
A complex multi-objective production problem:
from exact methods to advanced metaheuristics

Jean Respen1 - Nicolas Zufferey1 - Edoardo Amaldi2

1HEC - University of Geneva

2Politecnico di Milano

1st workshop on large scale optimization 2012

Outline

 Problem formulation
 Proposed methods

 Exact model
 Greedy heuristics
 Descents
 GRASP
 Tabu search
 Adaptive memory algorithm

 Results
 Future work / conclusion

Considered problem (1)

 Multi-objective function to minimize with
 Setup costs and times
 Makespan
 Smoothing

 Lexicographic approach
 Makespan > smoothing > setup costs

Considered problem (2)

 Non identical parallel machines
 Working at different speeds

 Eligibility constraints
 Instances with (100 ≤ n ≤ 500)
 Families (f ≤ 10) of jobs
 Each job is associated with a family

Setup costs and times

 Setups

 Costs c
j
, in the objective function

 Times s
j
, in makespan computation

 Machine dependent

 2 different types
 Minor, if two jobs belong to the same family
 Major otherwise

Smoothing issues

 Used to balance resource utilization and
prevent overloading a production line

 Based on family belonging
 Ratio : 2/3 (every subsequence of 3 jobs can at

most contain 2 jobs of the same family,
otherwise: pay)

A basic example Applications

● Industry (assembly line)
● Car sequencing problems
● Vehicle routing problems

j
a

j
b

s
b,a

 = {5,7}

p
a
 = {120,165}

s
a,b

 = {6,10}

p
b
 = {128,192}

Graph representation
Example for two jobs and two machines

VRP

Proposed methods

 Exact method, tackled with AMPL and CPLEX
 Heuristics

 Three greedy algorithms
 Descent
 Descent with learning process
 Tabu search
 Adaptive memory algorithm
 GRASP

Exact method: objective function
Parameters

α=1, β=103, δ=106

ω=1
Decision variables

 = 1 if j on machine i
 = 1 if j,j' consecutive of machine i
 = 1 if j,j',j'' are consecutive on machine i

and of the same family

Exact method

s.t.

Three greedy algorithms

 Selection of the next job to schedule
 Random: a random selection of jobs to insert
 Exhaustive: test all the insertions, keep the best

one
 Flexibility: insert jobs in a least flexible order
 Job flexibility: number of machines it can be performed on

 Jobs are always inserted at minimum cost

Descent

● Starts from an initial solution
● Performs moves to improve current solution
● Stops when improvement is not possible

anymore
● Restarts

Learning descent

● Iteratively try each greedy heuristic
● Perform a descent on each initial solution
● After T/2, compute statistics and give weights
● Restarts
● Return best visited solution

GRASP

● Two steps
– First build a solution in a constructive way
– Each insertion, select the best x candidates and pick one at

random
– Second perform a descent

Tabu search

 Glover, 1986, formalized in 1989
 Start with an initial solution s
 While a stopping condition is not met, do

 Move to a neighbor solution s' Є N(s)
 Each time a move is performed (job swap, job exchange, job

move, etc.) to reach a neighbor solution s', forbid the inverse
move for Θ iterations.

 s = s'

 Return s*

Tabu search: job moves

 Two tabu status

 Tabu tenure is a uniformly distributed random value
between n/25 and n/13

 Neighborhood set to 50%

j
a

j
y j...j

xj...
move Forbidden to move j

a
 for Θ iterations

j
a

j
y j...j

xj...
move Forbidden to put j

a
 back between j

x
 and j

y

for 2*Θ iterations

Diversification

● Every p
1
 iteration, perform a diversification

procedure

● Perform p
2
 random moves and set them as tabu

Intensification

● Each time a solution beats the record, perform
an intensification procedure

● Perform a descent on each machine

Adaptive memory algorithm

● Based on Rochat & Taillard 1995
● Population of 10 solutions
● Generate an offspring following different rules
● Improve offspring with 500 iterations of tabu

search
● Replace the worst solution (or the oldest) in the

population with the offspring

Instances

 Number of jobs n Є {100, 200, 300, 400, 500}
 Number of machines m Є {3,...,8}
 Number of families f Є {2,...,10}

 For each family, a list of jobs

 Smoothing costs, f values

Tests configuration

 Each instance
 Greedy, GRASP and descent algorithms: 30

minutes with restart
 Tabu search & AMA: 3 runs of 30 minutes with an

exhaustive greedy initial solution

 Test lab
 Quad-core Intel i7 2.93 ghz
 8 GB DDR3

Results
Minimum values

n m f* RG EG FG GRASP D LD TS TS Di TS In Ama

100 3 4324195884 5.70 1.29 6.04 1.72 0.11 0.12 0.87 0.87 0.87 0.28

100 4 3371875845 6.59 0.60 21.01 0.95 0.60 0.58 4.19 0.72 1.42 0.80

200 4 6590233745 10.10 2.43 8.61 7.41 0.05 0.02 0.65 0.65 0.65 0.16

200 5 5353706666 10.23 11.49 8.60 4.73 1.71 2.00 0.60 0.60 0.60 0.19

300 5 7558778608 12.47 9.74 13.44 11.13 10.67 10.64 0.88 0.89 0.90 0.04

300 6 6016848499 14.29 0.10 12.77 9.65 0.27 0.15 0.24 0.25 0.25 0.13

400 6 8126390757 15.61 0.42 15.93 12.01 0.28 0.15 0.25 0.25 0.26 0.15

400 7 7383088654 13.83 6.66 13.12 13.56 6.44 6.51 1.72 1.72 1.78 0.24

500 7 9006737509 15.96 2.20 17.47 12.68 1.41 2.03 0.46 0.46 0.46 0.07

500 8 7649900636 16.31 9.64 17.31 12.67 3.38 3.06 1.64 1.64 1.64 0.29

AVG 12.11 4.46 13.43 8.65 2.49 2.53 1.15 0.80 0.88 0.24

Lexicographic order

Work in progress

 Improve diversification (dynamic version, etc.)
 Tune adaptive memory algorithm

Questions?

