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Context

Large Scale Optimization: Size of input data, Dimension of solution
space, Structural properties?

(Non exhaustive) classification of optimization problems:

Linear/Non-Linear objectives and constraints.

Continuous/Discrete valued variables.

Single/Multiple objectives.

Deterministic/Non Deterministic data

Purpose, desiderata: Feasible/Exact (proof of quality) solutions.

It seems restrictive but a large amount of decision problems can be
adequately modeled as such.
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Lab’s life...
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Column Generation

An informal definition: an algorithm to deal with many variables that
cannot fit in the memory, i.e., cannot be explicitly enumerated.

A suggested computation for maximal multi-commodity network flows. L.

R. Ford, D. R. Fulkerson, 1958

A computation which uses the structure of one formulation of the multi-commodity problem within the framework of a simplex

computation to determine maximal multi-commodity flows in networks. For this particular formulation, the number of variables is too

large to be dealt with explicitly. The suggested computation treats nonbasic variables implicitly by replacing the pricing operation of the

simplex method with several applications of a combinational algorithm for finding a shortest chain joining a pair of points in a network.
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Motivation

Why should we deal with formulations that cannot fit in the memory or
cannot be explicitly enumerated?

Natural formulations: Cutting stock, Vehicle Routing, etc...

Equivalent formulations: result of reformulation/decomposition
principles
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Cutting stock

Satisfy a demand di of cuts of width wi with the minimal number of rolls
of size W .
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Cutting stock

z =min ∑
p∈P

xp

s.t. ∑
p∈P

aipxp ≥ di ∀i ∈ I

x ∈ Z|P|
+

P is the set of feasible patterns, i.e., ∑i∈p aipwi ≤W . The number of
possible patterns grows exponentially as a function of |I |.
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Vehicle routing

Satisfy the delivery demand di of I customers with up to K vehicles of
capacity Q minimizing the total traveling costs.
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Vehicle routing

z =min ∑
r∈R

crxr

s.t. ∑
r∈R

airxr ≥ 1 ∀i ∈ I

∑
r∈R

xr ≤ |K |

x ∈ {0,1}|R|

R is the set of feasible routes, i.e., ∑i∈r airdi ≤ Q with cost cr . The
number of routes grows exponentially as a function of |I |.
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Equivalent formulations

George B. Dantzig; Philip Wolfe (1960). Decomposition Principle for

Linear Programs. Operations Research 8: 101–111.

Informally, the core idea is to manipulate the formulation of a decision
problem in order to obtain an alternative formulation with some nice
properties:

Decomposes into several decision problems (Master and sub
problems).

Exhibits a stronger dual bound.

Under mild assumptions, decision problems with a natural “exponential”
formulation can be viewed as a DW reformulation of a corresponding
“compact” formulation.
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Compact or Original formulation

We want to solve an integer program, the compact formulation

z = min ctx

s.t. Ax≥ b

x ∈ X

with X = {x ∈ Zn
+ | Dx≥ d} �= /0

replacing X by conv(X ) does not change z
∗
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Minkowski-Weyl Theorem

Theorem: Every x ∈ conv(X ) can be represented as

convex combination of extreme points {xp}p ∈ P plus a
non-negative combination of extreme rays {xr}r ∈ R of conv(X )

x= ∑
p∈P

xpλp + ∑
r∈R

xrλr , ∑
p∈P

λp = 1,λ ≥ 0 ∈ R|P|+|R|
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Applying the Dantzig-Wolfe decomposition

We transform the original formulation:

z = min ctx

s.t. Ax≥ b

x ∈ X = {x ∈ Zn
+ | Dx≥ d}

replacing the external representation for X by the internal

∑
p∈P

λp = 1

λ ≥ 0

∑
p∈P

xpλp + ∑
r∈R

xrλr = x
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Applying the Dantzig-Wolfe decomposition

We substitute x by its equivalent representation:

z = min ct( ∑
p∈P

xpλp + ∑
r∈R

xrλr )

s.t. A( ∑
p∈P

xpλp + ∑
r∈R

xrλr )≥ b

∑
p∈P

λp = 1

λ ≥ 0

∑
p∈P

xpλp + ∑
r∈R

xrλr = x
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Applying the Dantzig-Wolfe decomposition

Finally, replace cj = ctxj and aj = Axj

z = min ∑
p∈P

ctxpλp + ∑
r∈R

ctxrλr

s.t. ∑
p∈P

Axpλp + ∑
r∈R

Axrλr ≥ b

∑
p∈P

λp = 1

λ ≥ 0

∑
p∈P

xpλp + ∑
r∈R

xrλr = x
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Extensive formulation

We keep the integrality on the original variables

z = min ∑
p∈P

cpλp + ∑
r∈R

crλr

s.t. ∑
p∈P

apλp + ∑
r∈R

arλr ≥ b

∑
p∈P

λp = 1

λ ≥ 0

∑
p∈P

xpλp + ∑
r∈R

xrλr = x

x ∈ Zn
+
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Boundness

When the set X = {x ∈ Zn
+ | Dx≥ d} �= /0 is bounded, all points x can be

represented as a convex combination of extreme points {xp}p ∈ P of
conv(X )

x= ∑
p∈P

xpλp, ∑
p∈P

λp = 1,λ ≥ 0 ∈ R|P|

from now on we focus on bounded polyhedra.
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Two equivalent formulations

Compact formulation

zCF =min ctx

s.t. Ax≥ b

Dx≥ d

x ∈ Zn
+.

Extensive formulation

zEF =min ∑
p∈P

cpλp

s.t. ∑
p∈P

apλp ≥ b

∑
p∈P

λp = 1

x= ∑
p∈P

xpλp

λ ≥ 0, x ∈ Zn
+.

How do we solve them?

by Branch and Bound (and Cut)
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Relaxations zCF and zEF

Compact formulation

zCF =min ctx

s.t. Ax≥ b

Dx≥ d

x≥ 0.

Extensive formulation

zEF =min ∑
p∈P

cpλp

s.t. ∑
p∈P

apλp ≥ b

∑
p∈P

λp = 1

x= ∑
p∈P

xpλp

λ ≥ 0, x≥ 0.

zEF ≥ zCF (desirably zEF > zCF ) as xp ∈ conv(X ) is an integer vector
(not affected by relaxation)!
Unfortunately, nothing comes for free as |P| grows exponentially with n.
P cannot be enumerated and we need column genration.
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Master Problem: Linear Relaxation

We start with a subset of extreme points P̃:

zEF = min ∑
p∈P̃

cpλp

s.t. ∑
p∈P̃

apλp ≥ b (π)

∑
p∈P̃

λp = 1 (π0)

λ ≥ 0

Given (z∗EF ,π∗,π∗
0
), we search profitable columns:

rc = min
p∈P\P̃

(ct −π∗
A)xp−π∗

0

by implicit enumeration (solving an optimization problem):

rc =min
x∈X

(ct −π∗
A)x−π∗

0
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Pricing Problem

The so called pricing problem computes the smallest reduced cost of all
variables :

rc = min (ct −π∗
A)x−π∗

0

s.t. Dx≥ d

x ∈ Zn
+.

