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Short summary

On-demand delivery systems commonly rely on stationary facilities to organize operations and
manage resources. While stationary facilities provide stability and structured coverage, they are
inherently rigid and struggle to adapt to the spatial and temporal fluctuations of urban service
demand. This study introduces an optimization framework for deploying Mobile Fleet Inventories
(MFIs) to address operational inefficiencies in on-demand delivery systems. We formulate the
problem as an MILP to optimize MFI deployment, where key decisions are the optimal number,
placement of MFIs, and fleet size. We apply our model to a meal delivery platform in Amsterdam
to demonstrate the applicability, stability and generalizability of the framework.
Keywords: Capacitated mobile facility location, Meal delivery problem; Mobile fleet inventory,
Urban waterway logistics.

1 Introduction

A critical component of on-demand delivery systems is the micro-facility, which plays a vital role in
maintaining operational efficiency. These facilities serve three key functions: housing and manag-
ing fleets, redistributing resources, and serving as pickup/drop-off points for riders. Despite their
importance, stationary facilities often fall short of meeting the dynamic and scalable requirements
of on-demand services. For example, business districts experience surges during the day, while
residential neighborhoods see higher demand in the evening. This mismatch leads to resource
imbalances, with shortages in high-demand areas and idle resources elsewhere. Platforms often
address these inefficiencies with truck-based redistribution, which increases costs, congestion, and
environmental impacts (Du et al., 2020; DeMaio, 2009; Schuijbroek et al., 2017).

To address these limitations, this research explores the use of electric waterborne vessels (EWVs)
as Mobile Fleet Inventories (MFIs) — movable facilities that leverage urban waterways to over-
come the rigidity of stationary facilities. MFIs address key urban logistics challenges by offering
three distinct advantages: (i) freeing valuable urban space by eliminating the need for stationary
facilities, (ii) replacing truck-based redistribution with environmentally friendly, vessel-driven fleet
rebalancing, and (iii) reducing rider idle time, thereby improving operational efficiency and service
levels.

The MFIs falls under the concept of mobile facilities (Alarcon-Gerbier & Buscher, 2022) in the
literature. While Mobile Facility Location Problem (MFLP) and its variants have been extensively
studied (Pashapour et al., 2024; Bayraktar et al., 2022; Raghavan et al., 2019; Melo et al., 2006),
these studies do not address the management of shared resources (e.g. delivery bikes in our case)
stored within mobile facilities, nor do they consider resource sizing. Conversely, research on shared
vehicle systems typically assumes that parking facilities are fixed and static (Qu et al., 2021), over-
looking scenarios where facilities have mobility capabilities - a trend with increasing considerations.
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We summarize our contributions as follows: We establish the feasibility of the MFI approach by
optimizing overall system costs for on-demand delivery services. We develop and compare two
mathematical formulations: arc-based and route-based models. We demonstrate the applicability
and generalizability of the MFI concept across various canal layouts and demand scenarios. Finally,
we validate the proposed approach through a case study on a meal delivery platform in Amsterdam.

2 Problem Statement

We consider an on-demand delivery platform operating in an urban area connected by canals,
which is discretized into equal-sized hexagonal zones Z = {z}. Zones where MFIs operate are
denoted as ZM ⊆ Z, and those accessible to riders as ZR ⊆ Z. The planning horizon is divided
into equal-length periods T = {t}. We define the problem on a time-space network G = (N ,A),
where N = {(z, t)|z ∈ Z, t ∈ T } contains time-space nodes, and A is the set of arcs. This network
is composed of two subgraphs: GM = (NM ,AM ) for MFIs and GR = (NR,AR) for riders.

