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Short summary

Past work has primarily focused on improving the accuracy of travel demand forecasting, often
overlooking the inherent uncertainty in such predictions. To this end, we propose an innovative non-
parametric uncertainty-aware probabilistic framework for travel demand forecasting in Mobility-
on-Demand services. The framework employs a spatiotemporal graph neural network to learn and
extract features from city-level travel demand data. These features are then processed through the
designed variational autoencoder, which compresses the information and applies resampling and
decoding operations to generate forecast samples. A kernel density estimation transforms these
samples into a predictive distribution, producing accurate, confident, and well-calibrated predic-
tions. Comprehensive experiments on a real-world dataset, evaluated across multiple metrics and
benchmarked against four baseline models, demonstrate the superior performance of the proposed
model in both point forecasting and probabilistic forecasting. This framework offers a robust and
extensible tool for quantifying uncertainty in future travel demand.
Keywords: Mobility-on-Demand services, Probabilistic forecasting, Travel demand, Variational
autoencoder

1 Introduction

Accurate travel demand forecasting is essential to effectively manage transportation systems, as
it supports informed decisions that optimize resource allocation and improve service outcomes.
However, travel demand is inherently uncertain, influenced by dynamic factors such as weather
conditions, road incidents, and human behavior. These uncertainties present significant challenges,
particularly for Mobility-on-Demand (MoD) platforms like Uber, DiDi, and Lyft, which process
millions of demand-related queries daily. Forecasting methods that fail to account for these un-
certainties produce unreliable predictions, which can lead to inefficient fleet management, delayed
response times, and decreased user satisfaction, ultimately affecting the operational success of MoD
platforms and the broader transportation systems.

Recognizing its significance, travel demand forecasting has been extensively studied in both in-
dustry and academia. For example, advanced neural network architectures have been proposed to
improve prediction accuracy. In this stream of work, temporal trends such as seasonal, weekly,
and time-of-day patterns are typically captured using Long Short-Term Memory (LSTM) networks
and Gated Recurrent Units (GRU) layers Ke et al. (2017), L. Liu et al. (2020). Meanwhile, spa-
tial dependencies are modeled using convolutional neural networks (CNNs), which analyze urban
areas divided into zones or grids Wu et al. (2021). More recently, graph-based approaches have
gained traction, representing zones as nodes and travel flows as edges, with Graph Convolutional
Networks (GCNs) effectively extracting spatiotemporal features Yu et al. (2017). Despite these
advancements in prediction accuracy, these methods focus on point forecasting, aiming to forecast
a specific future demand value. However, such deterministic predictions fail to account for the
inherent uncertainty in travel demand, stemming from factors like road incidents, weather condi-
tions, and human behavior. Ignoring these natural uncertainties can lead to biased predictions,
limiting the effectiveness of planning and decision-making, which, in turn, reduces user satisfaction
levels and the system’s long-term performance.

To address uncertainty, another line of research has focused on estimating travel demand distribu-
tions by combining deterministic and probabilistic components. For example, Wang et al. (2024)
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propose a framework of probabilistic graph neural networks (Prob-GNN) to quantify the spatiotem-
poral uncertainty of travel demand with the assumption that travel demand follows Gaussian and
Poisson distributions for distribution estimation. Similarly, Jin et al. (2024) propose a spatial-
temporal uncertainty-aware graph network framework (STUP), featuring a dedicated uncertainty-
aware block to estimate the parameters of an assumed Gaussian traffic distribution. Furthermore,
with the assumption that travel demand follows a zero-inflated negative binomial (ZINB) distri-
bution for the numerous zeros in sparse O-D matrices and a negative binomial (NB) distribution
for each non-zero entry, Zhuang et al. (2022) propose a Spatial-Temporal Zero-Inflated Negative
Binomial Graph Neural Network (STZINBGNN) to quantify the uncertainty of the sparse travel
demand. However, these methods often rely on strong parametric assumptions about the data
distribution. For example, assuming that travel demand follows pre-defined distributions (e.g.,
Gaussian). This may introduce bias if the actual distribution deviates significantly from those
assumed. Non-parametric methods, in contrast, avoid such assumptions, offering greater flexibility
in modeling diverse data patterns. Applications of non-parametric techniques, such as kernel den-
sity estimation in energy prediction He & Li (2018), Gu et al. (2021), traffic flow prediction Li et
al. (2024) and label-smoothing methods for travel time distribution H. Liu et al. (2023), highlight
their potential for uncertainty quantification. Yet, their application in travel demand forecasting
remains largely unexplored.