If rc∗ < 0, then xp = x∗ is added to P̃ (it is not in P̃ as rcp∈P̃ ≥ 0) and
the process iterates.
Otherwise, z∗EF cannot be improved further and constitutes a valid bound
to z

∗.
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Discretization

Another option for decomposition: instead of using conv(X ), X is
directly reformulated.

When every integer x ∈ X can be written as an integral combination:

x= ∑
p∈P

xpλp + ∑
r∈R

xrλr , ∑
p∈P

λp = 1,λ ∈ Z|P|+|R|
+

When X is bounded, the reformulation leads to linear master problem
even in case of non-linear objective function:

c (x) = c

�

∑
p∈P

xpλp

�
= ∑

p∈P
cpλp
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Illustration skip

Find the shortest path from 1 to 6

1

10

1

2

1 5

12

10

1

2

1

6

2

3

4

5
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Illustration skip

Find the shortest path from 1 to 6

2
5

12

10
2

10

11

1
1

1

6
2

3

4

5

Path 1-2-4-6 is optimal: cost 3
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Example

Find the shortest path from 1 to 6
Total traversal time must not exceed 14 units

(2,3)

(5,7)

(12,3)

(10,1)
(2,2)

(10,3)

(1,2)(1,10)

(1,1)
(1,7)

1

6
2

3

4

5
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Example

Find the shortest path from 1 to 6
Total traversal time must not exceed 14 units

(2,3)

(5,7)

(12,3)

(10,1)
(2,2)

(10,3)

(1,2)(1,10)

(1,1)
(1,7)

1

6
2

3

4

5

Path 1-2-4-6 is cheap but slow: cost 3, time 18
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Example

Find the shortest path from 1 to 6
Total traversal time must not exceed 14 units

(2,3)

(5,7)

(10,1)

(1,2)(1,10)

(1,1)
(1,7)

(10,3)
(12,3)

(2,2)
1

6
2

3

4

5

Path 1-3-5-6 is quick but expensive: cost 24, time 8
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Example

Find the shortest path from 1 to 6
Total traversal time must not exceed 14 units

(2,3)

(5,7)

(10,1)

(1,10)

(12,3)

(2,2)

(10,3)

(1,2)

(1,1)
(1,7)

1

6
2

3

4

5

Path 1-3-2-4-6 is optimal: cost 13, time 13
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Integer program (IP)

The problem is (weakly) NP-Hard, although pseudo-polynomial
algorithms exist, we use an approach via Integer Programming.
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Integer program (IP)

For each arc (i , j) the traversal cost and traversal time are given by cij

and tij , respectively.

z = min ∑
(i ,j)∈A

cijxij

s.t. ∑
j |(1,j)∈A

x1j = 1

∑
j |(i ,j)∈A

xij − ∑
j |(j ,i)∈A

xji = 0 i = 2,3,4,5

∑
i |(i ,6)∈A

xi6 = 1

∑
(i ,j)∈A

tijxij ≤ 14

xij ∈ {0,1} (i , j) ∈ A

Exploit embedded SPP
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Path formulation

What remains

∑
j |(1,j)∈A

x1j = 1

∑
j |(i ,j)∈A

xij − ∑
j |(j ,i)∈A

xji = 0 i = 2,3,4,5

∑
i |(i ,6)∈A

xi6 = 1

xij ∈ {0,1} (i , j) ∈ A

defines a network flow problem, which decomposes into flows on paths
(and cycles)
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Path formulation

The convex hull of

∑
j |(1,j)∈A

x1j = 1

∑
j |(i ,j)∈A

xij − ∑
j |(j ,i)∈A

xji = 0 i = 2,3,4,5

∑
i |(i ,6)∈A

xi6 = 1

xij ≥ 0 (i , j) ∈ A

defines a polyhedron with integer vertices
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Path formulation

Every (fractional) flow can be represented as convex combination of
paths (and cycles)

xij = ∑
p∈P

xpijλp (i , j) ∈ A

∑
p∈P

λp = 1

λp ≥ 0 p ∈ P

P is the set of all paths from 1 to 6
∑p∈P λp = 1 is called convexity constraint
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Master Problem

Let’s substitute in (IP) xij with this representation

z = min ∑
(i ,j)∈A

cijxij

s.t. ∑
j |(1,j)∈A

x1j = 1

∑
j |(i ,j)∈A

xij − ∑
j |(j ,i)∈A

xji = 0 i = 2,3,4,5

∑
i |(i ,6)∈A

xi6 = 1

∑
(i ,j)∈A

tijxij ≤ 14

xij ∈ {0,1} (i , j) ∈ A
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Master Problem

Let’s substitute in (IP) xij with this representation

z = min ∑
p∈P

( ∑
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( ∑
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Master Problem

Let’s substitute in (IP) xij with this representation

z = min ∑
p∈P

( ∑
(i ,j)∈A

cijxpij )λp

s.t. ∑
p∈P

( ∑
(i ,j)∈A

tijxpij )λp ≤ 14

∑
p∈P

λp = 1

λp ≥ 0 p ∈ P

∑
p∈P

xpijλp = xij (i , j) ∈ A

xij ∈ {0,1} (i , j) ∈ A
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Integrality must hold for original xij variables



Master Problem

Relax integrality constraint on xij

z = min ∑
p∈P

( ∑
(i ,j)∈A

cijxpij )λp

s.t. ∑
p∈P

( ∑
(i ,j)∈A

tijxpij )λp ≤ 14

∑
p∈P

λp = 1

λp ≥ 0 p ∈ P

∑
p∈P

xpijλp = xij (i , j) ∈ A

xij ≥ 0 (i , j) ∈ A
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Master Problem

Remove the linking constraints between λp and xij

z = min ∑
p∈P

( ∑
(i ,j)∈A

cijxpij )λp

s.t. ∑
p∈P

( ∑
(i ,j)∈A

tijxpij )λp ≤ 14

∑
p∈P

λp = 1

λp ≥ 0 p ∈ P

Problem: in this small example |P|= 9, in general we have a lot of paths.
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Master Problem

The whole formulation

min 3λ1246 + 14λ12456 + 5λ1256 + 13λ13246 + 24λ132456 + 15λ13256 + 16λ1346 + 27λ1346 + 24λ1356
s.t. 18λ1246 + 14λ12456 + 15λ1256 + 13λ13246 + 9λ132456 + 10λ13256 + 17λ1346 + 13λ1346 + 8λ1356 ≤ 14

λ1246 + λ12456 + λ1256 + λ13246 + λ132456 + λ13256 + λ1346 + λ1346 + λ1356 = 1

λ1246 , λ12456 , λ1256 , λ13246 , λ132456 , λ13256 , λ1346 , λ1346 , λ1356 ≥ 0
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Master Problem

