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Short summary

Quantitative spatial models (QSM) are a specialised type of spatial computable general equilibrium
(SCGE) models that enable the causal estimation of key parameters. By ensuring causality, a
QSM can isolate the e�ects of policy interventions on land use and economic outcomes, such as
the spatial distribution of wages and house prices, from confounding factors like exogenous shocks
(e.g., pandemics). This paper summarises the core empirical tasks in Hörcher & Graham (2024),
the �rst QSM framework designed to align with current transport appraisal practices. We address
three key empirical challenges: the estimation of the gravity equation, which underpins location
choices; the quanti�cation of local geographical characteristics, including local amenities and �rm
productivity determinants, through model inversion; and the estimation of the relationship between
accessibility and productivity. Through a better understunding of these empirical tasks, the study
illustrates how QSMs can provide robust insights into the economic and spatial consequences of
transport policy interventions.
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1 Introduction

Transport cost-bene�t analysis (CBA), often referred to as bene�t-cost analysis (BCA) in the US
and transport appraisal in Europe, is one of the most impactful areas of application of transport
modelling and economics. One limitation of the mainstream CBA practice is the partial equilib-
rium (PE) representation of the economy, i.e. it does not not capture explicit interactions between
the transport market and potential welfare e�ects in other sectors of the spatial economy. This
limitation could be resolved by a move from the partial equilibrium tradition to a suitably designed
spatial general equilibrium (SGE) approach. Summarising the quest to produce spatially explicit
numerical models that capture the impact of transport policies on location choice, the literature of
land-use transport interaction (LUTI) and spatial computable general equilibrium (SCGE) models
is review in Paulley & Webster (1991), Wegener (2011), and Robson et al. (2018). The use of
these spatial models in practical CBA is hindered by the challenge of calibrating a large number
of parameters to which the model outcomes may be highly sensitive.

A spatial model must reveal the causal impact of a transport policy on economic outcomes. Causal-
ity, a key concept in econometrics, is as critical in calibrating complex models as in single-equation
analyses (Graham, 2025). For instance, transport improvements often coincide with unrelated
shocks, complicating causal analysis. The Elizabeth Line, for example, opened during the pan-
demic, both in�uencing travel patterns in London. Standard spatial models can capture the impact
of new railways but not overlapping public health crises. If calibration relies on associational rela-
tionships, it risks con�ating e�ects, e.g., underestimating the Elizabeth Line's role in commuting
due to pandemic-induced reductions. Avoiding data from such periods helps, but causal methods
are essential to mitigate confounding in model calibration.

Since the mid-2010s, a new stream of research often referred to as quantitative spatial economics

(Redding & Rossi-Hansberg, 2017) achieved a major methodological step in model estimation.
The most in�uential examples of this literature include Allen & Arkolakis (2014), Ahlfeldt et al.
(2015), Monte et al. (2018), and Heblich et al. (2020). Quantitative spatial models (QSMs) are
SGE models designed speci�cally to facilitate the use of causal techniques in model estimation.

1



QSMs feature two core empirical techniques: model inversion and the theoretically coherent causal
regressions.

This note is a short version of Hörcher & Graham (2024), a working paper that aims to bridge the
gap between the state-of-the-art of transport analysis and quantitative spatial economics. A gap
exists because mainstream QSMs, developed in isolation from the transport research community,
are based on numerous simplifying assumptions about travel behaviour and transport supply which
make their widespread use in contemporary transport analysis challenging. The context of the
application of our model is Greater London, with nearly 1,000 spatial units. This short paper
covers excerpts from Hörcher & Graham (2024), focusing on three core empirical tasks, namely
the estimation of the gravity equation underlying households' residential and workplace location
choices, model inversion, and the estimation of the elasticity of �rm productivity with respect to
transport connectivity.