To this end, we design a novel uncertainty-aware probabilistic travel demand forecasting framework
which is a non-parametric approach to quantify the uncertainty in travel demand. The designed
framework integrates a spatiotemporal graph convolutional network (STGCN), a variational au-
toencoder (VAE) module and a kernel density estimation(KDE) technique to provide flexible,
accurate and confident forecasting of travel demand. The STGCN effectively captures spatial and
temporal dependencies in travel demand, while the VAE module compresses and resamples the
learned features to generate diverse forecast samples. These samples are then transformed into a
predictive distribution using KDE, which avoids restrictive parametric assumptions and ensures
flexibility in capturing complex data patterns. This integrated design enables the framework to
produce accurate, confident, and well-calibrated probabilistic forecasts. Extensive experiment on
a real-world dataset shows that the designed approach outperforms state-of-the-art demand fore-
casting and uncertainty quantification methods across multiple evaluation metrics.

2 Methodology

In this section, we first formalize the learning problem of spatiotemporal travel demand distribution
forecasting. Then we introduce the proposed spatiotemporal graph neural network-based VAE
framework.

Problem description

We consider a travel demand distribution forecasting problem where the service area is partitioned
into n distinct regions. Let V = {v1, v2, · · · , vn} denote the set of all regions, where each vi ∈
V represents a unique region within the area of interest, e.g. a city. For simplicity, we drop
the subscript i and represent a region as v. Based on this partitioning, we construct a graph
representation G = (V,A), where V is a set of nodes (regions) and A is an adjacency matrix that
represents the connections between them. Let xt

v denote the number of trip orders in the region
v ∈ V during the tth time interval, where xt

v ∈ R. We then define Xt ∈ Rn×1 as the number of
orders in all regions at the tth time interval, with xt

v as its entry for each region v. For a sequence
of T time intervals, the travel demand sequence is denoted as Xt−T+1:t = [Xt−T+1, . . . Xt−1, Xt].
This sequence captures the historical demand over the past T intervals. Given the defined travel
demand sequence, the demand forecasting problem is modeled as a function of the time-dependent
historical demand sequence. Formally, given Xt−T+1:t, the goal is to forecast the conditional
probability distribution P of travel demand at the next time step, Xt+1, which is represented as:

P (Xt+1|Xt−T+1:t) (1)

STGCN+VAE design

Figure 1 presents the overall structure of our proposed approach, which consists of three key
modules. The first module leverages a spatiotemporal graph convolutional network (STGCN) to
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capture the complex spatial and temporal dependencies inherent in travel demand data, model-
ing both spatial interactions between regions and temporal patterns across time intervals. These
learned features are then processed through a variational autoencoder (VAE) module, where the
encoder compresses the high-dimensional spatiotemporal information into a latent representation,
effectively preserving critical features while reducing dimensionality. The decoder subsequently
resamples from this latent representation to generate multiple predictions, representing a range
of possible outcomes that capture the uncertainty present in real-world travel demand. To model
the complete probability distribution of travel demand, we apply a non-parametric kernel density
estimation (KDE) technique. This module constructs a continuous, data-driven probability dis-
tribution based on the decoder’s outputs, unconstrained by predefined distributional assumptions,
thereby offering a flexible and accurate representation of demand uncertainty. In the following
paragraphs, we provide an overall description of each module within our proposed approach.

Figure 1: Overall architecture of the proposed method. During training, the STGCN and
VAE modules are trained, while the latent space, decoder, and KDE are employed in the
generation step.

Spatio-Temporal Graph Convolutional Networks (STGCN) As shown on the left
side of Figure 1, the STGCN is designed to model both spatial dependencies (i.e., how regions
are related in space through a graph) and temporal dependencies (i.e., how features of regions
evolve over time) of travel demand data. It combines graph convolution layers to capture spatial
relationships with temporal convolution layers to model dynamic changes over time. Our STGCN
design follows the approach outlined in Yu et al. (2017).

The temporal convolution aspect of STGCN captures patterns in travel demand data over time,
as shown in Figure 2. Specifically, given a time series sequence Xv = [xt−T+1

v , . . . , xt
v] at a region

v, where Xv ∈ RT , the model applies a convolution kernel Γ ∈ RK×2Co . Here, K represents the
kernel size, indicating the length of the time window over which the convolution operates, and
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Figure 2: Temporal convolution block structure.