We work with a subset of the variables

min 14λ12456 + 5λ1256

s.t. 14λ12456 + 15λ1256 ≤ 14
λ12456 + λ1256 = 1
λ12456 , λ1256 ≥ 0

called restricted master problem (RMP)
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Restricted Master Problem (RMP)

How to generate such a new column we don’t have?

min . . .+ 24λ132456 + . . .
s.t. . . .+ 9λ132456 + . . .≤ 14

. . .+ λ132456 + . . .= 1

. . . , λ132456 + . . .≥ 0
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Restricted Master Problem (RMP)

How to generate such a new column we don’t have?

duals
↓

min . . .+ 24λ132456 + . . .
s.t. . . .+ 9λ132456 + . . .≤ 14 π1

. . .+ λ132456 + . . .= 1 π0

. . . , λ132456 + . . .≥ 0

Simplex method: to enter the basis a variable must have a negative
reduced cost:

c132456 = 24− (π1,π0) ·
�
9

1

�

= 24−9π1−1π0 < 0
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Pricing subproblem

Checking whether such λp variable exists, with

cp = ∑
(i ,j)∈A

cijxpij − ( ∑
(i ,j)∈A

tijxpij )π1−π0 < 0

is an optimization problem called Pricing Subproblem:

c
∗ = min ∑

(i ,j)∈A
(cij −π1tij )xij −π0

s.t. xij encodes a feasible column, that is

s.t. ∑
j |(1,j)∈A

x1j = 1

∑
j |(i ,j)∈A

xij − ∑
j |(j ,i)∈A

xji = 0 i = 2,3,4,5

∑
i |(i ,6)∈A

xi6 = 1

xij ≥ 0 (i , j) ∈ A
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Pricing subproblem

In our case:

2-3π1

5-7π1

10-1π11-2π11-10π1
1-1π1

1-7π110-3π1 12-3π1

2-2π11 6

2

3 4

5
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What we have done in practice

Formulate a (simple) combinatorial problem

Recognize a known (possibly easier) subproblem

Reformulate the original problem in terms of Master and Pricing
subproblems

Remarks:

Huge number of variable

Modified cost for the easy subproblem
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Integrality property - does not hold

The lower bound obtained from the RMP (zEF ) is as weak as the original
LP relaxation when the subproblem is solved as an LP

The integrality gap may be closed partly when the subproblem is solved
as an IP
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Integrality property - holds

But precisely this opportunity is not present when the integrality property
holds

An easier pricing problem may imply a weaker LP relaxation of the RMP
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Which Dx≥ d? - Practical advice

Some general rules:

Look for structures for which you have a good algorithm in your
arsenal. E.g., knapsack, shortest paths.

I tend to move complexity to the pricing:
The master problem is the only problem that is ’relaxed’ for its

solution: if everything is in the master the decompositon is not going

to be beneficial.

For a well structured pricing problem (e.g., resource constrained

shortest paths) powerful heuristics and effective relaxations can help

to tackle the complexity.
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Example, solving the LRMP skip

z = min 100λ0

+ 3λ1246 + 24λ1356 + 15λ13256 + 5λ1256

s.t. 0λ0

+ 18λ1246 + 8λ1356 + 10λ13256 + 15λ1256

≤ 14 π1

λ0

+ λ1246 + λ1356 + λ13256 + λ1256

= 1 π0

λ0

, λ1246 , λ1356 , λ13256 , λ1256

≥ 0

Master Solution z π0 π1 c∗ p cp tp

λ0 = 1 100.0 100.00 0.00−97.0 1246 3 18

λ0 = 0.22,λ1246 = 0.78 24.6 100.00−5.39−32.9 1356 24 8

λ1246 = 0.6,λ1356 = 0.4 11.4 40.80−2.10 −4.8 13256 15 10
λ1246 = λ13256 = 0.5 9.0 30.00−1.50 −2.5 1256 5 15

λ1256 = 0.8,λ13256 = 0.2 7.0 35.00−2.00 0

Matteo Salani IDSIA



Example, solving the LRMP skip

z = min 100λ0

+ 3λ1246 + 24λ1356 + 15λ13256 + 5λ1256

s.t. 0λ0

+ 18λ1246 + 8λ1356 + 10λ13256 + 15λ1256

≤ 14 π1

λ0

+ λ1246 + λ1356 + λ13256 + λ1256

= 1 π0

λ0

, λ1246 , λ1356 , λ13256 , λ1256

≥ 0

Master Solution z π0 π1 c∗ p cp tp

λ0 = 1 100.0 100.00 0.00

−97.0 1246 3 18

λ0 = 0.22,λ1246 = 0.78 24.6 100.00−5.39−32.9 1356 24 8

λ1246 = 0.6,λ1356 = 0.4 11.4 40.80−2.10 −4.8 13256 15 10
λ1246 = λ13256 = 0.5 9.0 30.00−1.50 −2.5 1256 5 15

λ1256 = 0.8,λ13256 = 0.2 7.0 35.00−2.00 0

Matteo Salani IDSIA



Example, solving the LRMP skip

z = min 100λ0

+ 3λ1246 + 24λ1356 + 15λ13256 + 5λ1256

s.t. 0λ0

+ 18λ1246 + 8λ1356 + 10λ13256 + 15λ1256

≤ 14 π1

λ0

+ λ1246 + λ1356 + λ13256 + λ1256

= 1 π0

λ0

, λ1246 , λ1356 , λ13256 , λ1256

≥ 0

Master Solution z π0 π1 c∗ p cp tp

λ0 = 1 100.0 100.00 0.00−97.0 1246 3 18

λ0 = 0.22,λ1246 = 0.78 24.6 100.00−5.39−32.9 1356 24 8

λ1246 = 0.6,λ1356 = 0.4 11.4 40.80−2.10 −4.8 13256 15 10
λ1246 = λ13256 = 0.5 9.0 30.00−1.50 −2.5 1256 5 15

λ1256 = 0.8,λ13256 = 0.2 7.0 35.00−2.00 0

Matteo Salani IDSIA



Example, solving the LRMP skip

z = min 100λ0 + 3λ1246

+ 24λ1356 + 15λ13256 + 5λ1256

s.t. 0λ0 + 18λ1246

+ 8λ1356 + 10λ13256 + 15λ1256

≤ 14 π1

λ0 + λ1246

+ λ1356 + λ13256 + λ1256

= 1 π0

λ0 , λ1246

, λ1356 , λ13256 , λ1256

≥ 0

Master Solution z π0 π1 c∗ p cp tp

λ0 = 1 100.0 100.00 0.00−97.0 1246 3 18

λ0 = 0.22,λ1246 = 0.78 24.6 100.00−5.39−32.9 1356 24 8

λ1246 = 0.6,λ1356 = 0.4 11.4 40.80−2.10 −4.8 13256 15 10
λ1246 = λ13256 = 0.5 9.0 30.00−1.50 −2.5 1256 5 15

