biogeme 2.6a [Mon Apr 17 15:32:48 CEST 2017]
Michel Bierlaire, EPFL
This file has automatically been generated.
Tue Apr 18 19:51:42 2017
Tip: click on the columns headers to sort a table [Credits]
Example of a Network GEV model. It is actually a cross nested logit model for a transportation mode choice with 3 alternatives:
|
- Train
|
- Car
|
- Swissmetro, an hypothetical high-speed train
|
We introduce a nest called EXISTING involving Car and Train
|
and a nest called PUBLIC involving Swissmetro and Train
|
Note that the alternative Train belongs to the two nests.
|
It is the same model as 11cnl.mod.
|
Model: | Network GEV model |
Number of estimated parameters: | 8 |
Number of observations: | 6768 |
Number of individuals: | 6768 |
Null log likelihood: | -6964.663 |
Init log likelihood: | -6964.663 |
Final log likelihood: | -5214.049 |
Likelihood ratio test: | 3501.228 |
Rho-square: | 0.251 |
Adjusted rho-square: | 0.250 |
Final gradient norm: | +2.100e-04 |
Diagnostic: | Normal termination. Obj: 6.05545e-06 Const: 6.05545e-06 |
Iterations: | 35 |
Run time: | 00:12 |
Variance-covariance: | from finite difference hessian |
Sample file: | ../swissmetro.dat |
Utility parameters
Name | Value | Std err | t-test | p-value | |
ASC_CAR | -0.240 | 0.0384 | -6.26 | 0.00 | | | | | |
ASC_SM | 0.00 | fixed | | | | | | | |
ASC_TRAIN | -0.381 | 0.0492 | -7.74 | 0.00 | | | | | |
B_COST | -0.819 | 0.0446 | -18.36 | 0.00 | | | | | |
B_TIME | -0.777 | 0.0558 | -13.93 | 0.00 | | | | | |
Model parameters
Name | Value | Std err | t-test 0 | p-value | t-test 1 | p-value | | Robust Std err | Robust t-test 0 | p-value | Robust t-test 1 | p-value | |
A1_TRAIN | 1.00 | fixed | | | | | | | | | | | |
A2_SM | 1.00 | fixed | | | | | | | | | | | |
A3_Car | 1.00 | fixed | | | | | | | | | | | |
EXISTING | 2.51 | 0.175 | 14.40 | 0.00 | 8.68 | 0.00 | | | | | | | |
PUBLIC | 4.11 | 0.569 | 7.23 | 0.00 | 5.48 | 0.00 | | | | | | | |
EXISTING_A1_TRAIN | 0.569 | 0.0865 | 6.57 | 0.00 | -4.98 | 0.00 | | | | | | | |
EXISTING_A3_Car | 1.00 | fixed | | | | | | | | | | | |
PUBLIC_A1_TRAIN | 0.431 | 0.0865 | 4.98 | 0.00 | -6.57 | 0.00 | | | | | | | |
PUBLIC_A2_SM | 1.00 | fixed | | | | | | | | | | | |
__ROOT_EXISTING | 1.00 | fixed | | | | | | | | | | | |
__ROOT_PUBLIC | 1.00 | fixed | | | | | | | | | | | |
Utility functions
Id | Name | Availability | Specification |
---|
1 | A1_TRAIN | TRAIN_AV_SP | ASC_TRAIN * one + B_TIME * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED |
2 | A2_SM | SM_AV | ASC_SM * one + B_TIME * SM_TT_SCALED + B_COST * SM_COST_SCALED |
3 | A3_Car | CAR_AV_SP | ASC_CAR * one + B_TIME * CAR_TT_SCALED + B_COST * CAR_CO_SCALED |
Correlation of coefficients
Coefficient1 | Coefficient2 | Covariance | Correlation | t-test | p-value | | Rob. cov. | Rob. corr. | Rob. t-test | p-value | |
ASC_CAR | ASC_TRAIN | 0.000647 | 0.343 | 2.75 | 0.01 | | |
ASC_CAR | B_COST | -0.000103 | -0.0601 | 9.54 | 0.00 | | |
ASC_CAR | B_TIME | -0.00132 | -0.614 | 6.31 | 0.00 | | |
ASC_TRAIN | B_COST | 0.000711 | 0.324 | 8.02 | 0.00 | | |
ASC_TRAIN | B_TIME | -0.000637 | -0.232 | 4.81 | 0.00 | | |
B_COST | B_TIME | 0.00115 | 0.460 | -0.79 | 0.43 | * | |
User defined linear constraints
1*EXISTING_A1_TRAIN + 1*PUBLIC_A1_TRAIN = 1 [1 = 1]
Smallest singular value of the hessian: 0.837813