2C0 defines the total number of output channels produced by the kernel. As the kernel slides over
the sequence, it extracts temporal features, producing an output matrix [PQ] ∈ R(T−K+1)×(2Co).
This matrix is then split along the channel dimension into two parts, P and Q, each of dimension
(T−K+1)×(Co). Then, P , Q are applied with gated linear units (GLU) to control the information
flows.
The spatial convolution block extracts spatial dependencies in travel demand data using a spectral-
based graph convolution approach. This approach, introduced by Bruna et al. (2013), leverages
the graph Fourier transform, which is defined through the eigenvectors of the graph Laplacian ma-
trix. Although spectral convolution offers a mathematically grounded framework, it suffers from
computational inefficiency due to eigen-decomposition. To address this limitation, Defferrard et al.
(2016) propose an approximation using Chebyshev polynomials, significantly improving computa-
tional efficiency. This approximation ensures computational efficiency while preserving accuracy.
To integrate spatial and temporal features, the spatio-temporal convolutional block (ST-Conv
block) is designed to jointly process graph-structured time series, facilitating coherent exploration
of dependencies. An output layer synthesizes these features as the input of the following VAE
module.

Variational autoencoder (VAE) The VAE architecture in the model compresses informa-
tion and generates new data samples. As shown in Figure 1, the encoder, consisting of three
fully connected layers, processes features learned from the STGCN module into a dense latent
representation Lat, which captures essential travel demand patterns while discarding redundan-
cies. To enhance diversity and account for real-world uncertainty, the reparameterize operation
is applied to Lat before decoding, enabling the model to explore the latent space and produce a
distribution of possible outcomes. The decoder reconstructs the next-step travel demand, denoted
as X̂(t+1), with training aimed at minimizing the mean squared error (MSE) loss between recon-
structed travel demand and ground truth. After training, the model generates multiple demand
samples efficiently using the decoder module of VAE. These samples are used to construct a travel
demand distribution through KDE, providing a probabilistic view of demand for each region.

3 Application, results and discussion

To evaluate the proposed approach, we conduct experiments using the Yellow Taxi Trip Records
dataset from the New York City TLC Trip Record 1, a public dataset that includes all MoD travel
orders in the city. As shown in Figure 3, New York City is divided into 263 regions, with Manhattan
having the highest travel demand. Our experiments use data from January to March 2024. Among
the dataset’s 19 features, we retain only pickup dates, times, and locations, resulting in 9,554,778

1https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Figure 3: Average travel demand heatmap across New York City’s regions. The dark
regions represent higher travel demand.

records. These records are aggregated into one-hour prediction intervals, with a new field, "demand
number", introduced to represent the aggregated demand. After the data processing, we split the
entire data into training set (Jan. 1st - Mar. 13th), validation set (Mar. 14th - Mar. 21st) and
test set (Mar. 22nd - Mar. 31st) for training, validation, and testing, respectively.

Evaluation metrics and benchmarks We adopt five commonly used metrics to evalu-
ate the performance of our approach, namely mean absolute error (MAE), root mean squared
error (RMSE), Mean Prediction Interval Width (MPIW), Continuous Ranked Probability Score
(CRPS), and Interval Score (IS). MAE and RMSE assess point forecasting accuracy, while MPIW,
CRPS, and IS measure probabilistic forecasting performance, where lower values indicate better
results. To analyze performance variations, regions with demand below 10 are classified as low
demand, and those with 10 or more are classified as high demand. This categorization reduces the
dominance of high demand regions in the evaluation. We compare our proposed approach with
widely used benchmarks, including a point forecasting model, STGCN, and three probabilistic
forecasting models: STGCN combined with a normal distribution (STGCN + Normal), STGCN
combined with a log-normal distribution (STGCN + Log-normal) and Deep Autoregressive recur-
rent network (DeepAR) proposed by Salinas et al. (2020). This comparison enables us to evaluate
our method’s performance in both single-value and distributional prediction performance.

Results The prediction results of different models in different demand scenarios are shown in
Table 1, with the best result highlighted in bold. The proposed approach, STGCN+VAE, consis-
tently achieves the best performance across all metrics when evaluated for all regions combined as
well as for high-demand regions in particular, delivering the lowest MAE, RMSE, MPIW, CRPS,
and IS values. This highlights the unique strength of STGCN+VAE in providing both precise
predictions and reliable uncertainty quantification. In low-demand regions, STGCN+VAE shows
slightly lower performance on certain metrics compared to DeepAR. This difference is likely due to
data sparsity in low-demand areas, where frequent zero values and limited variability reduce the
effectiveness of the sample-based learning approach used by STGCN+VAE. In contrast, DeepAR
uses recurrent neural networks (RNNs), which can process sequences with varying numbers of
non-zero values. However, low-demand regions generally have a limited impact on system-level de-
cisions compared to high-demand regions. Therefore, the strengths of STGCN+VAE in capturing
both accuracy and uncertainty in high-demand scenarios highlight its effectiveness and practical
relevance for real-world applications.
To visually demonstrate the effectiveness of our proposed models, Figure 4 compares the ground
truth with the ordered prediction intervals for six selected regions in the downtown area. The
orange line represents the observed values, while the blue line and shaded area correspond to
the predicted values and the 90% predictive interval of the proposed model, respectively. The
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close alignment of the blue line with the orange line, along with the well-calibrated blue-shaded
area, highlights a more accurate and precise prediction interval, showcasing the advantages of our
proposed approach.

