nstances have been generated with similar parameters, the MCLP

nstances are computationally much harder. This fact can be ex-

lained by the number of cuts generated, i.e., for the MCLP in-

tances many more cuts are necessary to compute the LP bounds

ith respect to the PSCLP instances. 

.3. Comparison with the state-of-the-art MIP solver and CPLEX 
utomatic Benders Procedure 

To the best of our knowledge, no previous computational study

n exact approaches appeared in the literature for the PSCLP and

or the MCLP, despite their theoretical and practical relevance.

or this reason, in this section we compare the performance of

ur branch-and-Benders-cut framework based on the BEN B1 and

EN B2 families of Benders cuts against the direct use of CPLEX
pplied as a black-box MIP solver to the compact formulations of

ection 3 . CPLEX is one of the state-of-the-art MIP solvers and is

sually used as benchmark to compare the performance of newly

eveloped exact algorithms; in addition, CPLEX recently made

vailable an Automatic Benders Procedure which is another good

andidate for comparing the performance of our new algorithms.

he main difference between our branch-and-Benders-cut and the

utomatic Benders Procedure of CPLEX lies in the way the Benders

uts are determined and separated (see Sections 4 and 5 for the

efinition of our Benders cuts BEN B1 and BEN B2 ). 
composition for very large scale partial set covering and maximal 
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Table 5 

Performance comparison on the PSCLP instances with | J | ∈ {10, 0 0 0; 50, 0 0 0; 10 0, 0 0 0}. 

| J | D # CPLEX AUTO BEN BEN B1 BEN B2 

t [seconds] # opt t [seconds] # opt t [seconds] # opt t [seconds] # opt 

10,0 0 0 50% ̄D 20 6.53 20 12.50 20 0.02 20 0.02 20 

60% ̄D 25 6.60 25 19.36 25 0.06 25 0.04 25 

70% ̄D 25 5.59 25 24.27 25 0.17 25 0.14 25 

50,0 0 0 50% ̄D 20 70.23 20 346.92 16 0.06 20 0.04 20 

60% ̄D 25 104.48 25 524.45 5 0.18 25 0.11 25 

70% ̄D 25 157.04 25 530.70 2 0.36 25 0.32 25 

10 0,0 0 0 50% ̄D 20 299.79 15 t.l. 0 0.12 20 0.12 20 

60% ̄D 25 341.38 16 t.l. 0 0.46 25 0.33 25 

70% ̄D 25 306.10 18 t.l. 0 0.59 25 0.49 25 

Table 6 

Performance comparison on the MCLP instances with | J | ∈ {10, 0 0 0; 50, 0 0 0; 10 0, 0 0 0}. 

| J | B # CPLEX AUTO BEN BEN B1 BEN B2 

t [seconds] # opt t [seconds] # opt t [seconds] # opt t [seconds] # opt 

10,0 0 0 10 20 10.83 20 19.68 20 7.28 20 10.76 20 

15 25 7.13 25 36.86 25 15.33 25 27.05 25 

20 25 5.10 25 64.22 23 21.57 25 42.49 25 

50,0 0 0 10 20 211.75 20 49.34 20 9.28 20 11.13 20 

15 25 162.37 25 72.20 25 16.59 25 18.00 25 

20 25 118.61 25 135.01 23 35.67 25 35.15 25 

10 0,0 0 0 10 20 481.87 5 85.11 20 10.58 20 15.11 20 

15 25 466.83 11 132.76 25 20.11 25 27.13 25 

20 25 356.15 13 156.15 21 38.02 25 45.56 25 

Table 7 

Computational performance of BEN B2 on massive PSCLP data sets. 

| J | # # opt t [seconds] # BEN B2 int. # BEN B2 frac. # nodes 

50 0,0 0 0 70 70 1.75 4.20 40.00 64.90 

1,0 0 0,0 0 0 70 70 4.14 3.77 31.16 61.03 

1,50 0,0 0 0 70 70 7.51 4.20 31.36 58.49 

2,0 0 0,0 0 0 70 70 8.51 4.33 28.94 44.76 

4,0 0 0,0 0 0 70 70 23.35 3.80 31.51 64.04 

6,0 0 0,0 0 0 70 70 28.20 3.99 30.17 48.51 

10,0 0 0,0 0 0 70 70 55.76 3.80 34.96 60.50 

15,0 0 0,0 0 0 70 70 109.61 4.39 42.44 80.47 

20,0 0 0,0 0 0 70 70 117.25 5.12 36.21 58.01 

25,0 0 0,0 0 0 70 69 137.47 4.13 35.83 62.06 

30,0 0 0,0 0 0 70 64 133.46 3.83 29.36 47.86 

35,0 0 0,0 0 0 70 70 147.47 3.80 25.63 45.77 

40,0 0 0,0 0 0 70 64 150.66 4.13 26.84 36.97 

Table 8 

Computational performance of BEN B1 on massive MCLP data sets. 