In GM , NM = ZM × T contains nodes where MFIs can operate, and AM contains arcs for
MFI movements. An arc (z, t)(z′, t′) denotes MFI travel from z at t to z′ at t′, where Z+

z are
adjacent zones of z connected by canals. Successor and predecessor nodes for (z, t) are defined
as NM+

z,t = {(z′, t′)|z′ ∈ Z+
z , t′ = t + DISzz′} and NM−

z,t = {(z′, t′)|z′ ∈ Z+
z , t′ = t − DISzz′},

respectively, where DISzz′ is the distance between z and z′. Similarly, in GR, NR = ZR × T
contains nodes where riders operate, and AR contains rider movement arcs (z, t)(z′′, t′′). Successor
and predecessor nodes for (z, t) are defined as NR+

z,t = {(z′′, t′′)|z′′ ∈ Z, t′′ = t + DISzz′′} and
NR−

z,t = {(z′′, t′′)|z′′ ∈ Z, t′′ = t−DISzz′′}, respectively.

Demand for bike pickups and returns

Observation 1. After picking up a bike at a facility, a rider proceeds to her first order collection.
If the facility and the first order collection point are in the same zone, the idle travel time for bike
pickup is the shortest. Thus, we define the demand for bike pickup of a shift occurring at the
location and time of the first order collection. Similarly, we define the demand for bike return of
the shift occurring at the location and time of the finishing of the last delivery. The opportunity
cost of rider idle time is included in the objective function to be minimized.

The probability distribution of the number of riders collecting first orders in z during t, denoted
as random variable Xzt, can be estimated from historical rider itinerary data. The platform can
impose a customer service level ∆, determining the number of riders deployed to z and t, denoted
as dzt, such that:

P (dzt ≥ Xzt) ≥ ∆.

Additionally, a transition probability nz′t′

zt is estimated from historical data, indicating the like-
lihood of a rider starting in z at t and finishing in z′ at t′. Using this probability, the expected
number of bikes to be returned from z′ at t′, denoted as rz′t′ , is calculated as:

rz′t′ =
∑
z

∑
t

nz′t′

zt dzt.

Satisfying demand for bike pickups and returns

The goal is to satisfy demands for bike pickups and returns with minimum total system cost
which includes capital investments and opportunity cost of rider idle time. We consider a set of
electric waterborne vessels v ∈ V, each with a fixed capacity QMFI . MFIs operate from a depot
equipped with charging facilities and selectively visit docking points to load or unload bikes. The
locations of candidate docking points are assumed to be known, and a docking point is established
only if visited by an MFI. Each docking point has a limited staging area for temporarily holding
bikes. MFIs must periodically return to the depot for recharging, with the time between returns
defined as the interval. Riders are instructed by the platform to pick up or return bikes at either
MFIs, docking points, or via self-fulfillment. By "self-fulfillment", a rider (A) finishing her shift
is instructed to head to another zone to give her bike to a rider (B), who starts his shift. In this
case, rider B’s bike pickup and rider A’s return are satisfied at the same time.
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3 Mathematical Model

Arc-based formulation

MFI route constraints. For each MFI v ∈ V, let the binary variable δv = 1 if v is deployed, and
xv
(z,t)(z′,t′) = 1 if v travels from z to z′ starting at t and arriving at t′. The planning horizon (e.g.,

a day) is divided into equal-length intervals (e.g., 4 hours) L = {1, 2, . . . , |L|}, with each interval
comprising multiple periods (e.g., 10 minutes). Thus, T = {T1, T2, . . . , T|L|}, where |L| = |T |

|T1| , and
T̃ = {|T1|, 2|T1|, . . . , (|L| − 1)|T1|} is the set of interval-cut periods. Let zo denote the depot zone.
Constraints (1) ensure the usage of MFI v. Constraints (2) require each deployed MFI to return to
the depot by the end of the planning horizon. Constraints (3) enforce flow conservation at time-
space nodes. Constraints (4) ensure no more than two MFIs stop at the same node simultaneously,
except at the depot. Constraints (5) ensure periodic returns to the depot for recharging.

