

A complex multi-objective production problem: from exact methods to advanced metaheuristics

Jean Respen¹ - Nicolas Zufferey¹ - Edoardo Amaldi²

¹HEC - University of Geneva

²Politecnico di Milano

1st workshop on large scale optimization 2012

Considered problem (1)

- Multi-objective function to minimize with
 - Setup costs and times
 - Makespan
 - Smoothing
- Lexicographic approach
 - Makespan > smoothing > setup costs

Outline

- Problem formulation
- Proposed methods
 - Exact model
 - Greedy heuristics
 - Descents
 - GRASP
 - Tabu search
 - Adaptive memory algorithm
- Results
- Future work / conclusion

Considered problem (2)

- Non identical parallel machines
 - Working at different speeds
- Eligibility constraints
- Instances with $(100 \le n \le 500)$
- Families (f \leq 10) of jobs
- Each job is associated with a family

Setup costs and times

- Setups
 - Costs c, in the objective function
 - Times $\boldsymbol{s}_{i},$ in makespan computation
 - Machine dependent
- 2 different types
 - Minor, if two jobs belong to the same family $s \in [5, 10]$
 - Major otherwise $s \in [30, 50]$

A basic example

Smoothing issues

- Used to balance resource utilization and prevent overloading a production line
- Based on family belonging
- Ratio : 2/3 (every subsequence of 3 jobs can at most contain 2 jobs of the same family, otherwise: pay)

Applications

- Industry (assembly line)
- Car sequencing problems
- Vehicle routing problems

Proposed methods

- Exact method, tackled with AMPL and CPLEX
- Heuristics
 - Three greedy algorithms
 - Descent
 - Descent with learning process
 - Tabu search
 - Adaptive memory algorithm
 - GRASP

Exact method: objective function

- Parameters
 - α=1, β=10³, δ=10⁶
 - •ω=1
- Decision variables
 - z_j^i = 1 if *j* on machine *i*
 - • $x_{jj'}^i$ = 1 if *j*,*j*' consecutive of machine *i*
 - • $y_{jj'j''}^{i}$ = 1 if *j*,*j'*,*j''* are consecutive on machine *i* and of the same family

$$\min\left(\alpha \cdot \sum_{i} \sum_{j,j'} c^{i}_{jj'} \cdot x^{i}_{jj'} + \beta \cdot \sum_{i} \sum_{j,j',j''} k_j \cdot y^{i}_{jj'j''} + \gamma \cdot \omega \cdot C_{max}\right)$$

Exact method

$\min\left(\alpha \cdot \sum_{j} \sum_{j,j'} c^i_{jj'} \cdot x^i_{jj'} + \right)$	$+ eta \cdot \sum_{j=1}^{n} \sum_{j=1,\dots,n} k_j \cdot y^i_{jj'j''} + \gamma \cdot \omega \cdot C_{max} ight)$
s.t. $\forall i$	$C_{max}^{i} = \sum_{j \in N} p_{j}^{i} \cdot z_{j}^{i} + \epsilon \sum_{j,j' \in N} s_{jj'}^{i} \cdot x_{jj'}^{i}$
$\forall i$	$C_{max}^i \le C_{max}$
orall i,j,j'	$(2-u^i_j-u^i_{j'})\cdot x^i_{jj'}=0$
orall i,j	$z^i_j \leq u^i_j$
orall i,j,j'	$z^i_j + z^i_{j'} \geq 2 \cdot x^i_{jj'}$
$orall i,j,j^{\prime},j^{\prime\prime}$	$2 \cdot y^i_{jj'j''} \leq (x^i_{jj'} + x^i_{j'j''}) \cdot f_{jj'j''}$
$orall i,j,j^{\prime},j^{\prime\prime}$	$(x^i_{jj'} + x^i_{j'j''}) \cdot f_{jj'j''} - 1 \le y^i_{jj'j''}$
$\forall i$	$\sum_{j \in N} z_j^i - 1 = \sum_{j,j' \in N} x_{jj'}^i$
orall i,j	$\sum_{j' \in N} x^i_{jj'} \le 1$
orall i,j'	$\sum_{j\in N} x_{jj'}^i \leq 1$
orall i,j	$z^i_j \leq r^i_j \leq N \cdot z^i_j$
orall i,j,j'	$r_{j'}^i \ge (r_j^i + 1) - N \cdot (1 - xjj'^i)$
orall i,j,j'	$x^i_{jj'} + x^i_{j'j} \leq 1$
orall j	$\sum_{i \in M} z_j^i = 1$
$orall i,j,j^{\prime},j^{\prime\prime}$	$0 \le y^i_{jj'j''} \le 1$
orall i,j,j'	$x^{i}_{jj'}, z^{i}_{j} \in \{0,1\}$