| J | # # opt t [seconds] # BEN B1 int. # BEN B1 frac. # nodes 

50 0,0 0 0 70 70 50.42 77.34 1559.97 175.84 

1,0 0 0,0 0 0 70 70 99.24 80.07 1589.63 167.47 

1,50 0,0 0 0 70 70 151.07 78.27 1573.73 183.53 

2,0 0 0,0 0 0 70 69 184.71 80.45 1494.55 167.26 

4,0 0 0,0 0 0 70 60 285.39 78.38 1243.37 143.55 

6,0 0 0,0 0 0 70 45 320.80 83.76 889.67 109.07 

10,0 0 0,0 0 0 70 26 377.19 76.73 594.58 72.35 

15,0 0 0,0 0 0 70 10 377.24 68.90 382.80 54.40 

20,0 0 0,0 0 0 70 0 – – – –
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In Tables 5 and 6 , we present the results of these performance

comparisons for the PSCLP and for the MCLP, respectively. We

considered for both problems all the BSD instances described in

Section 6.1 , instances with 10,0 0 0, 50,0 0 0 and 10 0,0 0 0 customers.

Each row of the tables reports the average computing time nec-

essary to solve instances with similar features, grouping them by

increasing covering demand D and budget B (for the PSCLP and

the MCLP, respectively). The tables report the results of four ex-

act algorithms: CPLEX and its Automatic Bender Procedure (called

AUTO BEN in the tables) and our two branch-and-Benders-cut
Please cite this article as: J.-F. Cordeau, F. Furini and I. Ljubi ́c, Benders de

covering location problems, European Journal of Operational Research, 
lgorithms, called directly BEN B1 and BEN B2 in the tables. For

ach algorithm, we also report the number of instances per group

olved to proven optimality (columns #). The average CPU times

re computed considering only the solved instances and setting a

ime limit of 600 seconds for all tests. 

As far as the PSCLP results are concerned, Table 5 clearly

hows that our branch-and-Benders-cut algorithms outperform

oth CPLEX and AUTO BEN by several orders of magnitude. More-

ver, our exact algorithms are able to solve all the 210 instances

f this testbed, while several instances can be solved neither by
composition for very large scale partial set covering and maximal 
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Fig. 2. Performance profile for the PSCLP instances with | J | ∈ {10,0 0 0; 50,0 0 0; 10 0,0 0 0}. 
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PLEX nor by AUTO BEN . In particular, these results show that

UTO BEN behaves poorly for the PSCLP, a fact which is evident

y remarking that none of the instances with | J| = 10 0 , 0 0 0 can be

olved by this method. CPLEX is able to solve all the instances up

o dimension | J| = 50 , 0 0 0 , but it slips into several “time limits” for

arger instances. Comparing the relative performance of BEN B1
nd BEN B2 , we can notice that both approaches are very effec-

ive, but BEN B2 is slightly superior. As expected, increasing the

umber of customers makes the instances harder for all meth-

ds and, as already observed in Table 2 , also increasing the cov-

ring demands D generally makes the instances harder to solve. It

s worth mentioning that BEN B2 is able to solve the larger and

arder instances in less than half a second on average. 

As far as the MCLP results are concerned, Table 6 demon-

trates a similar behavior, i.e., our branch-and-Benders-cut algo-

ithms largely outperform also for the MCLP instances. For this

roblem, the relative comparison between CPLEX and AUTO BEN
s reversed, i.e., AUTO BEN outperforms CPLEX and it is able to

olve more instances to proven optimality. Nevertheless, our BEN
1 and BEN B2 approaches outperform AUTO BEN , in several

ases by one order of magnitude, and they are able to solve all

he 210 instances of this MCLP testbed. Again as expected, in-

reasing the number of customers makes the instances harder for

ll approaches, while increasing the budget makes the instances

arder for AUTO BEN , BEN B1 and BEN B2 , while slightly eas-

er for CPLEX . Comparing the relative performance of BEN B1 and

EN B2 , we can notice that for the MCLP, BEN B1 is slightly su-

erior. Finally, these tests show that the MCLP instances are harder

han the PSCLP instances and the CPU times for BEN B1 can reach

bout half a minute. 