δv =
∑

(z′,t′)∈NM+
zo,1

xv
(zo,1)(z

′ ,t′ )
, ∀v ∈ V (1)

∑
(z′,t′)∈NM+

zo,1

xv
(zo,1)(z

′ ,t′ )
=

∑
(z′,t′)∈NM−

zo,|T |

xv
(z′ ,t′ )(zo,|T |), ∀v ∈ V (2)

∑
(z′,t′)∈NM+

z,t

xv
(z,t)(z′,t′) =

∑
(z′,t′)∈NM−

z,t

xv
(z′,t′)(z,t), ∀v ∈ V, ∀z ∈ ZM \ {zo}, ∀t ∈ T (3)

∑
v∈V

xv
(z,t)(z,t+1) ≤ 1, ∀z ∈ ZM \ {zo}, ∀t ∈ T \ |T | (4)

xv
(zo,t)(zo,t+1) = 1, ∀v ∈ V, ∀t ∈ T̃ (5)

δv ∈ {0, 1}, ∀v ∈ V (6)

xv
(z,t)(z′,t′) ∈ {0, 1}, ∀v ∈ V, ∀(z, t), (z′, t′) ∈ AM (7)

We define the binary variable ζz = 1 if the candidate docking point in zone z is visited by an MFI
and thus established. Constraints (8) enforce this condition, with M1 set as |V|(|T | − 1).

ζz ≤
∑
v∈V

∑
t∈T\|T |

xv
(z,t)(z,t+1) ≤ M1ζz, ∀z ∈ ZM (8)

ζz ∈ {0, 1}, ∀z ∈ ZM (9)

Bike pickups and returns satisfaction. We define the following non-negative integer variables:
yPM,v
(z,t)(z′′,t′′), representing the number of riders picking up bikes from MFI v in z at t and riding to

collect first orders in z′′ at t′′; yRM,v
(z′′,t′′)(z,t), representing the number of riders returning bikes to MFI

v in z at t from last deliveries in z′′ at t′′; yPD
(z,t)(z′′,t′′), for riders picking up bikes at the docking

point in z at t and riding to collect first orders in z′′ at t′′; yRD
(z′′,t′′)(z,t), for riders returning bikes

to the docking point in z at t from last deliveries in z′′ at t′′; and ySF
(z,t)(z′′,t′′), for riders finishing

last deliveries in z at t and riding to z′′ at t′′ to hand over bikes to waiting riders. Constraints (10)
and (11) state that an MFI allows bike pickups and returns only when it is stationary. Constraints
(12) and (13) ensure that a candidate docking point allows bike pickups and returns only if it is
established. Constraints (14) and (15) state that the demand for bike pickups and returns in zone
z at period t can be met by MFIs, docking points, or self-fulfillment.
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yPM,v
(z,t)(z′′,t′′) ≤ dztx

v
(z,t)(z,t+1), ∀v ∈ V, ∀z ∈ ZM , ∀t ∈ T \ |T |, ∀(z′′, t′′) ∈ NR+

z,t (10)

yRM,v
(z′′,t′′),(z,t) ≤ rztx

v
(z,t),(z,t+1), ∀v ∈ V, ∀z ∈ ZM , ∀t ∈ T \ |T |, ∀(z′′, t′′) ∈ NR−

z,t (11)

yPD
(z,t)(z′′,t′′) ≤ dztζz, ∀z ∈ ZM , ∀t ∈ T , ∀(z′′, t′′) ∈ NR+

z,t (12)

yRD
(z′′,t′′),(z,t) ≤ rztζz, ∀z ∈ ZM , ∀t ∈ T , ∀(z′′, t′′) ∈ NR−

z,t (13)∑
v∈V

∑
(z′′,t′′)∈NR−

z,t ∩NM

yPM,v
(z′′,t′′)(z,t) +

∑
(z′′,t′′)∈NR−

z,t ∩NM

yPD
(z′′,t′′)(z,t) +

∑
(z′′,t′′)∈NR−

z,t

ySF
(z′′,t′′)(z,t) = dzt, ∀(z, t) ∈ NR

(14)∑
v∈V

∑
(z′′,t′′)∈NR+

z,t ∩NM

yRM,v
(z,t)(z′′,t′′) +

∑
(z′′,t′′)∈NR+

z,t ∩NM

yRD,v
(z,t)(z′′,t′′) +

∑
(z′′,t′′)∈NR+

z,t

ySF
(z,t)(z′′,t′′) = rzt, ∀(z, t) ∈ NR

(15)

