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Abstract

Literature suggests that cyclists do not necessarily choose the objectively safest routes;
instead, their route choices are influenced by subjective safety. Objective safety, such
as crash risk and infrastructure conditions, further shapes route choices by influencing
this subjective safety. This study estimates several bicycle route choice models where
safety is accounted for with explicit indicators: the expected number of (near-)crashes on
the routes. We employ different specifications to understand how cyclists’ route choice
behaviour can be modelled best. Although the investigated models already account for
multiple network attributes, the explicit safety indicators have an additional significant
effect. The models suggest a high inter-respondent heterogeneity in the preferences. We
consolidate the results with the computation of elasticity values and scenario analyses.
Finally, we critically discuss how the safety aspect should be included in route choice
models and formulate ideas for future research, including structural equation modelling.

Keywords safety in cycling; bicycle route choice; cycling behaviour; bicycle crashes
and near-crashes; explicit safety indicators; elasticity in route choice

1 Introduction

Cyclists often encounter safety issues when interacting with road users, experiencing
unsatisfactory road conditions, and feeling insecure in certain situations (Schleinitz et al.
2015). To improve the overall safety of cyclists, both objective and subjective safety must
be addressed (Stülpnagel et al. 2022). Objective safety refers to the number of recorded
road (near-)crashes and injuries or the risk of their occurrence (Sørensen & Mosslemi
2009). Subjective safety encompasses emotional factors such as fear and discomfort,
cognitive assessments of risk, and influences perceived control, the likelihood of (near-
)crashes, and their potential consequences (Sørensen & Mosslemi 2009).
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Both objective and subjective safety are among the most crucial factors influencing
cyclists’ decision-making processes (Reggiani et al. 2022). They affect the willingness to
cycle (Gutiérrez et al. 2020) as well as cycling frequency and choice of the route (Huber
et al. 2024). Cyclists do not necessarily take the objectively safest routes; instead, their
route choices are influenced by the subjective safety of different types of infrastructure
(Boiger 2021). Objective safety, such as crash risk and infrastructure conditions, shapes
route choices by influencing subjective safety (Shah & Cherry 2021).

Although perceived safety arguably has a large impact on cyclists’ choices, it is diffi-
cult to quantify network-wide across a large network, given its subjective and personalised
nature. To alleviate this problem, an alternative approach is to utilise quantifiable mea-
sures that are typically related to lowered levels of perceived safety. Near-crashes can be
identified directly through crowdsourced sensor data, and used to calculate network-wide
near-crash rates based on network attributes (Chou et al. 2024). An analogue approach
can be employed for actual crash rates, utilising historical crash data (Chou et al. 2024).
In this paper, we adopt the term explicit safety indicators to encompass these varied
metrics.

In the vast majority of route choice models based on revealed preference data, explicit
safety indicators are not included. Aspects related to subjective safety are indirectly ex-
plained based on the results for available link-level attributes of the routes. For example,
safety was concluded to be the latent reason for cyclists’ positive preference for separated
bicycle infrastructure amenities or for the lower choice probability of routes along large
or busy roads ( Lukawska 2024).

To explain heterogeneity in route choice preferences indirectly related to safety, sev-
eral revealed preference studies utilised individual characteristics of cyclists, for example
gender (Misra & Watkins 2018), or cycling frequency (Hood et al. 2011;  Lukawska et
al. 2023). Two studies have in fact modelled cyclists’ route choice behaviour based on
revealed preference data while explicitly accounting for objective safety in the model
specification. Shah & Cherry 2021 found that a higher number of historic crash locations
on a route decreases its choice probability. This effect was explained by either cyclists’
awareness of the crash history of these locations or by lower perceived safety at these lo-
cations. In addition to identifying locations in the network where crashes had occurred,
Huber et al. 2024 used mobility diaries to additionally identify locations where people
had felt reportedly unsafe. The study found that both the accident risk and the number
of reported incidents show a marginal influence on the route choice probability. The
authors explained the unexpected (minor) positive influence of the perceived safety with
higher bicycle traffic volumes at the sites with high incidence occurrence.