More details on these computational tests are given in the Ap-

endix of this article, where tables similar to Tables 5 and 6 are re-

orted. In the appendix tables we present also the results in func-

ion of the different values of the Radius of Coverage ˆ R . We did

ot notice a clear impact on the performance of the algorithm by

ncreasing values of ˆ R . For this reason, we do not report further de-

ails in this paper (we refer the interested reader to the Appendix).

A graphical representation of the relative performance of the

ifferent exact algorithms is given by the performance profiles of

igs. 2 and 3 , for the PSCLP and for the MCLP, respectively. For each

nstance, we compute a normalized time τ as the ratio of the com-

uting time to solve to optimality the considered configuration to
Please cite this article as: J.-F. Cordeau, F. Furini and I. Ljubi ́c, Benders de

covering location problems, European Journal of Operational Research, 
he minimum computing time across all configurations. For each

alue of τ in the horizontal axis, the vertical axis reports the per-

entage of the instances for which the corresponding configuration

pent at most τ times the computing time of the fastest algorithm.

he curves start from the percentage of instances in which the cor-

esponding algorithm is the fastest and at the right end of the

hart, we can read the percentage of instances solved by a spe-

ific algorithm. The best performance are graphically represented

y the curves in the upper part of Figs. 2 and 3 . The horizontal

xis is represented in logarithmic scale. The figures clearly show

hat our branch-and-Benders-cut algorithms BEN B1 and BEN B2
argely outperform CPLEX and AUTO BEN for the PSCLP and for

he MCLP. For both problems, BEN B1 and BEN B2 reach 100%

f solved instances. For the PSCLP, CPLEX is able to solve about

9% and AUTO BEN only about 29% of the instances (by allowing

0 0 0 times more time than that taken by BEN B1 or BEN B2 ).
ig. 2 shows that BEN B2 is the fastest method in about 75% of

he instances while BEN B1 is the fastest in only about 25% of

he instances considered. For the MCLP, CPLEX is able to solve

bout 80% and AUTO BEN about 96% of the instance (by allow-

ng 100 times more time than that taken by BEN B1 or BEN B2 ).
ig. 3 shows that BEN B1 is the fastest method in about 46% of the

nstances while BEN B2 is the fastest in about 31%. CPLEX and

UTO BEN are not completely dominated by BEN B1 and BEN
2 since AUTO BEN is the fastest method in 18% of the instances

nd CPLEX in about 5%. 

In Fig. 4 , we report two optimal MCLP solutions for two in-

tances with | J| = 10 , 0 0 0 , B = 10 and 

ˆ R ∈ { 5 . 5 ; 6 . 25 } . In these fig-

res the white circles represent the open facilities and the grey cir-

les the served customers. Dark grey circles represents customers

overed by more than one facility. Both optimal solutions, with dif-

erent covering radius ˆ R = 5 . 5 and 

ˆ R = 6 . 25 , use 10 facilities (fully

xploiting the budget B ) but not the same ones. As expected, with
ˆ 
 = 6 . 25 , the percentage of covered customers increases, as well as

he percentage of customers covered by two or more facilities. This

gure gives a graphical intuition of the size of the instances which

an be tackled by our branch-and-Benders-cut algorithms and it

lso demonstrates how our algorithm can be used as a decision

upport tool. For the sake of readability, we illustrate two instances

ith 10,0 0 0 customers, but in what follows we will demonstrate

hat decision makers can easily use our approach for dealing with

roblems involving millions of customers. 
composition for very large scale partial set covering and maximal 
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Fig. 3. Performance profile for the MCLP instances with | J | ∈ {10,0 0 0; 50,0 0 0; 10 0,0 0 0}. 