2 Methodology

Model speci�cation

Let us de�ne the utility of a representative worker who resides in location i and commutes to
location j as

Uij =

(
Lij

1− γ

)1−γ (
Kij

γ

)γ

zij ; Kij =

(
Cij

β

)β
(

HR
ij

1− β

)1−β

. (1)

In this speci�cation Lij is a measure of leisure time, Kij is the composite subutility derived from
consumption Cij and residential �oorspace use HR

ij , γ and β are structural parameters, and zij
is an idiosyncratic taste shock associated with the combination of locations i and j. To keep our
notation simple, we suppress the unique identi�er of households. Note, however, that zij takes a
di�erent value for each household.

Commuters are confronted by two constraints. First, wage wj at workplace j and the monetary
price of commuting τij times individual labour supply xij determine the budget available for
consumption, given the price of the consumption good, pi, and the price of residential �oorspace,
qi.

xij (wj − τij) = piCij + qiH
R
ij (2)

Second, the sum of leisure time Lij and the total time spent at work (T ) and in commute (tij)
cannot exceed L̄, the daily time endowment of households.

L̄ = Lij + xij (T + tij) (3)

Again, individual labour supply xij ≥ 0 determines how many workdays an individual is willing to
provide.

The idiosyncratic utility shock is speci�ed as an i.i.d. random draw from a Fréchet distribution:

F (zij) = exp(−XiEjz
−ϵ
ij ), (4)

where the average amenity (i.e. the scale parameter) is de�ned as the product of residence and
workplace dependent local fundamentals Xi and Ej , and ϵ governs the spread of individual prefer-
ences. These assumptions lead to location choice probabilities that take the form of a commuting
gravity equation.

λij =
XiEj

[
υij

pβ
i q

1−β
i

]γϵ
∑

r

∑
s XrEs

[
υrs

pβ
r q

1−β
r

]γϵ (5)

See the derivation of the choice probability expression for a multiplicative indirect utility func-
tion and a Fréchet-distributed preference shock in the early contributions of the QSM literature,
e.g. Appendix Section S.2.3 of Ahlfeldt et al. (2015), or Appendix Section C2 of Heblich et al.
(2020). Workplace choice probabilities conditional on residing in i are

λij|i =
Ej (υij)

γϵ∑
s Es (υis)

γϵ . (6)
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To model the production side of the economy we follow the conventional approach of quantitative
urban modelling more closely. Production in location j is governed by a Cobb-Douglas function of
total labour input MW

j and commercial �oorspace HW
j , with expenditure shares α and 1− α.

Yj = Aj(M
W
j )α(HW

j )1−α (7)

We assume perfect competition in the goods market combined with zero trade cost within the
urban area. Solving the �rm's cost minimisation problem yields the following wage equation.

wj = αA
1/α
j

(
1− α

Qj

) 1−α
α

. (8)

Finally, our setup considers a third group of agents too: the construction sector. However, as this
sector does not play a role in the rest of this short paper, we refer the reader to Hörcher & Graham
(2024).

Estimating the gravity equation

Model quanti�cation begins by estimating ϵ, the spread of the Fréchet-distributed idiosyncratic
shock in household's utility function. Following Ahlfeldt et al. (2015) and Heblich et al. (2020),
we express the location choice probability equation in (5) in a reduced form as

logNij = α0 + ϑi + ϑj + ν · log υij + εij , (9)

In the equation above, Nij is the number of observed travellers in the commuting matrix, α0 is
the intercept capturing the denominator (multilateral resistance) in gravity equation (5), ϑi is a
residence (origin) �xed e�ect, ϑj is a workplace (destination) �xed e�ect, ν = γϵ becomes the
coe�cient of bilateral resistance ln υij , and εij is the error term. The main parameter of interest,
ν, is transferable between this estimating equation and the location choice probability function in
equation (5).