This study aims to explore how explicit safety indicators, including expected number
and rate of near-crashes and crashes, affect the route choice in Copenhagen, Denmark. For
this purpose, we estimate bicycle route choice models based on revealed preference data,
by extending previous work on this topic dissertated in  Lukawska et al. (2023) through
the addition of explicit safety indicators. In this way, we isolate safety-related aspects of
cyclists’ route choice, which are traditionally only dealt with through the interpretation
of indirect network attributes. The modelled crash rates and near-crash rates account for
exposure. We employ different utility specifications concerning the inclusion of crashes
and near-crashes to understand how cyclists’ route choice behaviour can be reflected
best in the models. We consolidate the route choice models with the computation of
elasticity values and scenario analyses. Finally, we discuss how the safety aspect should
be accounted for in the bicycle route choice modelling field.
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2 Data

2.1 Observed bicycle trajectory data

To obtain observed routes of cyclists, we utilise a large-scale crowdsourced dataset of
bicycle GPS trajectories. For a detailed description of the data source, the algorithms
applied for data processing, and the map-matching procedure, we refer to  Lukawska et al.
2023. To align with the route choice models estimated in that paper, the final dataset
used for model estimations in this study consists of 134,169 trips made by 6,523 cyclists.
This way, the estimated models introduced can be considered an extension to the previous
work, which facilitates the comparison and discussion of the additional value of explicit
safety indicators in bicycle route choice models.

2.2 Crash rates and near-crash rates in the network

Police data for crashes and bicycle airbag data for near-crashes were utilised in Chou et al.
(2024) to estimate a negative binomial regression model for computing (near-)crash rates
for all network links as a function of their corresponding infrastructural characteristics.
These estimates for a total of 420,973 directed links are used to account for safety in the
bicycle route choice models estimated in this paper.

Figure 1 illustrates the cumulative distribution function of the (near-)crash rates for
i) the entire network, ii) the links included in the observed bicycle trips, iii) links as in ii),
but weighted according to their occurence in the observed trajectory data, iv) links in all
observed routes and in all alternatives, weighted by the occurence. Further descriptive
analysis, as well as modelling route choice, taking into account the route alternatives as
well as other network attributes, is necessary to reveal true patterns and translate them
into behavioural preferences related to explicit safety indicators.
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Fig. 1: Distribution (CDF) of the near-crash rates and crash rates. For illustration
purposes and due to data scarcity, the plot domains were limited.
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3 Method

3.1 Explicit safety indicators

The natural way to utilise the expected rates in the network as route attributes is to
compute the expected number of crashes and near-crashes on each link and sum over the
links featured in each alternative to obtain the corresponding expected number of crashes
and near-crashes for each route. As the values for the expected number of crashes are
very low, we scale them up by a factor of 105 to avoid numerical issues in the route choice
model estimations.

In parallel, we split the values of near-crashes rates into three categories: low, medium,
and high, proxying for the ”risk level”. For this split, we consider all links present either
in the observed routes or in the generated alternatives (about 46% of all links in the
network), and set the thresholds for the categories by eyeballing. The split values are set
to 35,000 for the medium category, and to 75,000 for the high category, as also illustrated
in the Figure 2.
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Fig. 2: Links from all observed routes and all alternatives in the dataset split in three
categories: Low, medium, and high, based on the estimated values of near-crashes rates.
The red lines correspond to the threshold for each of the categories (medium: 35,000,
high: 75,000). The y-axis of the plot is logarithmic.

3.2 Route choice model

We extend the model formulation previously conceptualised for this dataset in  Lukawska
et al. 2023. The utility formulation is extended by combinations of linear components for
the explicit safety measures. Although estimated on a subset of the network attributes,
the explicit safety measures can still be incorporated in the utility function without direct
linear dependency in the model parameters, due to the different functional forms in the
specifications of the (near-)crash model and route choice model.

To understand cyclists’ route choice behaviour, we employ logit path-based models.
The path-based approach to route choice modelling consists of two steps: first, a set
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of alternative paths is generated, which is then used to estimate discrete route choice
models. A detailed description and evaluation of the choice set generation approach
employed in this study can be found in  Lukawska et al. (2023). In this study, we apply
both a simpler path-size logit (PSL, Ben-Akiva & Bierlaire 1999) model and a mixed
multinomial logit model with panel effect (PMXL1, Revelt & Train 1998), which extends
the PSL by allowing unobserved inter-respondent heterogeneity in preferences.

3.3 Elasticities

In the discrete choice modelling literature, reporting elasticities is considered good prac-
tice (Parady & Axhausen 2023); however, in the bicycle route choice literature it is rather
a rare practice employed by only few researchers (e.g., Meister et al. 2023; Menghini et al.
2010).

