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Motivation

� High level of uncertainty in port operations

mechanical problems etc.

� Disrupt the normal functioning of the

� Require quick real time action.

• Very few studies address the problem of real time recovery in port operations, 

while the problem has not been studied at all in context of bulk ports.

• Our research problem derives from the

Ras Al Khaimah, UAE

operations due to weather conditions,

the port

Very few studies address the problem of real time recovery in port operations, 

while the problem has not been studied at all in context of bulk ports.

the realistic requirements at the SAQR port,



Research Objectives

• Develop real time algorithms

allocation problem (BAP)

• For a given baseline berthing schedule,

costs of the updated schedule as

data is revealed in real time.

for disruption recovery in berth

schedule, minimize the total realized

as actual arrival and handling time



Literature Review

● Very scarce studies on real time and robust

the best of our knowledge, no literature

● OR literature related to BAP under uncertainty

− Pro-active Robustness

● Stochastic programming approach used

● Define surrogate problems to define the

(2006), Zhen and Chang (2012), Xu et al.

− Reactive approach or disruption management

● Zeng et al.(2012) and Du et al. (2010) propose

disruptions.

robust algorithms in container terminals . To

on bulk ports.

uncertainty in container terminals

by Zhen et al. (2011), Han et al. (2010)

the stochastic nature of the problem: Moorthy and Teo

. (2012) and Hendriks et al. (2010)

management

propose reactive strategies to minimize the impact of



Schematic Diagram of a Bulk Terminal
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Baseline Schedule

● Any feasible berthing assignment and schedule of vessels 

along the quay respecting the spatial and temporal 

constraints on the individual vessels

● Best case: Optimal solution of the deterministic berth 

allocation problem (without accounting for any uncertainty 

in information)

Any feasible berthing assignment and schedule of vessels 

along the quay respecting the spatial and temporal 

constraints on the individual vessels

Best case: Optimal solution of the deterministic berth 

allocation problem (without accounting for any uncertainty 



Deterministic BAP: Problem Definition

● Find
− Optimal assignment and schedule of vessels along the 

● Given

− Expected arrival times of vessels

− Estimated handling times of vessels dependent on cargo type on the vessel (the relative location of 

the vessel along the quay with respect to the cargo location on the yard) and the number 

operating on the vessel

● Objective

− Minimize total service times (waiting time + handling time) of 

● Results

− Near optimal solution obtained using set partitioning method or heuristic based on squeaky wheel 

optimization for instances containing up to 40 vessels

Deterministic BAP: Problem Definition

assignment and schedule of vessels along the quay (without accounting for any uncertainty)

of vessels dependent on cargo type on the vessel (the relative location of 

the vessel along the quay with respect to the cargo location on the yard) and the number of cranes 

(waiting time + handling time) of vessels berthing at the port

Near optimal solution obtained using set partitioning method or heuristic based on squeaky wheel 

optimization for instances containing up to 40 vessels



Real Time Recovery in Berth Allocation ProblemReal Time Recovery in Berth Allocation Problem



Problem Definition: Real time recovery in BAP

● Objective: For a given baseline berthing schedule, minimize the total 

realized costs of the actual berthing schedule as actual data is revealed 

in real time
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Problem Definition: Real time recovery in BAP

For a given baseline berthing schedule, minimize the total 

realized costs of the actual berthing schedule as actual data is revealed 
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Service cost of unassigned vessels

Cost of re-allocation of unassigned vessels

Berthing delays to vessels arriving on-time



● Key arrival disruption pattern in real time

− For each vessel i ϵ N, we are given an expected arrival time 

advance.  

− The expected arrival time of a given vessel may be updated 

planning horizon of length |H| at time instants 

0  ≤  ti1 <  ti2 <  ti3 …. ti(F-1)  

where ai is the actual arrival time of the vessel, and the corresponding arrival time 

update at time instant tiF is AiF for all i ϵ

● Actual handling time of a vessel is revealed at the time instant when the 

handling of the vessel is actually finished

Problem Definition: Real time recovery in BAP

Key arrival disruption pattern in real time

we are given an expected arrival time Ai which is known in 

The expected arrival time of a given vessel may be updated |F| times during the 

at time instants ti1, ti2…tiF such that 

1)  <  tiF < ai

is the actual arrival time of the vessel, and the corresponding arrival time 

N.