yPM,v
(z,t)(z′′,t′′) ∈ Z≥0, ∀v ∈ V, ∀z ∈ ZM , ∀t ∈ T \ |T |, ∀(z′′, t′′) ∈ NR+

z,t (16)

yRM,v
(z′′,t′′),(z,t) ∈ Z≥0, ∀v ∈ V, ∀z ∈ ZM , ∀t ∈ T \ |T |, ∀(z′′, t′′) ∈ NR−

z,t (17)

yPD
(z,t)(z′′,t′′) ∈ Z≥0, ∀z ∈ ZM , ∀t ∈ T , ∀(z′′, t′′) ∈ NR+

z,t (18)

yRD
(z′′,t′′),(z,t) ∈ Z≥0, ∀z ∈ ZM , ∀t ∈ T , ∀(z′′, t′′) ∈ NR−

z,t (19)

ySF
(z,t)(z′′,t′′) ∈ Z≥0, ∀(z, t)(z′′, t′′) ∈ AR (20)

MFI and docking point inventory. We first describe the MFI inventory. Let the non-negative
integer Ivzt represent the number of bikes stored in MFI v located in z at t. If an arc (z, t)(z′, t′)
is part of the route of MFI v, the inventory at node (z′, t′) equals the inventory at (z, t) plus the
loaded bikes and minus the unloaded ones, as expressed in Constraints (21). Constraints (22)
ensure that the inventory does not exceed the capacity QMFI or that no inventory is considered
at time-space nodes not on the route of the MFI.

xv
(z,t)(z′,t′)I

v
z′t′ = xv

(z,t)(z′,t′)

Ivzt +
∑

(z′′,t′′)∈NR−
z,t

yRM,v
(z′′,t′′),(z,t) −

∑
(z′′,t′′)∈NR+

z,t

yPM,v
(z,t)(z′′,t′′)

 ,

∀v ∈ V, ∀(z, t) ∈ NM , ∀(z′, t′) ∈ NM+
z,t (21)

Ivzt ≤
QMFI

2

 ∑
(z′,t′)∈NM+

z,t

xv
(z,t)(z′,t′) +

∑
(z′,t′)∈NM−

z,t

xv
(z′,t′),(z,t)

 , ∀v ∈ V, ∀(z, t) ∈ NM (22)

Ivzt ∈ Z≥0, ∀v ∈ V, ∀(z, t) ∈ NM (23)

For docking point inventories, let the non-negative integer variable IDzt represent the number of
bikes parked at the docking point in z during t. The inventory at a docking point in z at t equals
the inventory in the previous period, plus the bikes returned to it, minus the bikes borrowed, as
expressed in Constraints (24). Constraints (25) ensure that inventory levels do not exceed capacity
limits.

IDz,t+1 = IDzt +
∑

(z′′,t′′)∈NR−
z,t

yRD
(z′′,t′′)(z,t) −

∑
(z′′,t′′)∈NR+

z,t

yPD
(z,t)(z′′,t′′), ∀z ∈ ZM , ∀t ∈ T \ |T | (24)

IDzt ≤ ζzQ
D, ∀(z, t) ∈ NM (25)

IDzt ∈ Z≥0, ∀(z, t) ∈ NM (26)

Objective function. The objective is to minimize the overall system cost, including capital in-
vestments and operational costs. The capital investment includes MFIs leasing J1, bikes purchasing
J2, docking points establishment J3. The operational costs include opportunity cost for rider idle
time associated with MFIs and docking points J4 and with self-fulfillment J5.