Figure 4: Comparison between observations and predictions for six example regions.

Table 1: Comparison of predictive results across models
Metric Region Point Forecasting Probabilistic Forecasting

STGCN STGCN+Normal STGCN+Lognormal DeepAR STGCN+VAE

MAE
All 5.7487 5.8504 24.3598 11.0107 5.4094

Low demand 0.9431 0.9548 1.7435 0.7750 0.8815
High demand 27.2737 27.7788 125.6621 56.8581 25.6908

RMSE
All 17.1034 17.1731 64.9564 35.6128 16.1368

Low demand 2.0968 0.9771 4.0361 2.7630 0.9389
High demand 39.7884 5.2705 151.8075 83.1558 5.0686

MPIW
All - 29.4285 13761.1612 29.1572 23.8823

Low demand - 3.3382 16234.3577 1.2152 6.0574
High demand - 146.2911 2683.3019 154.3143 103.7229

CRPS
All - 22.8911 24.4993 20.9385 17.1134

Low demand - 3.5585 2.2019 0.9861 1.0643
High demand - 109.4855 124.3728 110.3097 88.9996

IS
All - 76.7607 13761.1699 41.9638 19.4128

Low demand - 35.5485 16234.3681 3.5794 3.8665
High demand - 261.3572 2683.3020 213.8939 89.0475

Next, we demonstrate our findings in terms of uncertainty quantification by displaying the predic-
tion intervals for three representative regions in the Manhattan area over two consecutive days, as
shown in Figure 5. The selected days include a Sunday, representing a weekend, and a Monday,
representing a typical workday. These regions—a workplace area, a tourism region, and a residen-
tial region—were chosen for their distinct travel demand patterns, providing a comprehensive view
of how demand and uncertainty vary across different contexts.
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Figure 5: Uncertainty quantification across three representative regions over two consecu-
tive days (March 23, 2024, Sunday, and March 24, 2024, Monday).

In the workplace region, travel demand is notably lower on Sunday compared to Monday, with
the peak shifting from around 12 PM on Sunday to approximately 5 PM on Monday, aligning with
the end of the workday. The highest uncertainty is observed around 12 PM on both days, likely
because of diverse activities and variable travel behavior during midday. In the tourism region,
the demand pattern remains relatively stable across both days, with demand stays consistently high
during daylight hours and declines after 6 PM. The uncertainty is consistently high throughout
the day, which can be attributed to the diverse nature of tourist activities. Unlike commuting
patterns, which are predictable and structured, tourist behavior varies widely based on individual
schedules, preferences, and external factors such as weather and events. The residential region
exhibits similar overall demand levels on both days but with differences in peak times. On Sunday,
peak demand occurs around 9–10 AM, driven by leisure activities, whereas on Monday, it shifts
to 6 AM, corresponding to the morning commute. Uncertainty is notably lower during commuting
periods across all regions, suggesting that these patterns are more consistent and predictable.
A common trend across all three regions is the highest uncertainty occurring around 12 PM. This
may be attributed to the diversity of travel purposes during midday, introducing greater variability.
Conversely, during commuting hours, the uncertainty is notably lower, likely because commuting
patterns are more consistent and predictable. These findings demonstrate the robustness of our
probabilistic approach in balancing predictive accuracy with uncertainty quantification, offering
valuable insights for stakeholders to make informed decisions under varying demand conditions.

4 Conclusions

Recognizing the critical role of uncertainty in travel demand prediction, we propose a nonparamet-
ric probabilistic travel demand forecasting framework for MoD services, eliminating the need for
strict data assumptions. The framework leverages the STGCN model to efficiently learn and extract
features from historical data, followed by the designed VAE module to compress these features.
Multiple forecast samples are generated through resampling and decoding to explore the latent
travel demand distribution, which are then fitted using KDE to construct a predictive distribution
for uncertainty quantification. Experimental results demonstrate that the proposed framework
achieves high predictive accuracy and robust uncertainty quantification, with predictions closely
aligning with real-world observations. In addition, its flexible design allows the STGCN module to
be replaced with alternative feature extraction methods, highlighting its adaptability and potential
for diverse applications. Currently, the designed model utilizes only demand-side data. However,
in practice, travel demand is highly correlated with supply-side factors, such as vehicle availability
and driver behavior. Integrating these factors to jointly predict demand and supply represents a
promising direction for future research.
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