Actual handling time of a vessel is revealed at the time instant when the 

handling of the vessel is actually finished

Problem Definition: Real time recovery in BAP



Modeling the Uncertainty

● Uncertainty in arrival times

− Arrival times are modeled using a uniform distribution. Actual arrival time 

range [Ai-V , Ai+V], where Ai  is the expected arrival time of vessel 

horizon. 

− At any given time instant t in the planning horizon, the following 3 cases arise

● Case I : vessel i has arrived and the actual arrival time 

● Case II : the vessel hasn’t arrived yet but the expected arrival time 

● Case III : neither the actual nor the expected arrival time is known at time instant 

arrival time estimate          at time instant 

from the following equation

Since the arrival time of vessel i is assumed to be uniformly distributed,       
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Modeling the Uncertainty

Arrival times are modeled using a uniform distribution. Actual arrival time ai of vessel i lies in the 

is the expected arrival time of vessel i at the start of the planning 

in the planning horizon, the following 3 cases arise

has arrived and the actual arrival time ai is known 

Case II : the vessel hasn’t arrived yet but the expected arrival time Ai is known

Case III : neither the actual nor the expected arrival time is known at time instant t, then the 

arrival time estimate          at time instant t is such that                             , and is determined 

is assumed to be uniformly distributed,       
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Modeling the Uncertainty

● Uncertainty in handling times

− Handling times are modeled using a truncated exponential distribution. Handling time 

starting section k lies in the range [Hi(k) , γ Hi(k)], where 

vessel i berthed at starting section k

− At any given time instant t in the planning horizon, the following 3 cases arise

● Case I : the handling of vessel i berthed at starting section 

is known 

● Case II : the vessel is being handled at time instant 

known, but the actual handling time is unknown. The  handling time estimate at time instant 

● Case III : the vessel is not assigned yet, in which case the handling time of the vessel at time instant 

any berthing position k is given by

Since the handling times follow a truncated exponentially distribution,
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Modeling the Uncertainty

Handling times are modeled using a truncated exponential distribution. Handling time hi(k) of vessel i berthed at 

], where Hi(k) is the estimated (deterministic) handling time of 

in the planning horizon, the following 3 cases arise

berthed at starting section k’ is finished, then the actual handling time hi(k’)

Case II : the vessel is being handled at time instant t, thus the actual berthing position k’ of the vessel is 

known, but the actual handling time is unknown. The  handling time estimate at time instant t is given by 

Case III : the vessel is not assigned yet, in which case the handling time of the vessel at time instant t for 

Since the handling times follow a truncated exponentially distribution,
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Solution Algorithms

● Optimization Based Recovery Algorithm

− Re-optimize the berthing schedule of all unassigned vessels using set

disruption

● arrival time of any vessel is updated and it deviates from its previous expected value.

● handling of any vessel is finished and it deviates from the estimated value

− the future vessel arrival and handling times provided as input parameters are modeled as discussed earlier

− the berthing assignment of all vessels that have already been assigned to the quay is considered frozen and 

unchangeable

● Smart Greedy Recovery Algorithm

− Assign an incoming vessel to the quay as it arrives as soon as berthing space is available, to the section(s) at which 

the total realized cost of all the unassigned vessels at that instant is minimized by modeling the uncertainty in 

future vessel arrival and handling times of other vessels

− Vessel is assigned at or after the estimated berthing time of the vessel (as per the baseline schedule)

− In the determination of the total realized cost to assign a given vessel at a given set of section(s), all other 

unassigned vessels are assigned to the estimated berthing sections as per the baseline schedule

optimize the berthing schedule of all unassigned vessels using set-partitioning approach every time there is a 

arrival time of any vessel is updated and it deviates from its previous expected value.

handling of any vessel is finished and it deviates from the estimated value

the future vessel arrival and handling times provided as input parameters are modeled as discussed earlier

the berthing assignment of all vessels that have already been assigned to the quay is considered frozen and 