Fig. 4. Two optimal MCLP solutions with | J| = 10 , 0 0 0 , B = 10 and ˆ R ∈ { 5 . 5 ; 6 . 25 } . 
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6.4. Computational results on the instances from the massive data set

In this section we test the computational limits of our branch-

and-Benders-cut algorithms, using the MDS instances presented in

Section 6.1 . These PSCLP and MCLP instances have up to 20 mil-

lions customers. In these tests, in order to avoid the generation of

too many Benders cuts for fractional points, we stop the separation

as soon as the relative cut violation goes below 1%. This relative

violation is computed as the relative ratio between the difference

of the covering demand D and the current value of the left hand

side of the Benders cut, with respect to the value of D . Thanks to

extensive preliminary tests, we determined that 1% is a good com-

promise between the quality of the relaxation and the number of

generated Benders cuts for fractional solutions. 

In Tables 7 and 8 , we report the results for the PSCLP and

for the MCLP, respectively. As discussed in Section 6.3 , we test

only the best branch-and-Benders-cut algorithm for each problem,

i.e., BEN B2 for the PSCLP and BEN B1 for the MCLP. These two

tables report the average results of 70 instances per row, grouped

by increasing number of customers | J | (starting from half a mil-

lion and going up to 20 millions). For the PSCLP, we also test in-
Please cite this article as: J.-F. Cordeau, F. Furini and I. Ljubi ́c, Benders de

covering location problems, European Journal of Operational Research, 
tances up to 40 millions customers, i.e., 280 additional instances.

he tables report the following information: the number of in-

tances solved to proven optimality (column # Opt), the average

omputing time (considering only solved instances), the average

umber of Benders cuts derived from integer and fractional points

columns # B2 int., # B2 fract., # B1 int., # B1 fract.) and finally

he number of branching nodes explored (column # nodes). 

As far as the PSCLP results are concerned, Table 7 shows that

EN B2 is able to solve all the 630 instances of the MDS, up to

0 million customers. The average CPU time goes from several sec-

nds up to more than 100 seconds for the larger instances. The

umber of Benders cuts derived from integer points is relatively

ow, while dozens of Benders cuts are generated from fractional

oints. The number of explored nodes is relatively low and this

gure never goes above 100 nodes, a fact which reflects the good

uality of the LP relaxation bounds. Starting from 25 millions cus-

omers, our algorithm start failing to solve some of the instances

f the test bed. In particular, one instance cannot be solved within

he time limit for 25 million customers and six instances for 30

nd 40 millions, respectively. 
composition for very large scale partial set covering and maximal 
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As far as the MCLP results are concerned, Table 8 shows that

EN B2 is able to solve to proven optimality all the instances

ith up to 1,50 0,0 0 0 customers. The time limit imposed in this

et of experiments is again 600 seconds. By increasing the num-

er of customers, the number of instances that can be solved to

ptimality decreases, so that none of the instances with 20 mil-

ions customers can be solved within 10 minutes. The average CPU

ime ranges between 50 seconds for half a million of customers

o approximately 100 seconds for 1.5 million customers. For the

arger instances, the required CPU time for instances with 15 mil-

ions customers is about 400 seconds. The number of Benders cuts

erived from integer points is relatively low (but larger compared

o the PSCLP instances), while several hundreds (up to about 1500)

f Benders cuts are generated at fractional points. The number of

xplored nodes is still relatively low and this figure never goes be-

ond 200 nodes, which can be also explained by the high quality

f the LP relaxation bounds. 

The source code of our branch-and-Benders-cut algorithm as

ell as the benchmarking data set of instances can be downloaded

t https://github.com/fabiofurini/LocationCovering. The software 

as given the DOI (Digital Object Identifier) https://doi.org/10.

281/zenodo.1412080 . 

. Conclusions 

In this article we study the partial set covering location prob-

em and the maximal covering location problem, two location

roblems which require choosing a subset of facilities (i) minimiz-

ng the cost of the open facilities while covering a predetermined

raction of customer demand and (ii) maximizing the covered

emand respecting a budget constraint for open facilities, respec-
Table 9 

Performance comparison on the PSCLP instances with | J | ∈ {10,0 0 0; 50

| J | D ˆ R # CPLEX AUTO B

t [seconds] # opt t [second

10,0 0 0 50% ̄D 5.5 5 8.89 5 17.66 

5.75 5 4.94 5 8.03 

6 5 6.45 5 13.75 

6.25 5 5.82 5 10.57 

60% ̄D 4 5 4.17 5 20.33 

4.25 5 4.59 5 17.14 

4.5 5 8.96 5 21.75 

4.75 5 5.40 5 14.82 

5 5 9.91 5 22.74 

70% ̄D 3.25 5 6.01 5 23.40 

3.5 5 3.07 5 22.85 

3.75 5 4.03 5 25.14 

4.25 5 9.08 5 24.49 

50,0 0 0 50% ̄D 5.5 5 53.00 5 273.67 

5.75 5 40.69 5 377.79 

6 5 125.06 5 357.99 

6.25 5 62.19 5 352.19 

60% ̄D 4 5 97.94 5 t.l. 