At the same time, the functional form of (9) is common in the wider empirical literature of gravity
estimation in the international trade literature (Head & Mayer, 2014). This enables us to apply one
of the most robust estimators in that literature, the Poisson Pseudo-Maximum Likelihood (PPML)
method of Santos Silva & Tenreyro (2006). The use of the PPML estimator is motivated by three
concerns. First, Nij on the left-hand-side of (9) includes many zeros in the commuting matrix, as
the commuting �ow is e�ectively zero between two-thirds of MSOA-pairs in our data. In an OLS
log-log model, these observations must be removed, which implies a substantial loss of information.
The second concern stems from Jensen's inequality: under heteroskedasticity, the parameters of
a log-linearised model estimated by OLS lead to biased estimates, because E[log y] ̸= logE[y].
Third, the identi�cation of ν in (9) is threatened by endogeneity concerns due to the non-random
placement of infrastructure as well as reverse causality due to congestion, which implies that tij is
potentially endogenous. Thus, we instrument the observed travel times by the Euclidean distance
between i and j, which is independent from infrastructure investment decisions as well as tra�c
congestion levels.

Model inversion

Based on the de�nitions and location choice probabilities de�ned above, the link between workplace
and residential populations can be expressed as

NW
j =

∑
i

λij|i ·NR
i . (10)

We can express fundamental amenity levels Ej after substituting (6) into (10):

Ej = NW
j

(∑
i

υγϵ
ij N

R
i∑

s Esυ
γϵ
is

)−1

(11)

This implies an equation for each location in function of all other Ej 's that we can solve for
iteratively to recover the unique vector of workplace amenity levels from the observed distribution
of residential and workplace populations and the observed determinants of υij .
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Residential amenities are recoverable in a similar fashion. Let us introduce

X̃i = Xi

(
q1−β
i

)−γϵ

, (12)

which captures all location-dependent endogenous variables of location choice probability (5). The
values of X̃i are the solution of

X̃i = NR
i

∑
j

υγϵ
ij N

W
j∑

r X̃rυ
γϵ
rj

−1

. (13)

From the solutions, Xi is quanti�ed using data on residential �oorspace prices qi and by inverting
(12) above.

The impact of connectivity on productivity

Local productivity Aj , or total factor productivity in production function (7), is measured by
rearranging the wage equation in (8):

Aj =
(wj

α

)α(1− α

Qj

)α−1

. (14)

As we observe both wages (wj) and commercial �oorspace prices (Qj), the Aj vector is computed
by directly substituting the observed data into (14).

Following the agglomeration literature (Combes et al., 2019; Ahlfeldt et al., 2015) we decompose
local �rm productivity into an exogenous component and a multiplier dependent on a measure of
economic density, i.e. access to economic mass (ATEM), denoted by ρj .

Aj = aj ρ
η
j (15)

Parameter η is the agglomeration elasticity of �rm productivity. We select the e�ective labour
supply as the measure of economic activity, to consider that individual labour supply is endogenous
in our model, and therefore employment (i.e., workplace population) alone is not a comprehensive
measure of economic mass.

Aj = aj

[∑
s

exp(δtsj)N
W
s x̄s

]η
(16)

The general form of our estimating equation based on (15) is

log Âj = η log ρj(δ) + ϑj∈z + εj , (17)

in which Âj are the productivity residuals recovered via model inversion in the previous step, ϑj∈z

are borough �xed e�ects, and εj is the error term. The core endogeneity concerns well-known in the
literature are that (i) ATEM may be correlated with unobserved local characteristics, e.g. natural
advantages/endowments, that also a�ect productivity, and (ii) through the endogenous location
choice of �rms and competition forces, productivity may also a�ect the magnitude of agglomeration,
fueling reverse causality (Combes et al., 2019; Graham & Gibbons, 2019). To identify the causal
e�ect of agglomeration on productivity, we deploy instrumental variables and control function
techniques in three alternative speci�cations.

3 Results

Commuting gravity

The results for six model speci�cations are summarised in Table 1. Models (1) and (2) are OLS
estimates of the model, with and without origin and destination �xed e�ects. These models rely
on a restricted sample because OLS cannot handle zero �ows after the log transformation. It is
remarkable though that the elasticity estimate in model (2) is close to our most preferred one in
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(4). Models (3) and (4) are Poisson models with �xed e�ects. A common endogeneity concern is
that impedence between i and j may not be independent from the �ows themselves. One potential
reason may be the non-random placement of intrastructure. To address this concern, we instrument
υij by the Euclidian distance in model (4), which gives our preferred estimate.