Assign an incoming vessel to the quay as it arrives as soon as berthing space is available, to the section(s) at which 

the total realized cost of all the unassigned vessels at that instant is minimized by modeling the uncertainty in 

future vessel arrival and handling times of other vessels

Vessel is assigned at or after the estimated berthing time of the vessel (as per the baseline schedule)

In the determination of the total realized cost to assign a given vessel at a given set of section(s), all other 

unassigned vessels are assigned to the estimated berthing sections as per the baseline schedule



● Greedy Recovery Algorithm

− Assign the vessels as they arrive as soon as berthing space is available. Any given vessel is assigned  at those set of 

sections where the realized cost of assigning it is minimized

− No need to model uncertainty in future arrival and handling times

− Closely represents the ongoing practice at the port

● Apriori Optimization Approach

− Assume that all arrival and handling delay information is available at the start of the planning horizon

− Problem of real time recovery reduces to solving the deterministic berth allocation problem with the objective 

function to minimize total realized cost of the schedule

− Provides a lower bound to the minimization problem of real time recovery being solved

Benchmark Solutions

Assign the vessels as they arrive as soon as berthing space is available. Any given vessel is assigned  at those set of 

sections where the realized cost of assigning it is minimized

No need to model uncertainty in future arrival and handling times

Assume that all arrival and handling delay information is available at the start of the planning horizon

Problem of real time recovery reduces to solving the deterministic berth allocation problem with the objective 

function to minimize total realized cost of the schedule

Provides a lower bound to the minimization problem of real time recovery being solved



Arrival Disruption Scenario

Vessel 0: 23(21) ATA:26

Vessel 1: 9(2) 14(4) 17(5) ATA:8

Vessel 2: 24(3) 31(7) 15(9) 21(12)

Vessel 3: 22(8) ATA:10

Vessel 4: 16(1) 16(2) ATA:6

Vessel 5: 19(8) 12(10) 15(13) 24(14)

Vessel 6: 15(8) ATA:16

Vessel 7: 3(1) 10(6) 13(7) 19(10)

ATA:21

Vessel 8: 29(1) 20(2) 19(4) 9(5)

Vessel 9: 3(2) ATA:20

Vessel 10: 10(1) 15(6) 8(7) 14(8)

Vessel 11: 23(6) 18(7) 15(9) 12(10)

Vessel 12: 29(1) ATA:10

Vessel 13: 5(0) 8(6) ATA:9

Vessel 14: 17(2) 27(4) 13(9) 26(15)

Vessel 15: 19(2) 12(4) 7(5) 7(6)

Vessel 16: 15(6) 10(8) 11(9) 28(10)

Vessel 17: ATA:-12

Vessel 18: 29(8) 13(9) 25(10) 30(12)

Vessel 19: ATA:-15

Vessel 20: ATA:-1

Vessel 21: 7(6) 20(9) 25(14) 24(19)

Vessel 22: 12(0) ATA:5

Vessel 23: 21(5) 14(6) 13(7) 10(8)

Vessel 24: ATA:-1

Vessel EAT

0 18

1 4

2 19

3 10

4 6

5 9

6 1

7 17

8 19

9 10

10 1

11 11

12 16

13 2

14 19

15 15

16 14

17 0

18 19

19 0

20 14

21 12

22 8

23 12

24 10

Arrival Disruption Scenario

ATA:8

21(12) 24(13) 16(14) 30(15) 32(16) 21(17) 20(18) 20(19) 21(20) ATA:21

24(14) 24(15) 18(16) 20(17) 24(18) 22(19) 22(20) ATA:21

19(10) 32(11) 23(12) 22(13) 19(14) 26(15) 32(16) 31(17) 31(18) 29(19) 21(20)