4.25 5 88.95 5 t.l. 

4.5 5 150.06 5 485.69 

4.75 5 78.43 5 575.47 

5 5 107.00 5 537.69 

70% ̄D 3.25 5 166.67 5 523.83 

3.5 5 129.53 5 t.l. 

3.75 5 166.41 5 t.l. 

4 5 130.81 5 t.l. 

4.25 5 191.78 5 537.57 

10 0,0 0 0 50% ̄D 5.5 5 436.20 5 t.l. 

5.75 5 171.24 3 t.l. 

6 5 247.31 5 t.l. 

Please cite this article as: J.-F. Cordeau, F. Furini and I. Ljubi ́c, Benders de

covering location problems, European Journal of Operational Research, 
ively. These two important problems have not received much

ttention in the literature despite their theoretical and practical

elevance. In this article, we propose the first exact algorithm

o effectively tackle realistic PSCLP and MCLP instances with

illions of demand points – instances that are far beyond the

each of modern general-purpose MIP solvers. We managed to

chieve these results thanks to effective branch-and-Benders-cut

lgorithms that exploit a combinatorial cut-separation procedure. 

Future lines of research will go in the direction of developing

xact algorithms for situations in which a concave utility function

s used to express the value of the covered demand and a connec-

ion to the submodular cuts will be explored. 

The PSCLP and MCLP are relevant problems in the field of data

cience, in the context of clustering and classification. Hence, as a

uture line of research it would be interesting to study data-driven

ptimization using PSCLP and MCLP. To this end, various types of

ata uncertainty need to be embedded into the PSCLP and MCLP

odels, and decomposition algorithms need to be adapted to deal

ith massive data sets. 
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ppendix A 

1. Detailed computational results 

( Table 9–10 ). 
,0 0 0; 10 0,0 0 0}. 

EN BEN B1 BEN B2 

s] # opt t [seconds] # opt t [seconds] # opt 

5 0.04 5 0.04 5 

5 0.02 5 0.02 5 

5 0.03 5 0.02 5 

5 0.01 5 0.01 5 

5 0.07 5 0.05 5 

5 0.05 5 0.04 5 

5 0.07 5 0.06 5 

5 0.04 5 0.02 5 

5 0.06 5 0.05 5 

5 0.32 5 0.30 5 

5 0.15 5 0.14 5 

5 0.12 5 0.08 5 

5 0.11 5 0.07 5 

3 0.06 5 0.04 5 

5 0.04 5 0.02 5 

4 0.07 5 0.05 5 

4 0.05 5 0.04 5 

0 0.29 5 0.17 5 

0 0.14 5 0.08 5 

2 0.20 5 0.17 5 

1 0.13 5 0.10 5 

2 0.14 5 0.05 5 

1 0.62 5 0.47 5 

0 0.32 5 0.28 5 

0 0.38 5 0.37 5 

0 0.27 5 0.25 5 

1 0.22 5 0.21 5 

0 0.11 5 0.12 5 

0 0.09 5 0.14 5 

0 0.10 5 0.05 5 

( continued on next page ) 

composition for very large scale partial set covering and maximal 

https://doi.org/10.1016/j.ejor.2018.12.021 

https://doi.org/10.5281/zenodo.1412080
https://doi.org/10.13039/501100001821
https://doi.org/10.1016/j.ejor.2018.12.021


14 J.-F. Cordeau, F. Furini and I. Ljubi ́c / European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; January 7, 2019;16:24 ] 