Let cMFI represent the daily MFI leasing cost, cB the bike price converted to a daily rate, cD

the cost of establishing a docking point converted to a daily rate, cV oT the value of a period for
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riders, and cSF the cost per unit distance traveled for self-fulfillment. The objective function is
then written as:

MIN Φ = J1 + J2 + J3 + J4 + J5 (27)

where:

J1 = cMFI
∑
v∈V

δv (28)

J2 = cB(
∑
v∈V

Ivzo,1 +
∑

z∈ZM

ID(z,1)) (29)

J3 = cD
∑

z∈ZM

ζz (30)

J4 = cV oT
∑

(z,t)∈NM

 ∑
(z′′,t′′)∈NR−

z,t

∑
v∈V

yRM,v
(z′′,t′′)(z,t)DISzz′′ +

∑
(z′′,t′′)∈NR+

z,t

∑
v∈V

yPM,v
(z,t)(z′′,t′′)DISzz′′

+
∑

(z′′,t′′)∈NR−
z,t

yRD
(z′′,t′′)(z,t)DISzz′′ +

∑
(z′′,t′′)∈NR+

z,t

yPD
(z,t)(z′′,t′′)DISzz′′

 (31)

J5 = cSF
∑

(z,t)(z′′,t′′)∈AR

ySF
(z,t)(z′′,t′′)DISzz′′ (32)

Constraints linearization

Constraints (21) can be linearized as follows:

QMFI(1− xv
(z,t)(z′,t′))I

v
z′t′ ≥ Ivzt +

∑
(z′′,t′′)∈NR−

z,t

yRM,v
(z′′,t′′)(z,t) −

∑
(z′′,t′′)∈NR+

z,t

yPM,v
(z,t)(z′′,t′′),

∀v ∈ V, ∀(z, t) ∈ NM , ∀(z′, t′) ∈ NM+
z,t (33)

QMFI(xv
(z,t)(z′,t′) − 1)Ivz′t′ ≤ Ivzt +

∑
(z′′,t′′)∈NR−

z,t

yRM,v
(z′′,t′′)(z,t) −

∑
(z′′,t′′)∈NR+

z,t

yPM,v
(z,t)(z′′,t′′),

∀v ∈ V, ∀(z, t) ∈ NM , ∀(z′, t′) ∈ NM+
z,t (34)

Route-based formulation

We define an MFI route as a list of ordered nodes that the MFI is situated at in the time-space
network. The difference between the arc-based and route-based formulation is that the set of
candidate routes are generated beforehand, thus the complex routing constraints 1 - 5 are removed
from the route-based formulation.

4 Results And Discussion

Input generation scheme

We define two service areas: Area-4, consisting of 37 hexagonal zones arranged in 4 circles, and
Area-6, with 91 hexagonal zones arranged in 6 circles. Two geographical distribution types of
demand are considered: U (uniform distribution of bike pickups and returns across the service
area) and C (75% of bike pickups occur in the center and 75% of returns in the outskirts). The
area center is a circle with a radius of r zones from the innermost zone, where r = 2 for Area-4 and
r = 3 for Area-6. We consider MFI capacity is 50 bikes and candidate docking point capacity is 1
bike. Table 1 summarizes the instance characteristics. Instances are named accordingly; e.g., ’A4-
P36-S40-U’ represents Area-4, a 36-period planning horizon, 40 riders, and uniformly distributed
demand.
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Table 1: Instance characteristics.
Characteristics Possible Choices
Area size Area-4, Area-6
Planning horizon 36 periods, 48 periods, 72 periods
Number of riders 40, 60, 80
Demand geographical distribution type U, C

Computational performance of the two models

We conduct the experiments using Python and Gurobi Optimizer version 11.0.0. All experiments
are carried out on a computer with a 2.4 GHz CPU, 8 GB of RAM, and an 8-core processor. Each
instance is solved with a time limit of 4 hours.

We replicate the Amsterdam canal network and choose U as a representative case. We select 18
instances varying in the area size, planning horizon, and number of riders as shown in Table 1.
The results show that solving time increases with the number of zones, periods, and riders. For
Area-4, when the number of riders is 40 or 60, the solving times for both formulations are under
one minute. For Area-6, this is also true for planning horizons of 36 and 48 periods. However,
when the number of riders reaches 80, neither model converges to optimality within the time limit,
except for the smallest case "A4-P36." Additionally, when converging to optimality, the solving
time of the route-based formulation is consistently shorter than that of the arc-based formulation,
demonstrating the efficiency of the route-based model for small- and medium-sized instances. We
also further experimented increasing instance size (e.g., 96 periods), in this case, generating all
candidate routes becomes impossible, whereas the arc-based formulation can still find a feasible
solution.