Table 1: Estimating commuting gravity

Dependent variable: log commuting �ow

(1) (2) (3) (4) (5) (6)

Impedance real wage real wage real wage real wage travel time gen.cost
Notation υij υij υij υij tij ῡtij + τij
Method OLS† OLS† PPML PPML+IV PPML PPML
Instrument Eucl.dist

Estimate 2.959∗∗∗ 12.303∗∗∗ 19.035∗∗∗ 10.193∗∗∗ -0.893∗∗∗ -0.855∗∗∗

(0.011) (0.021) (0.060) (0.028) (0.01) (0.009)

Fixed e�ects no yes yes yes yes yes

RMSE 1.078 0.657 8.815 8.684 13.948 13.686
AIC 1,052,942 708,040 2,767,492 2,836,697 5,290,953 5,524,191
BIC 1,052,974 729,218 2,790,654 2,859,856 5,314,115 5,547,353

# of obs. 352,300 352,300 966,289 965,306 966,122 966,122
†: Only origin-destination pairs with positive �ows are included.
Standard errors in parentheses, ∗∗∗: 99%, ∗∗: 95%, ∗: 90%

Assuming that commuters have a �xed travel time budget of 1 hour on average (Kung et al., 2014),
such that γ = (T+1)/24, ϵ = ν/γ is computed from our preferred empirical estimate of ν̂ = 10.193.
Note that all four elasticities and the resulting ϵ̂ values are higher in models (2) to (4) than the
single-digit estimates in other QSM studies in the literature. In models (5) and (6) we estimate
the gravity equation using travel times and generalised travel costs as impedance measures. This
exercise con�rms that we get lower values when the regular impedance measure is used.

−2 0 2 4 6
Value

Structural residuals quantified via model inversion

Workplace amenities (log)

MSOA level, Greater London

−1 0 1 2 3
Value

Structural residuals quantified via model inversion

Residential amenities (log)

MSOA level, Greater London

Figure 1: Workplace and residential amenities recovered as structural residuals of the

model, assuming that the observed data captures a spatial equilibrium

Fundamental local amenities

Next, let us plot the {Ej} residential amenity and {Xj} workplace amenity vectors after model
inversion. The residuals in Figure 1 reveal interesting patterns. The results show that the locations
in Central London � with the exception of Westminster and the nearby MSOAs � are not particu-
larly pleasant places to work, controlling for the very high wages o�ered by these places. An inner

5



ring surrounding the City of London and Canary Wharf has particularly low amenities for working.
By contrast, some of the locations in the suburbs are more attractive for working than what their
wage levels would justify. Lower density and congestion externalities (i.e. noise, pollution) may
explain some of these results. By contrast, the most appealing residential locations are clustered
around the central areas of Finchley Road and Swiss Cottage, Kensington and Chelsea, and the
low-density residential neighbourhoods of Richmond.

Access and �rm productivity

The models reported in Table 2 di�er in the speci�cation of ρj , the inclusion of �xed e�ects,
and the estimation method determined by the identi�cation strategy. In models (1) and (2), the
general functional form in (15) remains unchanged but we ignore agglomeration spillovers between
locations, so ρj does not depend on the spatial impedance between MSOAs. More speci�cally, ρj
is the density of employment. Model (1) is a crude OLS estimate. In model (2) we instrument the
log of the employment density by a set of historic and geographical variables.

Models (3) and (4) have been estimated in a two-step process which captures the decay in spillover
e�ects between nearby MSOAs, following Koster (2024). In the �rst step we create 2.5-minute-wide
concentric doughnuts around location j denoted by Rjr, aggregate the e�ective labour supply in
each ring into and estimate the contribution of each distance ring to the measure of ATEM in
j via the parameter vector {dr}. As log Âj depends on η and the ring-speci�c parameters non-
linearly, we estimate the model with nonlinear least squares (NLS). Then, in the second step we
�t a curve on the coe�cient estimates to quantify δ as the parameter of τr, the mean travel time
between locations in ring r and location j. This non-linear speci�cation is no longer suitable to
apply instrumental variables, as one would need to instrument a function of a set of unknown
parameters. Thus, we follow Koster (2024) again and apply a control function approach.