We use a simulation approach to compute elasticities for the safety indicators. As the
elasticity values represent the relative effect of a 1% change in a particular attribute on the
choice probability, we increase the value of a given attribute by 1% for a single alternative
in a single choice situation and recalculate the choice probability of this alternative. After
computing these values for all choice situations and all alternatives, we aggregate and
average the values in three manners (see Equations 1–3). Each of the approaches aims
to highlight different aspects. This differentiation is especially important if the range of
attribute values across observations is large, for example for the land use attributes when
modelling bicycle route choice.

We define the three above-mentioned elasticity values as follows

• Elasticity of averages
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• Average of elasticities
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)
(2)

• Average of average elasticities per choice situation

1

|T |
∑
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1

|Ct|
∑
i∈Ct

(
P∆a
it

Pit

− 1

)
(3)

where P∆a
it denotes the probability of the same alternative in a simulation scenario, where

the value of a fixed attribute a was increased by 1% only for this alternative.

1Please note that P in PMXL refers to the panel setup, unlike the P in the PSL with refers to the path
in path-size term. However, both models include a path-size term. As these abbreviations are commonly
used in the literature, we use them in this paper accordingly.
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4 Results and discussion

4.1 Descriptive analysis

Table 1 compares the values of explicit safety indicators for the observed routes and the
alternatives. Assuming around 1.000.000 bicycle trips per day are made in the Copen-
hagen region (Prato et al. 2013), and considering the crash dataset includes around 7
reported crashes per day on average (Chou et al. 2024), the number of expected crashes
per route in the range of 10−5 seems reasonable. Following the same logic, we also consider
the number of the expected near-crashes on a route to be plausible.

The expected rates for both near-crashes and crashes are lower for the chosen routes,
compared to the alternatives; the difference is less pronounced for the latter. However,
when relating the values to the average trip length in both cases, the trend in the case
of crashes is reversed, which was also suggested by the plots in Figure 1a. Again, this
implies the need to model the choice via statistical comparison with the alternatives.

Explicit safety indicators Observed routes Alternatives

Exp. no. of crashes [n] 5.1 × 10−5 6.5 × 10−5

Exp. no. of near-crashes [n] 0.380 0.690
Low near-crash rate [km] 3.133 4.390
Medium near-crash rate [km] 0.050 0.171
High near-crash rate [km] 0.001 0.004

Tab. 1: Descriptive statistics w.r.t. the explicit safety indicators for both the observed
routes and the generated alternatives in the route choice dataset. For reference, the
average trip length for the chosen routes amounts to 3.184 km, compared to 4.564 km for
the alternatives.

4.2 Route choice models

Figure 3 illustrates the development of the modelling process in this study.

PSL base

PSL w/ exp

PMXL w/ exp PSL w/
M and H

PMXL w/ M

Fig. 3: Development of the modelling framework.
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Table 2 includes results of the bicycle route choice models. Beginning with the base
model without any explicit safety indicators (PSL base), the utility function was first
extended by including the expected number of near-crashes and the (scaled) expected
number of crashes in the linear formulation, resulting in the PSL w/ exp model. In-
cluding the expected number of near-crashes on a route directly results in a positive
parameter (1.004), which is counterintuitive and requires further investigation. As the
parallel parameter for the crash indicator remains stable and negative across all models,
we further focus on examining the influence of the indicators based on near-crashes.

First, we investigate the inter-respondent heterogeneity by estimating the PMXL w/
exp model, introducing the panel effect and assuming the parameter for the expected
number of near-crashes to follow a normal distribution. This results in a model with
improved goodness-of-fit criteria and a negative mean value (-2.755) for the estimated
distribution. However, the estimated distribution indicates a high standard deviation
value (9.398), implying that 38% of the cyclists have a positive preference for this at-
tribute. This suggests a high inter-respondent heterogeneity in the results.

Parallel to this path, we perform a split of the links according to classes for the
expected number of near-crashes. In the PSL w/ M and H model, we observe that the
magnitude of the negative preference is much higher for route sections with high than
with medium near-crash rates (VoD values: 0.383 vs. 0.018). The small value of the
parameter for medium near-crash rates can again likely be explained by a high inter-
respondent heterogeneity (see also PMXL w/ M and H model). Particularly, the results
of these two models with segmented near-crash rates suggest that cyclists are willing to
take a detour of 25–38% to avoid route segments with high near-crash rates. Please note
that we also tried to impose a distribution on preference parameters for the high near-
crash rate segments; however, the representation of the values was too small to identify
meaningful distribution parameters.