Impact of city layout

We apply our model on different city layouts to demonstrate the generalizability and applicability
of our approach. We replicate four canal typologies (Figure 1) from real cities: Amsterdam (noted
as Network-1), Leiden (Network-2), Venice (Network-3), and Fredrikstad (Network-4). We use
instance "A4-P48-S40" as a representative case and consider the two demand geographical distri-
bution types U and C. For each of the two distribution types, we generate three random patterns
separately: {U1, U2, U3} and {C1, C2, C3}.

The daily cost of an MFI is set at 810.00 e, covering leasing, energy, and maintenance. The average
bike price in the Netherlands is estimated at 865.00 e, with a service life of three years, resulting
in a daily cost of 0.79 eper bike. The cost of a docking point is set at 0.27 eper day, based on
the annual fee of 100.00 echarged by the Netherlands train operator for a bike storage. The gross
hourly salary of a rider is 14.77 e, making the opportunity cost of one period of idle time 2.46 e.

Figure 1: Canal network typologies replicated from Amsterdam, Leiden, Venice, and
Fredrikstad

Table 2 presents the average value of system performance indicators of the three random demand
patterns for each geographical distribution type U and C and four network typologies. Column
’Distrb.’ indicates the geographical distribution type of demand. Column ’Idle’ presents the
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average rider idle time, and column ’Obj.’ for the average total system cost. Under ’Capital
Investment,’ the column ’Cost’ records the average total capital investment, ’Bikes’ presents the
average number of purchased bikes, and ’DP’ the average number of docking points. Under ’Oper-
ational Cost,’ the column ’Total’ indicates the average total operational cost, ’Self-FF.’ reflects the
average cost associated with self-fulfillment, and ’Per DP’ shows the operational cost averaged per
docking point. For each canal network typology, the row ’Diff.’ calculates the percentage difference
in the average value of indicators between C and U, computed as (U − C)/C.

As shown in the table, under type U, riders spend 17.81% to 25.40% more idle time for bike
pickups and returns, and the overall redistribution cost is around 5% higher. In terms of capital
investment, type U requires 20% to 78% more docking points to be established but needs around
4% fewer bikes, resulting in a slightly lower overall capital investment. However, operational costs
under type U are, on average, 20% higher than those under type C. While the total operational
cost is higher, the cost per docking point is generally lower for U (except in Network 1), primarily
due to the increased number of docking points. Additionally, self-fulfillment costs are lower under
type U. These results highlight the importance of considering city layout when deploying MFIs, as
cities with a more uniformly distributed layout tend to incur higher overall costs and longer rider
idle times.

Table 2: Comparison between C and U for four canal network typologies under case A4-
P48-S40.
Network Distrb. Idle (min) Obj.(e) Capital investment Operational cost (e)

Cost (e) Bikes DP Total Self-FF. Per DP

1 C 14.67 1123.69 835.05 30.00 5 288.64 22.96 53.14
U 17.75 1183.59 834.27 28.67 6 349.32 18.04 55.21
Diff. 21.00% 5.33% -0.09% -4.43% 20.00% 21.02% -21.43% 3.90%

2 C 14.71 1124.42 834.96 30.00 4.67 289.46 26.24 60.74
U 17.33 1176.02 834.90 28.67 8.33 341.12 13.12 39.36
Diff. 17.81% 4.59% -0.01% -4.43% 78.37% 17.85% -50.00% -35.20%

3 C 14.92 1128.25 834.69 30.00 3.67 293.56 31.16 71.56
U 18.71 1202.54 834.36 28.67 6.33 368.18 17.22 55.41
Diff. 25.40% 6.58% -0.04% -4.43% 72.48% 25.42% -44.74% -22.57%

