
A complex multi-objective production problem:
from exact methods to advanced metaheuristics

Jean Respen1 - Nicolas Zufferey1 - Edoardo Amaldi2

1HEC - University of Geneva

2Politecnico di Milano

1st workshop on large scale optimization 2012

Outline

 Problem formulation
 Proposed methods

 Exact model
 Greedy heuristics
 Descents
 GRASP
 Tabu search
 Adaptive memory algorithm

 Results
 Future work / conclusion

Considered problem (1)

 Multi-objective function to minimize with
 Setup costs and times
 Makespan
 Smoothing

 Lexicographic approach
 Makespan > smoothing > setup costs

Considered problem (2)

 Non identical parallel machines
 Working at different speeds

 Eligibility constraints
 Instances with (100 ≤ n ≤ 500)
 Families (f ≤ 10) of jobs
 Each job is associated with a family

Setup costs and times

 Setups

 Costs c
j
, in the objective function

 Times s
j
, in makespan computation

 Machine dependent

 2 different types
 Minor, if two jobs belong to the same family
 Major otherwise

Smoothing issues

 Used to balance resource utilization and
prevent overloading a production line

 Based on family belonging
 Ratio : 2/3 (every subsequence of 3 jobs can at

most contain 2 jobs of the same family,
otherwise: pay)

A basic example Applications

● Industry (assembly line)
● Car sequencing problems
● Vehicle routing problems

j
a

j
b

s
b,a

 = {5,7}

p
a
 = {120,165}

s
a,b

 = {6,10}

p
b
 = {128,192}

Graph representation
Example for two jobs and two machines

VRP

Proposed methods

 Exact method, tackled with AMPL and CPLEX
 Heuristics

 Three greedy algorithms
 Descent
 Descent with learning process
 Tabu search
 Adaptive memory algorithm
 GRASP

Exact method: objective function
Parameters

α=1, β=103, δ=106

ω=1
Decision variables

 = 1 if j on machine i
 = 1 if j,j' consecutive of machine i
 = 1 if j,j',j'' are consecutive on machine i

and of the same family

Exact method

s.t.

Three greedy algorithms

 Selection of the next job to schedule
 Random: a random selection of jobs to insert
 Exhaustive: test all the insertions, keep the best

one
 Flexibility: insert jobs in a least flexible order
 Job flexibility: number of machines it can be performed on

 Jobs are always inserted at minimum cost

Descent

● Starts from an initial solution
● Performs moves to improve current solution
● Stops when improvement is not possible

anymore
● Restarts

Learning descent

● Iteratively try each greedy heuristic
● Perform a descent on each initial solution
● After T/2, compute statistics and give weights
● Restarts
● Return best visited solution

GRASP

● Two steps
– First build a solution in a constructive way
– Each insertion, select the best x candidates and pick one at

random
– Second perform a descent

Tabu search

 Glover, 1986, formalized in 1989
 Start with an initial solution s
 While a stopping condition is not met, do

 Move to a neighbor solution s' Є N(s)
 Each time a move is performed (job swap, job exchange, job

move, etc.) to reach a neighbor solution s', forbid the inverse
move for Θ iterations.

 s = s'

 Return s*

Tabu search: job moves

 Two tabu status

 Tabu tenure is a uniformly distributed random value
between n/25 and n/13

 Neighborhood set to 50%

j
a

j
y j...j

xj...
move Forbidden to move j

a
 for Θ iterations

j
a

j
y j...j

xj...
move Forbidden to put j

a
 back between j

x
 and j

y

for 2*Θ iterations

Diversification

● Every p
1
 iteration, perform a diversification

procedure

● Perform p
2
 random moves and set them as tabu

Intensification

● Each time a solution beats the record, perform
an intensification procedure

● Perform a descent on each machine

Adaptive memory algorithm

● Based on Rochat & Taillard 1995
● Population of 10 solutions
● Generate an offspring following different rules
● Improve offspring with 500 iterations of tabu

search
● Replace the worst solution (or the oldest) in the

population with the offspring

Instances

 Number of jobs n Є {100, 200, 300, 400, 500}
 Number of machines m Є {3,...,8}
 Number of families f Є {2,...,10}

 For each family, a list of jobs

 Smoothing costs, f values

Tests configuration

 Each instance
 Greedy, GRASP and descent algorithms: 30

minutes with restart
 Tabu search & AMA: 3 runs of 30 minutes with an

exhaustive greedy initial solution

 Test lab
 Quad-core Intel i7 2.93 ghz
 8 GB DDR3

Results
Minimum values

n m f* RG EG FG GRASP D LD TS TS Di TS In Ama

100 3 4324195884 5.70 1.29 6.04 1.72 0.11 0.12 0.87 0.87 0.87 0.28

100 4 3371875845 6.59 0.60 21.01 0.95 0.60 0.58 4.19 0.72 1.42 0.80

200 4 6590233745 10.10 2.43 8.61 7.41 0.05 0.02 0.65 0.65 0.65 0.16

200 5 5353706666 10.23 11.49 8.60 4.73 1.71 2.00 0.60 0.60 0.60 0.19

300 5 7558778608 12.47 9.74 13.44 11.13 10.67 10.64 0.88 0.89 0.90 0.04

300 6 6016848499 14.29 0.10 12.77 9.65 0.27 0.15 0.24 0.25 0.25 0.13

400 6 8126390757 15.61 0.42 15.93 12.01 0.28 0.15 0.25 0.25 0.26 0.15

400 7 7383088654 13.83 6.66 13.12 13.56 6.44 6.51 1.72 1.72 1.78 0.24

500 7 9006737509 15.96 2.20 17.47 12.68 1.41 2.03 0.46 0.46 0.46 0.07

500 8 7649900636 16.31 9.64 17.31 12.67 3.38 3.06 1.64 1.64 1.64 0.29

AVG 12.11 4.46 13.43 8.65 2.49 2.53 1.15 0.80 0.88 0.24

Lexicographic order

Work in progress

 Improve diversification (dynamic version, etc.)
 Tune adaptive memory algorithm

Questions?