Although the investigated models already account for multiple network attributes in
the utility formulation, the explicit safety indicators have additional significant effect in
all models. However, it is challenging to evaluate to which degree the influence of these
indicators can be attributed to confounding effects. We observe that the infrastructure
types with a positive preference parameter (Large roads with protected bicycle tracks,
Residential roads with painted bicycle lanes, and Cycleways) have lower parameters in
the models with explicit safety indicators, compared to the base model. Furthermore,
the impact of the attributes Roundabouts and Traffic lights decreases upon extending
the model formulation by the explicit safety indicators. Indeed, the correlation values
between the parameter for expected number of crashes and the respective parameters
for intersection attributes are non-negligible (-0.46 between βRoundabouts and βCrashes and
-0.35 between βTraffic lights and βCrashes).

It can be barely assumed, that the cyclists are aware of the exact number of the
expected (near-)crashes on the route. What intuitively seems to be more relevant for the
choice decision, is how risky an alternative is perceived in comparison with other alterna-
tives, and these can be proxied by the expected number of (near-)crashes. Nevertheless,
albeit significant, the influence of these attributes remains minor when accounting for
further infrastructural and environmental attributes. These observations align with the
previous findings in the literature.
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PSL base PSL w/ exp PMXL w/ exp PSL w/ M and H PMXL w/ M

Parameters in preference space
Length -6.790 -6.807 -7.666 -6.722 -6.921
Measure of overlap across alternatives
ln(Path-Size) 0.614 0% + 1% 0% − 4%

Elevation gradient
Flat or downhill — — — — —
Steep uphill (10 – 35 m/km) -0.056 − 1% 0% − 2% − 2%
Very steep uphill (> 35 m/km) -0.113 0% − 1% 0% + 3%

Intersection type
Road hierarchy downgraded -0.164 0% − 4% 0% − 2%
Road hierarchy upgraded -0.301 0% − 3% 0% 0%
Roundabouts -0.121 − 63% (− 101%) (− 77%) (− 88%)
Traffic lights -0.029 − 42% − 18% − 48% − 32%

Infrastructure
No. of stair segments -1.010 0% + 2% 0% + 26%

Parameters in VoD space
Length 1.0 1.0 1.0 1.0 1.0
Infrastructure
Medium roads w/ protected bicycle tracks — — — — —
Medium roads w/ painted bicycle lanes 0.050 − 4% − 11% − 5% + 10%
Medium roads w/o bicycle infrastructure 0.113 − 3% − 15% − 7% − 7%
Large roads w/ protected bicycle tracks -0.016 − 15% + 13% − 20% − 40%
Large roads w/ painted bicycle lanes 0.289 − 1% − 20% 0% − 8%
Large roads w/o bicycle infrastructure 0.230 0% − 3% 0% 0%
Residential roads w/ protected bicycle tracks 0.090 + 8% − 3% + 4% + 3%
Residential roads w/ painted bicycle lanes -0.085 − 21% − 29% + 2% − 2%
Residential roads w/o bicycle infrastructure 0.174 + 12% − 13% 0% − 2%
Cycleways -0.038 − 35% − 15% − 17% − 19%
Footways 0.506 + 8% − 9% + 1% 0%
Living streets (0.002)b — — — —
Shared paths 0.156 + 25% + 14% + 3% − 1%
Pedestrian zones 0.368 + 12% + 4% − 3% + 15%
Stairs (1.010) — — — —

Land use (right-hand side)
High-rise urban areas — — — — —
Green areas -0.066 + 2% − 17% 0% − 9%
Areas near water -0.177 − 20% + 1% − 7%
Industrial areas -0.022 + 2% + 31% + 1% + 41%
Low-rise urban areas -0.040 + 5% − 41% + 3% + 7%
Open landscape -0.049 + 3% − 73% + 2% − 9%

Wrong way 0.293 0% 0% 0% 0%
Surface type
Asphalt — — — — —
Cobblestones 0.271 + 9% + 14% 0% + 5%
Gravel 0.130 − 6% − 12% + 3% + 8%

Cycle superhighways
No classification — — — — —
Existing -0.021 + 6% + 26 % − 5% + 10%
Proposed -0.047 0% 0% 0% 0%

Indicators of objective safetya

Parameters in preference space
Exp. no. of crashesc (µ) [n] -0.061 -0.072 -0.058 -0.062
Exp. no. of near-crashes (µ) [n] 1.004 -2.755
Exp. no. of near-crashes (σ) [n] 9.398

