biogeme 2.6a [Mon Apr 17 15:32:48 CEST 2017]
Michel Bierlaire, EPFL
This file has automatically been generated.
Tue Apr 18 19:04:51 2017
Tip: click on the columns headers to sort a table [Credits]
Example of a logit model for a transportation mode choice with 3 alternatives:
|
- Train
|
- Car
|
- Swissmetro, an hypothetical high-speed train
|
A Box-Cox transform is applied to the travel time variable
|
Model: | Logit |
Number of estimated parameters: | 5 |
Number of observations: | 6768 |
Number of individuals: | 6768 |
Null log likelihood: | -6964.663 |
Init log likelihood: | -6964.663 |
Final log likelihood: | -5292.095 |
Likelihood ratio test: | 3345.135 |
Rho-square: | 0.240 |
Adjusted rho-square: | 0.239 |
Final gradient norm: | +6.878e-04 |
Diagnostic: | Normal termination. Obj: 6.05545e-06 Const: 6.05545e-06 |
Iterations: | 17 |
Run time: | 00:01 |
Variance-covariance: | from finite difference hessian |
Sample file: | ../swissmetro.dat |
Utility parameters
Name | Value | Std err | t-test | p-value | | Robust Std err | Robust t-test | p-value | |
ASC_CAR | -0.00462 | 0.0471 | -0.10 | 0.92 | * | 0.0480 | -0.10 | 0.92 | * |
ASC_SM | 0.00 | fixed | | | | | | | |
ASC_TRAIN | -0.485 | 0.0614 | -7.90 | 0.00 | | 0.0644 | -7.53 | 0.00 | |
B_COST | -1.08 | 0.0520 | -20.74 | 0.00 | | 0.0680 | -15.86 | 0.00 | |
B_TIME | -1.67 | 0.0744 | -22.51 | 0.00 | | 0.0766 | -21.88 | 0.00 | |
LAMBDA | 0.510 | 0.0519 | 9.83 | 0.00 | | 0.0773 | 6.60 | 0.00 | |
Utility functions
Id | Name | Availability | Specification |
---|
1 | A1_TRAIN | TRAIN_AV_SP | ASC_TRAIN * one + B_COST * TRAIN_COST_SCALED + ( B_TIME * ( ( TRAIN_TT_SCALED ** LAMBDA ) - 1 ) ) / LAMBDA |
2 | A2_SM | SM_AV | ASC_SM * one + B_COST * SM_COST_SCALED + ( B_TIME * ( ( SM_TT_SCALED ** LAMBDA ) - 1 ) ) / LAMBDA |
3 | A3_Car | CAR_AV_SP | ASC_CAR * one + B_COST * CAR_CO_SCALED + ( B_TIME * ( ( CAR_TT_SCALED ** LAMBDA ) - 1 ) ) / LAMBDA |
Correlation of coefficients
Coefficient1 | Coefficient2 | Covariance | Correlation | t-test | p-value | | Rob. cov. | Rob. corr. | Rob. t-test | p-value | |
ASC_CAR | LAMBDA | -0.000543 | -0.222 | -6.65 | 0.00 | | 0.000428 | 0.115 | -5.97 | 0.00 | |
ASC_TRAIN | B_COST | 2.88e-06 | 0.000901 | 7.38 | 0.00 | | -0.000245 | -0.0560 | 6.17 | 0.00 | |
B_COST | B_TIME | 0.000575 | 0.149 | 7.08 | 0.00 | | 0.00131 | 0.251 | 6.72 | 0.00 | |
ASC_TRAIN | B_TIME | -0.00357 | -0.782 | 9.28 | 0.00 | | -0.00387 | -0.786 | 8.93 | 0.00 | |
ASC_CAR | ASC_TRAIN | 0.00188 | 0.651 | 10.19 | 0.00 | | 0.00218 | 0.705 | 10.50 | 0.00 | |
ASC_TRAIN | LAMBDA | -0.000715 | -0.224 | -11.20 | 0.00 | | 0.00116 | 0.233 | -11.26 | 0.00 | |
ASC_CAR | B_COST | 0.000481 | 0.197 | 17.07 | 0.00 | | 0.000436 | 0.133 | 13.80 | 0.00 | |
B_COST | LAMBDA | -0.000157 | -0.0582 | -21.02 | 0.00 | | -0.000985 | -0.187 | -14.17 | 0.00 | |
ASC_CAR | B_TIME | -0.00231 | -0.661 | 15.01 | 0.00 | | -0.00245 | -0.668 | 14.61 | 0.00 | |
B_TIME | LAMBDA | 0.00142 | 0.367 | -29.75 | 0.00 | | -0.000703 | -0.119 | -18.99 | 0.00 | |
Smallest singular value of the hessian: 1.42687