λ1256 = 0.8,λ13256 = 0.2 7.0 35.00−2.00 0

Matteo Salani IDSIA



Example, solving the LRMP skip

z = min 100λ0 + 3λ1246

+ 24λ1356 + 15λ13256 + 5λ1256

s.t. 0λ0 + 18λ1246

+ 8λ1356 + 10λ13256 + 15λ1256

≤ 14 π1

λ0 + λ1246

+ λ1356 + λ13256 + λ1256

= 1 π0

λ0 , λ1246

, λ1356 , λ13256 , λ1256

≥ 0

Master Solution z π0 π1 c∗ p cp tp

λ0 = 1 100.0 100.00 0.00−97.0 1246 3 18

λ0 = 0.22,λ1246 = 0.78 24.6 100.00−5.39

−32.9 1356 24 8

λ1246 = 0.6,λ1356 = 0.4 11.4 40.80−2.10 −4.8 13256 15 10
λ1246 = λ13256 = 0.5 9.0 30.00−1.50 −2.5 1256 5 15

λ1256 = 0.8,λ13256 = 0.2 7.0 35.00−2.00 0

Matteo Salani IDSIA



Example, solving the LRMP skip

z = min 100λ0 + 3λ1246

+ 24λ1356 + 15λ13256 + 5λ1256

s.t. 0λ0 + 18λ1246

+ 8λ1356 + 10λ13256 + 15λ1256

≤ 14 π1

λ0 + λ1246

+ λ1356 + λ13256 + λ1256

= 1 π0

λ0 , λ1246

, λ1356 , λ13256 , λ1256

≥ 0

Master Solution z π0 π1 c∗ p cp tp

λ0 = 1 100.0 100.00 0.00−97.0 1246 3 18

λ0 = 0.22,λ1246 = 0.78 24.6 100.00−5.39−32.9 1356 24 8

λ1246 = 0.6,λ1356 = 0.4 11.4 40.80−2.10 −4.8 13256 15 10
λ1246 = λ13256 = 0.5 9.0 30.00−1.50 −2.5 1256 5 15

λ1256 = 0.8,λ13256 = 0.2 7.0 35.00−2.00 0

Matteo Salani IDSIA
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Example, solving the LRMP skip

z = min 100λ0 + 3λ1246 + 24λ1356 + 15λ13256

+ 5λ1256

s.t. 0λ0 + 18λ1246 + 8λ1356 + 10λ13256

+ 15λ1256

≤ 14 π1

λ0 + λ1246 + λ1356 + λ13256

+ λ1256

= 1 π0

λ0 , λ1246 , λ1356 , λ13256

, λ1256

≥ 0
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z = min 100λ0 + 3λ1246 + 24λ1356 + 15λ13256
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s.t. 0λ0 + 18λ1246 + 8λ1356 + 10λ13256
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Example, solving the LRMP

0.8

0.8

0.8

0.2

0.2

0.2
0.2

1
6

2

3 4

5

Remarks:

We use 0.2 times path 13256

We use 0.8 times path 1256, which is infeasible

A lower bound on the optimal solution is 7.0
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Integer solutions

We apply Branch& Bound to obtain an integer solution.
In every node of the search tree we need to

apply the reformulation

solve the RMP by column generation
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Branching on extensive formulation variables

We have two variables λ13256 = 0.2 and λ1256 = 0.8. We branch on one
of them.
This is usually a bad idea
Branch on λ13256 = 1 is nice: it reduces the problem and improve the LB
Branch on λ13256 = 0 is bad: it just forbids this path!
In most of the cases the LB doesn’t change, moreover you have to forbid
its generation in the pricing (it is the most profitable path for the pricing
since it was in the basis)

Nobody asked for the integrality of lambda variables.
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Branching on compact formulation variables

Recall the compact-extensive formulations pair. The decomposition
permits to reconstruct a solution of the compact formulation using the
solution of the extensive formulation
In our example the compact formulation has one flow variable for each
arc (for example x12 = 0.8)

0.8

0.8

0.8

0.2

0.2

0.2
0.2

1
6

2

3 4

5
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Branching on compact formulation variables

By fixing x12 = 0 we remove arc (1,2) from the network, by consequence
variables λ1246 and λ1256 have to be removed from RMP
By fixing x12 = 1 we remove arc (1,3) from the network, by consequence
variables λ1356 and λ13256 have to be removed
Remark: We have to compute a valid LB for each node by column
generation.

Nice things

Search tree is balanced and the pricing problem structure is unchanged
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Branching options

If you are stuck in devising the branching scheme:

Branch on original variables: when all pricing are distinct or just one
pricing (recommend to handle it in the pricing).

Branch on original variables, lexicographic order of original variables:
useful for symmetric subproblems.

Branch on aggregate original variables: when possible, useful for
symmetric subproblems, may affect the pricing.

Branch on auxiliary variables: when previous rules fails, extended
original formulation.

Nested partition of convexity constraints: select a subset of columns
sharing common bounds on original variables ∑p∈P:xpi≥li λp = δ /∈ Z+.
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Branching conclusions

Branching on master variables is sometimes not feasible: nobody asks for
integer master variables!
Not advisable: a master variable to zero has no effect on the bound,
produces an unbalanced search tree and it requires to not generate a
particular solution to the pricing problem (certainly with negative reduced
cost).
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Valid inequalities

Formulations can be strengthened by valid inequalities. Currently, we
have two formulations that can be exploited.

Valid inequalities for the compact formulation (expressed in terms of x
variables)

Fx≥ f

Valid inequalities for the extensive formulation (expressed in terms of λ
variables)

Gλ ≥ g
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Valid inequalities - Original Variables

Assume Fx≥ f are valid for the compact formulation, via reformulation:

∑
p∈P

fpλp + ∑
r∈R

frλr ≥ f

The duals α only affect the objective function of the pricing:

min
x∈X

cx−πAx−αFx−π0

Or considering implicitly the cut in the pricing XF = {x ∈ X |Fx≥ f}

min
x∈XF

cx−πAx−π0

Generic cutting planes (e.g. Chvatal-Gomory cuts) formulated on the
original x variables have little or no effect.
Problem specific valid inequalities are the alternative to go. In particular,
focus on the part of the problem not subject to convexification.
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Valid inequalities - Master Variables

Some valid inequalites cannot be formulated in terms of original variables
(e.g., k-path inequalities, subset-row inequalities)
Assume Gλ ≥ g are valid for the extensive formulation:

∑
p∈P

gpλp + ∑
r∈R

grλr ≥ g

The duals β must be considered and we assume we are able to write the
coefficient gj = g(aj) = g(Ax):

min
x∈X

cx−πAx−βg(Ax)−π0

g(Ax) can be non-linear and possibly complicating for the subproblem.
If g is linear we can use cuts on original variables: g(Ax) = Fx. To derive
a practical framework it is useful to consider new variables y = g(Ax).
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Practical implementations

A set of personal thoughts.
Frameworks for BCP:

ABACUS: framework, C++, not well documented.

BCP: framework, C++, well documented and stable, examples,
tricky when comes to branching.

SCIP: solver+framework, C++, flexible, branching more intuitive.

DIP (CoinOR, DECOMP): framework, C++ and python, early
stages of development.