4 C 14.88 1127.61 834.87 30.00 4.33 292.74 27.06 61.63
U 17.92 1186.96 834.36 28.67 6.33 352.6 14.76 53.34
Diff. 20.43% 5.26% -0.06% -4.43% 46.19% 20.45% -45.45% -13.45%

Case study in Amsterdam Canal area

In this section, we apply our model to a meal delivery platform in Amsterdam using rider itinerary
records from September 13, 2021, to October 10, 2021. The canal course is manually outlined for
a gridded service area of 91 zones (Figure 2), with each zone having an edge length of 200 meters
and a center-to-center distance of 347 meters. One available MFI is considered, operating at a
speed of 4 km/h due to busy waterway transport. We consider the planning for a typical day from
9:00 to 24:00. The MFI must return to the depot every 8 hours for recharging. The data reveals
a high density of meal pickups and drop-offs in the canal area, with demand nearly uniformly
distributed. After averaging monthly rider schedules to one day and excluding riders operating
outside the selected area, we obtain an average of 45 riders per day for the canal area. All other
parameters follow the previous section.

Benchmarking again stationary facility. We first define the base case of the MFI strategy
which considers the average daily number of riders, which is 45, and name it as "MFI-Base". We
further construct a benchmark that mimics the stationary facility operations in the current prac-
tice. We solve the model to an optimality gap of 3%.

In Table 3, row "Impr." presents the percentage difference between the indicator values of MFI-
Base and the benchmark. The solutions suggest both the MFI-Base and benchmark require 31
bikes for the 45 riders to conduct services. As can be seen from the table, there is a 17.07% saving
in the overall system costs and a 35.03% reduction in the average rider idle time after applying the
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Figure 2: Amsterdam canal network

MFI strategy, which demonstrates the economic benefits of our strategy based on the system cost
and rider time productivity.

Table 3: Comparison between the MFI-Base and the benchmark.
Case Obj. (e) Idle (min)

Benchmark 1656.13 37.11
MFI-Base 1373.44 24.11

Impr. 17.07% 35.03%

The day of the week. We further demonstrate the stability of MFI-Base. Once the system con-
figuration (MFI leasing, docking point locations, and the number of bikes) is decided, it remains
fixed for a long time. Historical data indicates slight variations in customer orders throughout the
week, with weekends typically experiencing higher order volumes. To account for this, we define
two scenarios: Weekday and Weekend. In the Weekday scenario, we assume 75% of the number
of riders in the MFI-Base, while the Weekend scenario considers 125%. Both scenarios maintain
the U-type demand geographical distribution. We consider two situations: (1) ’Fix,’ where the
MFI can only visit docking points selected in the MFI-Base configuration, and (2) ’Free,’ where
the MFI can freely visit any candidate docking points.

The experiment results show that there is only a slight increase in the indicator values for the ’Fix’
configuration compared to ’Free’, with increases of 1.19% for Weekday and 0.48% for Weekend.
Rider idle time also only increases slightly, by 3.81% for Weekday and 1.10% for Weekend. The
results indicate that the MFI-Base design, based on the average daily rider number, remain effective
for slightly varying rider shift patterns on weekdays and weekends, demonstrating the stability of
the MFI-Base deployment.
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5 Conclusion

This study investigates the Mobile Fleet Inventory (MFI) strategy for on-demand delivery services.
We develop a mixed-integer optimization model to address the problem, balancing infrastructure
investments and operational costs to minimize overall MFI system costs. Computational results
reveal that the route-based formulation is more effective than the arc-based formulation for small-
and medium-sized inputs. By experimenting with different city layouts and canal network typolo-
gies, we demonstrate the generalizability of the MFI strategy and analyze the impact of city layouts
(uniform or centric) on system performances. A case study in the Amsterdam Canal area high-
lights the superiority of the MFI strategy over stationary facility operations, achieving a 17.07%
reduction in overall system costs and a 35.03% decrease in average rider idle time. The case study
also demonstrates the stability and applicability of the MFI strategy in accommodating slight
variations in demand patterns throughout the week.
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