Table 9 ( continued ) 

| J | D ˆ R # CPLEX AUTO BEN BEN B1 BEN B2 

t [seconds] # opt t [seconds] # opt t [seconds] # opt t [seconds] # opt 

6.25 5 282.79 2 t.l. 0 0.20 5 0.18 5 

60% ̄D 4 5 343.53 3 t.l. 0 0.67 5 0.40 5 

4.25 5 295.50 4 t.l. 0 0.26 5 0.15 5 

4.5 5 295.23 5 t.l. 0 0.32 5 0.15 5 

4.75 5 418.37 2 t.l. 0 0.45 5 0.49 5 

5 5 468.30 2 t.l. 0 0.62 5 0.45 5 

70% ̄D 3.25 5 273.77 5 t.l. 0 0.55 5 0.41 5 

3.5 5 345.65 4 t.l. 0 0.62 5 0.71 5 

3.75 5 292.74 4 t.l. 0 0.65 5 0.44 5 

4 5 357.60 4 t.l. 0 0.46 5 0.39 5 

4.25 5 157.04 1 t.l. 0 0.68 5 0.49 5 

Table 10 

Performance comparison on the MCLP instances with | J | ∈ {10,0 0 0; 50,0 0 0; 10 0,0 0 0}. 

| J | B ˆ R # CPLEX AUTO BEN BEN B1 BEN B2 

t [seconds] # opt t [seconds] # opt t [seconds] # opt t [seconds] # opt 

10,0 0 0 10 5.5 5 12.54 5 25.41 5 9.07 5 9.18 5 

5.75 5 11.30 5 13.35 5 6.50 5 8.47 5 

6 5 10.90 5 16.57 5 6.79 5 13.20 5 

6.25 5 8.59 5 23.38 5 6.75 5 12.18 5 

15 4 5 4.72 5 11.83 5 6.05 5 6.60 5 

4.25 5 5.47 5 13.28 5 6.42 5 6.18 5 

4.5 5 7.31 5 43.65 5 11.87 5 19.96 5 

4.75 5 9.34 5 64.88 5 31.41 5 60.17 5 

5 5 8.80 5 50.67 5 20.89 5 42.32 5 

20 3.25 5 3.57 5 7.44 5 6.65 5 4.32 5 

3.5 5 4.05 5 39.30 5 12.21 5 10.95 5 

3.75 5 6.28 5 45.48 4 32.57 5 78.13 5 

4 5 6.83 5 190.03 4 31.47 5 73.75 5 

4.25 5 4.78 5 60.28 5 24.92 5 45.28 5 

50,0 0 0 10 5.5 5 237.53 5 49.88 5 6.22 5 7.68 5 

5.75 5 229.72 5 43.48 5 8.50 5 6.54 5 

6 5 223.08 5 49.02 5 9.93 5 12.03 5 

6.25 5 156.66 5 54.97 5 12.49 5 18.26 5 

15 4 5 116.54 5 29.26 5 8.44 5 6.19 5 

4.25 5 146.39 5 48.96 5 13.11 5 10.77 5 

4.5 5 196.35 5 10 0.0 0 5 17.03 5 17.28 5 

4.75 5 180.02 5 97.77 5 21.33 5 25.16 5 

5 5 172.56 5 85.01 5 23.07 5 30.63 5 

20 3.25 5 106.60 5 25.18 5 13.89 5 7.69 5 

3.5 5 137.37 5 134.47 5 36.36 5 25.84 5 

3.75 5 130.89 5 162.52 4 54.48 5 42.21 5 

4 5 129.90 5 251.06 5 40.99 5 40.69 5 

4.25 5 88.27 5 100.41 4 32.66 5 59.31 5 

10 0,0 0 0 10 5.5 5 t.l. 0 82.72 5 8.22 5 9.73 5 

5.75 5 561.11 1 78.92 5 11.13 5 10.64 5 

6 5 573.94 1 89.39 5 12.21 5 19.32 5 

6.25 5 424.77 3 89.41 5 10.76 5 20.75 5 

15 4 5 434.18 3 66.58 5 11.12 5 10.80 5 

4.25 5 452.15 3 80.77 5 11.15 5 13.35 5 

4.5 5 508.79 3 154.51 5 28.73 5 40.37 5 

4.75 5 506.49 1 168.54 5 23.55 5 28.14 5 

5 5 443.25 1 193.38 5 26.00 5 42.96 5 

20 3.25 5 400.79 4 49.29 5 13.35 5 10.88 5 

3.5 5 369.68 2 76.06 4 25.90 5 22.16 5 

3.75 5 203.81 1 305.23 4 49.36 5 53.20 5 

4 5 407.50 3 205.86 4 58.68 5 65.69 5 

4.25 5 287.02 3 171.00 4 42.80 5 75.87 5 
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Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.ejor.2018.12.021 . 
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