Generic MIP based on branch-and-cut-and-price:

SYMPHONY: solver for MILP, C, well documented, not fully
conceived for user extension.

BaPCod

GCG (SCIP as a generic solver based on decomposition)

Some informal advices for your own implementation.
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Practical implementations

Cutting stock problem by column generation.
Master:

zEF =min ∑
p∈P

λp

s.t. ∑
p∈P

aipλp ≥ di ∀i ∈ I

λ ∈ Z|P|
+

Pricing:

rc =min (1−∑
i∈I

πiai ) = 1−max ∑
i∈I

πiai

s.t. ∑
i∈I

wiai ≤W

a ∈ Z|I |
+

Check provided implementation in cutstock gurobi.py
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Exercise

Cutting stock alternative (compact) formulation:

zCF =min ∑
k

yk

s.t. ∑
k

x
i
k = di ∀i ∈ I

∑
i∈I

wix
i
k ≤W · yk ∀k ∈ K

yk ∈ {0,1},x ∈ Z|I |×|K |
+
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Branch and Price and Cut
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Other best practices

For branching and cutting plane purposes, original x values are necessary.
Two alternatives:

Keep linking constraints in the master problem:

x= ∑
p∈P

xpλp

Work with x∗ implicitly.
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Other best practices

Suggested speedup techniques:

Pricing problem (in particular for formulations with hard pricing
problems):

Use a column pool.

Use local search over basic variables.

Use pricing heuristics.

When everything fails, switch to a relaxed pricing and hope that the

dual gap is sufficient to stop.

Master problem (in particular for formulations with degeneracy or a
lot of columns):

Use stabilization (see next).

Consider lagrangean relaxation (when simplex is too heavy)

Use primal heuristics hoping for early pruning

Consider early termination of column generation

Consider cutting planes, pricing or cutting first?
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Lagrangian or Lagrangean Relaxation skip

Giuseppe Ludovico Lagrangia (1736 Turin, 1813 Paris)
French ancestors on his father’s side, he moved to Berlin and then Paris
Lagrangia (Joseph-Louis Lagrange) is alternatively considered a French
and an Italian scientist
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Lagrangean Relaxation

Given

min c
t
x

Ax ≥ b

x ∈ X

Constraints are relaxed in the objective function

L(π) = min
x∈X

c
t
x−πt(Ax−b)

The lagrangean subproblem provides a LB:

L(π)≤min{ctx−πt (Ax−b)� �� �
≥0

|Ax ≥ b,x ∈ X}≤ z
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Lagrangean Relaxation

L(π) = min
x∈X

c
t
x−πt(Ax−b)

Lagrangean dual
L =max

π≥0
L(π)

Given π, the Lagrange subproblem is

L(π) =
�
−∞ if (ct −πt

A)xr < 0 for an r ∈ R

c
t
xp −πt(Axp −b) for some p ∈ P

If we assume z to be finite, we rewrite the Lagrangean dual as

max
π≥0

min
p∈P

c
t
xp −πt(Axp −b) s.t. (ct −πt

A)xr ≥ 0∀r ∈ R
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Lagrangean Relaxation

max
π≥0

min
p∈P

c
t
xp −πt(Axp −b) s.t. (ct −πt

A)xr ≥ 0∀r ∈ R

Rewritten as a linear program

L =max π0

s.t. πt(Axp −b)+π0 ≤ c
t
xp, p ∈ P

πt(Axr )≤ c
t
xr , r ∈ R

π ≥ 0
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Lagrangean Relaxation

L =max π0

s.t. πt(Axp −b)+π0 ≤ c
t
xp, p ∈ P

πt(Axr )≤ c
t
xr , r ∈ R

π ≥ 0

and the dual is . . .

D(L) = min ∑
p∈P

c
t
xpλp + ∑

r∈R
c
t
xrλr

s.t. ∑
p∈P

Axpλp + ∑
r∈R

Axrλr ≥ b ∑
p∈P

λp

∑
p∈P

λp = 1

λ ≥ 0
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Lagrangean Relaxation

For optimal x and π we obtain z
∗ = c

t
x = L(π)

Lagrangean relaxation and Column generation form a dual pair
Remarks:

DW decomposition satisfies complementary slackness conditions
(x ∈ conv(X ),Ax ≥ b)

Integrality must be checked for x

Lagrangean relaxation: given π, xπ is integer feasible for X and
πt(Axπ −b) = 0

We have to check Axπ ≥ b
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Dual interpretation of Column Generation

Column generation is a primal method

- primal (RMP) feasibility is always guaranteed
- unfeasible dual solution

Adding variables (columns) in the primal equals adding constraints in the
dual.

Dual view

Each new variable (column of the primal) “cuts away”part of the
infeasible dual region at every iteration
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Dual interpretation of Column Generation

The development of dual variables toward their optima has been
identified a major efficiency issue
In the beginning, generated variables are“irrelevant”because the initial
dual information is meaningless (heading-in)
Conversely, quality of columns is best in the end, but they may be hard
to generate, and proving optimality may take time (tailing-off)
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Degeneracy and Dual View

Matteo Salani IDSIA

An RMP usually shows degeneracy: many variables are in the
basis at 0 value.



Degeneracy and Dual View

Matteo Salani IDSIA

This means, in the dual space, that we have an optimal face
rather than an optimal vertex.



Degeneracy and Dual View
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A simplex method converges to a vertex of the dual polyhedron.



Degeneracy and Dual View
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A column may cut away only that vertex or just a bit more



Degeneracy and Dual View
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A“better”dual optimum



Degeneracy and Dual View
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Could yeld a deeper cut



Dual space stabilization

Linear program P

min c
T
x

s.t. Ax = b

x ≥ 0

and its dual D

max b
T
u

s.t. AT
u ≤ c
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Dual space stabilization - Box method
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Dual space stabilization - Stabilized CG

Linear program P̃

min c
T
x−δ−y−+δ+y+

s.t. Ax− y−+ y+ = b

y− ≤ ε−
y+ ≤ ε+
x ,y−,y+ ≥ 0

and its dual D̃

max b
T
u− εT−w−− εT+w+

s.t. AT
u ≤ c

−u−w− ≤ −δ−
u−w+ ≤ δ+
w−,w+ ≥ 0

This equals to
δ−−w− ≤ u ≤ δ++w+
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Dual space stabilization - Stabilized CG

Under what circumstances P̃ yield the optimal solution?