Descent

- Starts from an initial solution
- Performs moves to improve current solution
- Stops when improvement is not possible anymore
- Restarts

Three greedy algorithms

- Selection of the next job to schedule
 - Random: a random selection of jobs to insert
 - Exhaustive: test all the insertions, keep the best one
 - Flexibility: insert jobs in a least flexible order
 - Job flexibility: number of machines it can be performed on
- Jobs are always inserted at minimum cost

Learning descent

- Iteratively try each greedy heuristic
- Perform a descent on each initial solution
- After T/2, compute statistics and give weights
- Restarts
- Return best visited solution

GRASP

- Two steps
 - First build a solution in a constructive way
 - Each insertion, select the best x candidates and pick one at random
 - Second perform a descent

Tabu search

- Glover, 1986, formalized in 1989
- Start with an initial solution s
- While a stopping condition is not met, do
 - Move to a neighbor solution s' C N(s)
 - Each time a move is performed (job swap, job exchange, job move, etc.) to reach a neighbor solution s', forbid the inverse move for Θ iterations.
 - s = s'
- Return s*

Tabu search: job moves

• Two tabu status

Forbidden to move j_a for Θ iterations

Forbidden to put $\boldsymbol{j}_{_a}$ back between $\boldsymbol{j}_{_x}$ and $\boldsymbol{j}_{_y}$ for 2*O iterations

- Tabu tenure is a uniformly distributed random value between n/25 and n/13
- Neighborhood set to 50%

Diversification

- Every p₁ iteration, perform a diversification procedure
- Perform p, random moves and set them as tabu

Intensification

- Each time a solution beats the record, perform an intensification procedure
- · Perform a descent on each machine

Adaptive memory algorithm

- Based on Rochat & Taillard 1995
- Population of 10 solutions
- Generate an offspring following different rules
- Improve offspring with 500 iterations of tabu search
- Replace the worst solution (or the oldest) in the population with the offspring

Instances

- Number of jobs **n €** {100, 200, 300, 400, 500}
- Number of machines **m €** {3,...,8}
- Number of families **f €** {2,...,10}
 - For each family, a list of jobs
- Smoothing costs, f values

Tests configuration

- Each instance
 - Greedy, GRASP and descent algorithms: 30 minutes with restart
 - Tabu search & AMA: 3 runs of 30 minutes with an exhaustive greedy initial solution
- Test lab
 - Quad-core Intel i7 2.93 ghz
 - 8 GB DDR3

Results

Lexicographic order

Minimum values

n	m	f*	RG	EG	FG	GRASP	D	LD	TS	TS Di	TS In	Ama
100	3	4324195884	5.70	1.29	6.04	1.72	0.11	0.12	0.87	0.87	0.87	0.28
100	4	3371875845	6.59	0.60	21.01	0.95	0.60	0.58	4.19	0.72	1.42	0.80
200	4	6590233745	10.10	2.43	8.61	7.41	0.05	0.02	0.65	0.65	0.65	0.16
200	5	5353706666	10.23	11.49	8.60	4.73	1.71	2.00	0.60	0.60	0.60	0.19
300	5	7558778608	12.47	9.74	13.44	11.13	10.67	10.64	0.88	0.89	0.90	0.04
300	6	6016848499	14.29	0.10	12.77	9.65	0.27	0.15	0.24	0.25	0.25	0.13
400	6	8126390757	15.61	0.42	15.93	12.01	0.28	0.15	0.25	0.25	0.26	0.15
400	7	7383088654	13.83	6.66	13.12	13.56	6.44	6.51	1.72	1.72	1.78	0.24
500	7	9006737509	15.96	2.20	17.47	12.68	1.41	2.03	0.46	0.46	0.46	0.07
500	8	7649900636	16.31	9.64	17.31	12.67	3.38	3.06	1.64	1.64	1.64	0.29
AVG			12.11	4.46	13.43	8.65	2.49	2.53	1.15	0.80	0.88	0.24

Work in progress

- Improve diversification (dynamic version, etc.)
- Tune adaptive memory algorithm