The standard errors reported in Table 2 are computed by bootstrapping the entire model inversion
and parameter estimation process 200 times.

Table 2: Agglomeration economies and distance decay

Dependent variable: log productivity residual

(1) (2) (3) (4)

ATEM measure Emp.density Emp.density Total emp.† Total emp.†

Method OLS 2SLS NLS+CF NLS+CF
Productivity elasticity, η 0.125∗∗∗ 0.170∗∗∗ 0.155∗∗∗ 0.149∗∗∗

(0.005) (0.016) (0.009) (0.011)

Distance decay, δ -0.082∗∗∗ -0.079∗∗∗

(0.012) (0.012)

Borough �xed e�ects no yes yes yes

RMSE 0.08 0.06 0.06 0.06
AIC -2122.05 -2573.61 -2665.81 -2610.97
BIC -1950.88 -2402.44 -2372.37 -2317.53
# of obs. 983 983 983 983
†: Total employment is aggregated in 2.5-min travel time bands.
Standard errors in parentheses, ∗∗∗: 99%, ∗∗: 95%, ∗: 90%

The naïve model in column (1) yields an agglomeration elasticity of 12.5%. The 2SLS regression
with employment density as the ATEM measure produces a higher result. The two control function
speci�cations lead to estimates in between the OLS and 2SLS results. Our preferred model is (4),

with an elasticity of η̂ = 14.9% and a distance decay of δ̂ = −0.079, which implies that spillovers
fade quickly after 15 to 20 minutes of travel time.

The estimated agglomeration elasticity η̂ = 14.9% is at the higher end of the values found in the
previous literature (see Graham & Gibbons, 2019). However, our result does not stand out from
previous studies focusing on Greater London, speci�cally. Dericks & Koster (2021) developed a
QSM using the same case study context. Exploiting the exogenous variation in density caused by
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Exogenous component of local productivity

Productivity as a location fundamental (log)

MSOA level, Greater London

4 5 6
Value

Agglomeration (ATEM) multiplier of local productivity

Productivity multiplier

MSOA level, Greater London

Figure 2: Productivity as a location fundamental and the multiplier generated by agglom-

eration

bombings during WW2, the agglomeration elasticity they estimate is somewhat higher than ours,
19.6%. As a sensitivity check, we re-estimate model (3) using MSOAs under and above the median
distance from the CBD. We �nd that the elasticity goes up to 19.1% for the central subsample
while it reduces to 6.3% for the more perpheral half of London. As we move away from the centre
of the city, this clearly non-linear pattern seems to converge close to the UK-wide average of 4.3%
recommended by the UK Transport Appraisal Guidance and the 4.7% mean of the global literature
reported by Graham & Gibbons (2019).

Given the above estimated η̂ and δ̂ parameters, the observed travel time matrix, and the quanti�ed
values of Aj , we recover the {âj} vector from (16).

âj = Âj

[∑
s

exp(δ̂tsj)N
W
s x̄s

]1/η̂
(18)

The {âj} vector captures fundamental geographical properties that make �rms more productive in
certain locations, controlling for the level of access to economic mass. Figure 2 provides a visual
illustration of the decomposition outlined in equation (15).

4 Conclusions

This short paper delivers insights into the core steps of estimating the quantitative spatial model
of Hörcher & Graham (2024). The process of model estimation yields empirical results with
immediate policy relevance and contributions to the related literature. The fully quanti�ed model
can be used to predict and evaluate various transport policy interventions at a transformative scale.
For a detailed impact assessment of the Elizabeth Line in London, using the model presented in
this paper, the interested reader is referred to Hörcher & Graham (2024).
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