ε− = ε+ = 0

δ− < u
∗ < δ+

Matteo Salani IDSIA



Dual space stabilization - Interior point method skip

Generate several vertices of the dual optimal face, obtain an interior
point with a convex combination
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Dual space stabilization

Interior point method

A set covering problems P

min ∑
r∈R

crxr

s.t. ∑
r∈R

airxr ≥ 1 ∀i ∈ {1..N}

x ≥ 0

and its dual D

max ∑
i∈1..N

ui

s.t. ∑
i∈1..N

uiair ≤ cr ∀r ∈ R

u ≥ 0
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Dual space stabilization

Interior point method

Let (x,u) be the optimal primal and dual solution on P and D

Let R∗ be the set of columns for which xr > 0

Let S be the set of rows for which ∑r∈R airxr > 1

Matteo Salani IDSIA



Dual space stabilization

Interior point method

Using complementary slackness the dual polyhedron is:

∑
i∈1..N

uiair ≤ cr ∀r ∈ R \R∗

∑
i∈1..N

uiair = cr ∀r ∈ R
∗

ui = 0 ∀i ∈ S

ui ≥ 0 ∀i ∈ {1..N}\S

Matteo Salani IDSIA



Dual space stabilization

Interior point method

Define an optimization problem (Dλ), λi ∈ U(0,1)

max ∑
i∈1..N

λiui

∑
i∈1..N

uiair ≤ cr ∀r ∈ R \R∗

∑
i∈1..N

uiair = cr ∀r ∈ R
∗

ui = 0 ∀i ∈ S

ui ≥ 0 ∀i ∈ {1..N}\S
Use a simplex based method
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Dual space stabilization

Interior point method

Obtain several extreme points

It is worth to solve (Dλ) and (D−λ)

Take the average of all obtained extreme points

We should write and manage explicitly the dual problem
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Interior point method

In practice

Let’s write the dual of (Dλ), (Pλ)

max ∑
i∈1..N

λi ui

∑
i∈1..N

ui air ≤ cr ∀r ∈ R \R∗

∑
i∈1..N

ui air = cr ∀r ∈ R∗

u = 0 ∀i ∈ S

u ≥ 0 ∀i ∈ {1..N}\S

min ∑
r∈R

cr xr

∑
r∈R

air xr ≥ λi ∀i ∈ {1..N}\S

∑
r∈R

air xr ≥−∞ ∀i ∈ S

xr ≥ 0 ∀r ∈ R \R∗

xr free ∀r ∈ R∗
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Interior point method

In practice

Compare (P) with (Pλ)

min ∑
r∈R

cr xr

s.t. ∑
r∈R

air xr ≥ 1 ∀i ∈ {1..N}

x ≥ 0

min ∑
r∈R

cr xr

∑
r∈R

air xr ≥ λi ∀i ∈ {1..N}\S

∑
r∈R

air xr ≥−∞ ∀i ∈ S

xr ≥ 0 ∀r ∈ R \R∗

xr free ∀r ∈ R∗
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Dual space stabilization - Stability center method
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Dual space stabilization - Stability center method
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Dual space stabilization - Stability center method

Require: α,0< α ≤ 1 and ε
s= 0
repeat

Solve RMP, obtain (ZEF ,u);
uST = αs+(1−α)u;
Solve the pricing with uST , obtain aj ;
if L(uST )> L(s) then
Update L(s) and s;

end if
if rc(aj )< 0 then
Add aj to RMP;

end if
until ZEF −L(ū)≤ ε
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Stabilization - Practice

For problems with high degeneracy (easy pricing problem, e.g.,
knapsack, SPP) stabilization is usually beneficial.
Problems with very hard pricing (e.g., RCESPP) obtain less benefits
from stabilization.

A good profiling practice suggests what to do:
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Stabilization - Practice

(Personal implementation of) Stability center methods against interior
point LP implemented in modern solvers.
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Advanced topics in Column Generation

Some advanced topics related to CG:

Reduced cost based variable elimination

Two-Stage Column Generation / state space reduction
(mainly of pricing subproblems)

Embedded relaxation

Dual optimal cuts

Dynamic constraint aggregation

Primal heuristics

Automatic decomposition
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Two-stage column generation

Compact formulation

zCF =min ctx

s.t. Ax≥ b

Dx≥ d

x≥ 0.

Extensive formulation

zEF =min ∑
p∈P

cpλp

s.t. ∑
p∈P

apλp ≥ b

∑
p∈P

λp = 1

λ ≥ 0, x≥ 0.

Both the compact and the extensive formulations are managed
dynamically starting from X̄ ⊂ X and P̄ ⊂ P

Pricing of the compact formulation variables is based on their
reduced cost evaluation in the strengthened reformulation
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Two-stage column generation

Require: set X̄ (�X = X \ X̄ )
repeat {CG2: generate compact formulation variables x ∈ �X}

repeat {CG1: generate extensive variables λ}
p̃ ← argminp∈P̄ c̃p

if c̃p̃ < 0 then P̄ ← P̄ ∪{p̃}
until c̃p̃ ≥ 0
x̃ ← argminx∈�X c̃EF (x)

if c̃EF (x̃)< 0 then X̄ ← X̄ ∪{x̃}
until c̃EF (x̃)≥ 0

Extensive reduced cost

c̃EF (x ∈ �X ) = min
p∈{P|x>0}

c̃p =min{cp −πap −π0 | p ∈ P ∧ x > 0}.
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Illustration of two-stage CG - RCESPP skip

Resource constrained shortest path

1

2

3

4

5

6

i j

(1,10,2)

(10,3,1)

(1,1,5)

(2,3,4)

(1,2,3)

(5,7,1)

(12,3,1)

(10,1,2)

(1,7,3)

(2,2,4)

(cij , tij, lij)

zCF =min ∑
(i ,j)∈A

cij xij

∑
j :(s,j)∈A

xsj = 1

∑
j :(j ,i)∈A

xji − ∑
j :(i ,j)∈A

xij = 0 ∀i ∈ A, i �= s,t

∑
i :(i ,t)∈A

xit = 1

∑
(i ,j)∈A

lij xij ≤ L

∑
(i ,j)∈A

tij xij ≤ T

xij = {0,1} ∀(i , j) ∈ A

p path cost time load
1 1-2-4-6 3 18 10

2 1-2-5-6 5 15 10

3 1-2-4-5-6 14 14 13

4 1-3-5-6 24 8 6

5 1-3-4-6 16 17 5

6 1-3-4-5-6 27 13 6

7 1-3-2-4-6 13 13 12

8 1-3-2-4-5-6 24 9 15

9 1-3-2-5-6 15 10 12

T = 14 L= 10
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Illustration of two-stage CG - RCESPP

Resource constrained shortest path

1

2

3

4

5

6

i j

(1,10,2)

(10,3,1)

(1,1,5)

(2,3,4)

(1,2,3)

(5,7,1)

(12,3,1)

(10,1,2)

(1,7,3)

(2,2,4)

(cij , tij, lij)

it master obj π0 πT pricing obj added path
1 100 100 0 -97.00 1-2-4-6
2 24.5 100 -5.39 -32.88 1-3-5-6
3 11.4 40.8 -2.10 -4.3 1-2-5-6
4 7.71 45.7 -2.71 0.0 STOP

z∗CF = 7.2941 < z∗EF = 7.71
x∗
12

= 0.82, x∗
13

= 0.18, x∗
25

= 0.94, λ∗
1256

= 0.86
x∗
32

= 0.12, x∗
35

= 0.06 and x∗
56

= 1 λ∗
1356

= 0.14
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Illustration of two-stage CG - c̃EF method

�X = {(4,6)}

1

2

3

4

5

6

i j

(1,10)

(10,3)

(1,1)

(2,3)

(1,2)

(5,7)

(12,3)

(10,1)

(2,2)

(cij, tij)

it master obj added path
1.1 100.00 1-2-5-6

1.2 11.33 1-3-5-6

1.3 7.71 STOP

path c̃p lp note
1-2-4-6 6.14 10

1-2-5-6 0.00 10

1-2-4-5-6 6.29 13 lp > L
1-3-5-6 0.00 6

1-3-4-6 16.43 5

1-3-4-5-6 16.57 6

1-3-2-4-6 2.57 12 lp > L
1-3-2-4-5-6 2.71 15 lp > L
1-3-2-5-6 -3.57 12 lp > L

c̃EF (x46) = min
q∈{Q|x46>0}

=min{6.14,16.43}= 6.14.