ATA:7

14(8) 13(9) 16(10) ATA:11

12(10) 16(11) 20(12) ATA:13

26(15) 22(16) 27(17) 27(18) 33(19) 25(20) 23(21) 34(22) ATA:23

29(7) 29(9) 16(10) 20(11) 20(12) 24(13) 28(14) ATA:15

28(10) 27(11) 29(12) 16(13) 15(14) ATA:15

30(12) 34(13) 18(14) 25(15) 20(16) 29(17) 34(18) 34(19) ATA:20

24(19) 22(20) 27(21) 23(22) 26(23) ATA:24

10(8) 10(9) 24(13) 19(14) 17(15) 27(16) ATA:17



Computational Results

● |N|=10 vessels, |M|= 10 sections, c1 = c3 = 1.0, 

● Mean Gap with respect to the apriori optimization solution

Greedy Approach Optimization based Approach 

7.65% 3.16%

= 1.0, c2 = 0.002, U= 4 hours, V = 5, γ = 1.1

optimization solution

Optimization based Approach Smart Greedy Approach

3.16% 7.81%



Computational Results

● |N|=25 vessels, |M|= 10 sections, c1 = c3 = 1.0, 

● Mean Gap with respect to the apriori optimization solution

Greedy Approach Optimization based Approach 

54.41 % 27.40 %

= 1.0, c2 = 0.002, U= 4 hours, V = 5, γ = 1.1

optimization solution

Optimization based Approach Smart Greedy Approach

27.40 % 37.11 %



Computational Results

● |N|=10 vessels, |M|= 10 sections, c1 = c3 = 1.0, 

● Mean Gap with respect to the apriori optimization solution

Greedy Approach Optimization based Approach 

10.37 % 3.06 %

= 1.0, c2 = 0.002, U= 4 hours, V = 10, γ = 1.1

optimization solution

Optimization based Approach Smart Greedy Approach

3.06 % 8.56 % 



Computational Results

● |N|=25 vessels, |M|= 10 sections, c1 = c3 = 1.0, 

● Mean Gap with respect to the apriori optimization solution

Greedy Approach Optimization based Approach 

45.40 % 28.87 %

= 1.0, c2 = 0.002, U= 4 hours, V = 10, γ = 1.1

optimization solution

Optimization based Approach Smart Greedy Approach

28.87 % 34.71 %



Computational Results

● |N|=25 vessels, |M|= 10 sections, c1 = c3 = 1.0, 

● Mean Gap with respect to the apriori optimization solution

Greedy Approach Optimization based Approach 

40.58 % 43.26 %

= 1.0, c2 = 0.002, U= 4 hours, V = 24, γ = 1.2

optimization solution

Optimization based Approach Smart Greedy Approach

43.26 % 44.65 %



Conclusions and Future Work

● Modeling the uncertainty in future vessel arrival and handling times can significantly reduce the 

total realized costs of the schedule, in comparison to the ongoing practice of re

at the port. 

● The optimization based recovery algorithm outperforms the heuristic based smart  greedy 

recovery algorithm, but is computationally expensive.

● Limitation: Modeling of uncertainty fails to produce good results for larger instance size or when 

the stochasticity in arrival times and/or handling times is too high.

● As part of future work, plan to develop a robust formulation of the berth allocation problem with 

a certain degree of anticipation of variability in information.

Conclusions and Future Work

Modeling the uncertainty in future vessel arrival and handling times can significantly reduce the 

total realized costs of the schedule, in comparison to the ongoing practice of re-assigning vessels 

The optimization based recovery algorithm outperforms the heuristic based smart  greedy 

recovery algorithm, but is computationally expensive.

Limitation: Modeling of uncertainty fails to produce good results for larger instance size or when 

in arrival times and/or handling times is too high.

As part of future work, plan to develop a robust formulation of the berth allocation problem with 

a certain degree of anticipation of variability in information.
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● Penalty Cost on late arriving vessels: Impose a penalty fees on vessels arriving 

beyond the right end of the arrival window, A

Penalty Cost

Ai
Ai - Ui

Arrival Time Window = 2U

c3gi

Problem Definition: Real time recovery in BAP

Impose a penalty fees on vessels arriving 

beyond the right end of the arrival window, Ai+Ui

Actual Arrival TimeAi +Ui ai

gi

Window = 2Ui

slope = c3

Problem Definition: Real time recovery in BAP