Non optimal arcs are detected correctly
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Illustration of two-stage CG - c̃EF method

�X = {(4,6)}

1

2

3

4

5

6

i j
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1-2-4-5-6 6.29 13 lp > L
1-3-5-6 0.00 6

1-3-4-6 16.43 5

1-3-4-5-6 16.57 6

1-3-2-4-6 2.57 12 lp > L
1-3-2-4-5-6 2.71 15 lp > L
1-3-2-5-6 -3.57 12 lp > L

c̃EF (x46) = min
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=min{6.14,16.43}= 6.14.

Non optimal arcs are detected correctly
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Illustration of two-stage CG - c̃EF method

�X = {(5,6)}

1

2

3

4

5

6

i j

(1,10)

(10,3)

(1,1)

(2,3)

(1,2)

(5,7)

(12,3)

(10,1)

(1,7)

(cij, tij)

it master obj added path
1.1 100.00 1-2-4-6

1.2 24.55 STOP

2.1 11.33 1-3-5-6

2.2 7.71 STOP

path c̃p lp note
1-2-4-6 0.00 10

1-2-5-6 -14.17 10

1-2-4-5-6 -10.56 13 lp > L
1-3-5-6 -32.89 6

1-3-4-6 7.61 5

1-3-4-5-6 -2.94 6

1-3-2-4-6 -16.94 12 lp > L
1-3-2-4-5-6 -27.50 15 lp > L
1-3-2-5-6 -31.11 12 lp > L

c̃EF (x56) = min
q∈{Q|x56>0}

=−32.89.

Optimal arcs are detected correctly
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Illustration of two-stage CG - c̃EF method

�X = /0

1

2

3

4

5

6

i j

(1,10)

(10,3)

(1,1)

(2,3)

(1,2)

(5,7)

(12,3)

(10,1)

(1,7)

(2,2)

(cij, tij)

it master obj added path
1.1 100.00 1-2-4-6

1.2 24.55 STOP

2.1 11.33 1-3-5-6

2.2 7.71 STOP

path c̃EF lp note
1-2-4-6 6.14 10

1-2-5-6 0.00 10

1-2-4-5-6 6.29 13 lp > L
1-3-5-6 0.00 6

1-3-4-6 16.43 5

1-3-4-5-6 16.57 6

1-3-2-4-6 2.57 12 lp > L
1-3-2-4-5-6 2.71 15 lp > L
1-3-2-5-6 -3.57 12 lp > L

Optimal arcs are detected correctly
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Illustration of two-stage CG - c̃EF method

�X = {(3,2)}

1

2

3

4

5

6

i j

(1,10)

(10,3)

(1,1)

(2,3)

(5,7)

(12,3)

(10,1)

(1,7)

(2,2)

(cij, tij)

it master obj added path
1.1 100.00 1-2-4-6

1.2 24.55 1-3-5-6

1.3 11.40 1-2-5-6

1.4 7.71 STOP

path c̃EF lp note
1-2-4-6 51.86 10

1-2-5-6 45.71 10

1-2-4-5-6 52.00 13 lp > L
1-3-5-6 45.71 6

1-3-4-6 62.14 5

1-3-4-5-6 62.28 6

1-3-2-4-6 48.28 12 lp > L
1-3-2-4-5-6 48.43 15 lp > L
1-3-2-5-6 42.14 12 lp > L

x3,2 ≥ ε , c̃CF (x32) =−3.57143
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Illustration of two-stage CG - c̃EF method

�X = {(3,2)}

1

2

3

4

5

6

i j
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1-2-4-5-6 52.00 13 lp > L
1-3-5-6 45.71 6

1-3-4-6 62.14 5

1-3-4-5-6 62.28 6

1-3-2-4-6 48.28 12 lp > L
1-3-2-4-5-6 48.43 15 lp > L
1-3-2-5-6 42.14 12 lp > L

x3,2 ≥ ε , c̃CF (x32) =−3.57143
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Two stage CG : Application to DSDVRPTW

Solomon’s data set C and R instances;

25 and 50 customers;

3 scenarios: A,B, and C (3,5, and 7 orders/customer);

up to 350 orders in total

focus: proving optimality of EF

time limit: 10h
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R 25 C - 175 orders

Stand.CG Two-stage CG
Instance cols t cols it t

R101 25 C 100 635 1 478 4 0
R102 25 C 100 2243 4 1159 4 6
R103 25 C 100 2848 11 2134 4 46
R104 25 C 100 3558 28 1198 5 79
R105 25 C 100 1668 4 854 4 2
R106 25 C 100 2151 6 1100 5 15
R107 25 C 100 2226 24 1355 4 41
R108 25 C 100 2807 27 1496 4 54
R109 25 C 100 2172 22 1334 4 7
R110 25 C 100 2313 20 948 4 45
R111 25 C 100 3081 33 1817 4 63
R112 25 C 100 3028 28 781 4 28

AVG 2394 17 1221 4.2 32
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C 25 C - 175 orders

Stand.CG Two-stage CG
Instance cols t cols it t

C101 25 C 100 1498 24 854 4 18
C102 25 C 100 2907 332 1173 4 252
C103 25 C 100 3195 592 1598 4 633
C104 25 C 100 2381 27660 1704 4 33527
C105 25 C 100 1602 86 1043 4 113
C106 25 C 100 1697 34 1050 5 58
C107 25 C 100 1598 85 1070 4 355
C108 25 C 100 1981 187 1235 4 191
C109 25 C 100 1652 983 1039 4 3084

AVG 2057 3331 1196 4.1 4248
(290) (588)
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C 50 A - 150 orders

Stand.CG Two-stage CG
Instance cols t cols it t

C101 50 A 100 1204 9 898 4 4
C102 50 A 100 2022 344 1563 4 28
C103 50 A 100 1656 6844 1216 4 160
C105 50 A 100 1076 12 759 5 5
C106 50 A 100 1115 24 850 5 6
C107 50 A 100 1298 34 1222 5 17
C108 50 A 100 972 173 793 4 30
C109 50 A 100 1194 484 907 4 112

AVG 1317 991 1026 4.4 45
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C 50 B - 250 orders

Stand.CG Two-stage CG
Instance cols t cols it t

C101 50 B 100 2407 77 1482 5 21
C102 50 B 100 2664 2555 1939 5 575
C103 50 B 100 x >10h 2429 6 3519
C105 50 B 100 2660 323 1862 5 215
C106 50 B 100 2721 883 1808 5 63
C107 50 B 100 2535 865 1677 5 311
C108 50 B 100 2785 2951 2090 6 1044
C109 50 B 100 2849 5563 1764 7 4567

AVG 2660 6152 1881 5.5 1289
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C 50 C - 350 orders

Stand.CG Two-stage CG
Instance cols t cols it t

C101 50 C 100 4757 589 2706 8 482
C105 50 C 100 4727 27736 2103 8 1654
C106 50 C 100 3864 1372 2127 7 551
C107 50 C 100 3958 1376 2185 7 4340
C108 50 C 100 4668 11274 2167 8 12413

AVG 4395 8470 2258 7.6 3888
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Embedded relaxation

For many applications and/or during the development of the search tree,
formulation may become harder:

zEF =min ∑
p∈P

cpλp

s.t. ∑
p∈P

apλp ≥ b

∑
p∈P

fpλp ≤ g (1)

∑
p∈P

λp = 1

λ ≥ 0, x≥ 0.

Linear relaxation may satisfy the constraint (1) but no integer solution
does.
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Embedded relaxation

Simply the dynamic management of objective and constraints.
Require: P̃

TreeP := Initialize root node; z∗P := +∞; LBzP := 0;

while TreeP �= /0 do
NodeP := extract node(TreeP );

EmbTreeQ := Initialize root node (NodeP ); z∗Q := +∞; LBzQ := 0;

Adjust coefficients in RMP from cp to fp , relax constraint (1);

while EmbTreeQ �= /0 do

EmbTreeNodeQ := extract node(EmbTreeQ );

LBzQ := Solve Column Generation (fp , EmbTreeNodeQ );

if Integral(RMP) and LBzQ < z∗Q then

z∗Q := LBzQ ;

else if LBzQ < z∗Q then

Branch(EmbTreeQ );

else
Prune(EmbTreeNodeQ );

end if
end while
if z∗Q ≤ g then

LBzP := Solve Column Generation (cp , NodeP );

if Integral(RMP) and LBzP < g∗P then

z∗P := LBzP ;

else if LBzP < z∗P then

Branch(TreeP );

else
Prune(NodeP );

end if
else

Prune(NodeP );

end if
end while
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Embedded relaxation

The key element of embedded relaxation is that the RMP is ”shared”
between formulations as the convexified polyhedron is the same: all
columns are valid in both formulations. Furthermore all master cuts are
valid in both formulations.
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Minimal violation for VRP with Soft Time Windows

Improvement 1% Improvement 5% Improvement 10%

Instance z∗
Ω

g∗
Θ

Tg∗ (s) TE
g∗ (s) g∗

Θ
TE
g∗ (s) g∗

Θ
TE
g∗ (s)

r101 200 617.10 7.00 3.38 2.67 21.80 5.91 41.40 2.56

r102 200 547.10 2.40 65.12 38.25 2.40 68.23 29.40 1648.68

r103 200 454.60 7.00 - 16756.00 23.60 35905.99 * 0.22

r104 200 416.90 6.70 - - 43.30 - * 6.47

r105 200 530.50 2.20 23.65 12.20 19.60 30.03 48.90 41.98

r106 200 465.40 11.00 - 17185.00 21.00 11821.03 57.10 16205.24

r107 200 424.30 4.60 - - 47.30 - * 0.92

r108 200 397.30 2.30 - - 27.60 - * 2.4

r109 200 441.30 20.90 - 3079.91 * 2.09 * 2.11

r110 200 444.10 0.10 - 15964.30 10.20 22045.98 * 8.67

r111 200 428.80 3.90 - 28277.10 22.30 - * 3.21

r112 200 393.00 21.00 - - 59.00 - * 0.89

r101 100 617.10 7.00 3.11 2.37 21.80 5.47 41.40 3.08

r102 100 547.10 2.40 87.14 19.94 2.40 48.87 29.40 1325.86

r103 100 454.60 7.00 - 11908.91 23.60 19055.03 * 0.2

r104 100 416.90 6.70 - - * 0.69 * 0.69

r105 100 530.50 2.20 28.88 10.8 19.60 30.4 48.90 41.18

r106 100 465.40 11.00 - 12798.32 25.80 7356.04 57.10 14056.04

r107 100 428.40 4.20 - - * 0.67 * 0.75

r108 100 403.20 2.30 - - * 1.79 * 1.88

r109 100 441.30 20.90 - 1408.5 * 0.86 * 0.89

r110 100 444.10 0.10 - 10415.33 10.20 11185.59 * 1.33

r111 100 428.80 3.90 - 26795.29 35.50 - * 0.68

r112 100 401.70 * - 95.99 * 97.31 * 8.66

Table : R Instances. Optimal results for objective improvement of 1%, 5% and

10%.
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Automatic decomposition

Main purpose: automatize Dantzig-Wolfe reformulation without any user
input or expert knowledge.
Briefly, given an integer program:

A standard solver does not“see”any embedded structure.

OR practitioners:
Are not aware of decomposition mechanisms and rely on existing

solvers (regularly formulate models but cannot solve even moderately

sized instances);

They know about decomposition but have no clue on how to

practically use it;

They have an implementation of branch-and-price but don’t know

whether it is worth to modify it to address the new problem.

Existing frameworks need the knowledge on Dx≥ d.
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Automatic decomposition

Key concept: automatic identification of structure in coefficient matrix.

D =





D
1

D
2

. . .
D

k




D =





D
1

D
2

. . .
D

k

A
1
A
2 · · · Ak





Given A, construct a hypergraph H = (V ,RC ). For every aij �= 0
associate a vertex vij ∈ V . Hyperedges ri ∈ R for vri ,j ∈ V corresponding
to non-zero entries of row i . The same for columns C . A is block
diagonal if H decomposes in connected components.
Remove the minimal number of hyperedges from H to obtain a
block-diagonal A.
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Conclusions

Decomposition principles are the step stones to attack large scale
optimization problems.

Dantzig-Wolfe decomposition is one of such (with Lagrangean and
Benders’).

We should be able to solve the subproblem much more efficiently
than the corresponding MILP.

The stronger the bound the better it is: stronger formulations and
additional cuts.

Coordination between heuristics and relaxations.
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Thanks!

Thanks!

The starting point for your personal exploration of CG can be:

Marco E. Lübbecke, 2011. Column Generation, Wiley Encyclopedia of
Operations Research and Management Science.
doi:10.1002/9780470400531.eorms0158

Jacques Desrosiers, Marco E. Lübbecke, 2011. Branch-Price-and-Cut
Algorithms, Wiley Encyclopedia of Operations Research and Management
Science. doi:10.1002/9780470400531.eorms0118
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