Parameters in VoD space
Low near-crash rate [km] — —
Medium near-crash rate (µ) [km] 0.018d 0.361
Medium near-crash rate (σ) [km] -1.024
High near-crash rate (µ) [km] 0.383 0.249

Number of observations 134,169 134,169 134,169 134,169 134,169
Number of individuals 6,523 6,523 6,523 6,523 6,523
Number of parameters 33 35 36 36 37
Final log likelihood -220,808.5 -220,744.4 -210,655.0 -220,743.1 -216,423.0
Rho-square-bar for the null model 0.404 0.404 0.431 0.404 0.415
BIC 442,006 441,902 421,735 441,911 433,283

a Parameter values as estimated by the models.
b Insignificant coefficients are included in parentheses. Relative changes for the attributes with insignificant coefficients in the PSL base are not reported.
c Scaled up by factor 105.
d Significantly different from 0 on the 10% level. All other coefficients are significantly different from 0 on the 1% level.

Tab. 2: Bicycle route choice models including explicit safety indicators. The results of
the PSL base model are included in absolute terms; for the other models, the relative
changes in the parameter values are included. Parameters for the explicit safety indicators
and the parameter for length are included directly, as estimated by the models. Please
note that +/- represents the direction of the relative change of the parameter, not the
sign of the parameter itself. In none of the cases the sign of the parameter has changed.

4.3 Elasticities

Table 3 presents the elasticity values for the route choice models, which allow to compare
the effect of the different explicit safety indicators, which are otherwise included in the
models in different scales and units.
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The elasticity values, although generally minor, are much higher for the near-crashes
than for the crashes (factor 3–4 in PMXL w/ exp model), and the PMXL w/ M model
reveals that the values are most impacted by the near-crash rates in the medium category.
There is clearly a difference in the magnitude of the elasticity values, depending on which
computation procedure is chosen. For the PMXL w/ M model, this difference amounts up
to 800%. Although these differences would have little impact on the actual interpretation
of the results in our models, due to the low magnitude of the elasticity values for the
explicit safety indicators, they might be more substantial for other attributes or in other
modelling problems.

Exp. no. of crashes Exp. no. of near-crashes Medium near-crash rate High near-crash rate

PMXL w/ exp

Elasticity of an average -0.00265 -0.00748 — —
Average of elasticities -0.00418 -0.01737 — —
Avg of avg elasticity per choice sit -0.00321 -0.01344 — —

PSL w/ M and H

Elasticity of an average -0.00140 — -0.00006 -0.00002
Average of elasticities -0.00218 — -0.00022 -0.00009
Avg of avg elasticity per choice sit -0.00166 — -0.00017 -0.00007

PMXL w/ M

Elasticity of an average -0.00222 — -0.00274 -0.00002
Average of elasticities -0.00371 — -0.02164 -0.00006
Avg of avg elasticity per choice sit -0.00284 — -0.01682 -0.00005

Tab. 3: Elasticity values for the estimated route choice models, computation as reported
in Equations 1–3.

4.4 Scenarios

To analyse changes in both mobility and safety patterns, when introducing improvements
to the network resulting in safer network environment, we analyse several scenarios. The
increase in safety in the scenarios is achieved by reducing both the crash rates and near-
crash rates: either by 50%, or by 100%, i.e., with the latter assuming that there are no
critical events. This reduction is performed i) on the entire network, ii) on a subset of
links constituting main corridors in the bicycle network. Table 4 summarises the results.

The scenario for the whole network results in the expected change of crashes and
near-crashes, which are reduced by 50% in the 50% scenario, and (certainly) completely
removed in the 100% scenario. For the corridors, the effect is naturally lower, but still
rather large with 31.9% and 26.2% for the 50% scenario, and 64.5% and 53.0% for the
100% scenario.

In terms of the trip lengths, for the scenarios affecting main corridors we observe a
slight increase. The scenario for the entire network, on the other hand, makes it less
attractive to detour, and the changes affect mostly longer trips.

For the scenarios tackling the main corridors, the results suggest that safety improve-
ments might slightly attract cyclists towards the main corridors. Although the change
according to our model is minor, further benefits experienced while riding on improved
main corridors (e.g., continuity, coherence, or efficiency) will have long-term effects influ-
encing the level of the induced demand. The interventions improving safety on the main
corridors, although affecting only 8% of the total network length (2,234 out of 27,947
km), would already bring more than half of the safety benefits that improving the entire
network would.
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Base Scenarios: reducing the (near-)crash rates
i) in the entire network ii) on the main corridors
by
50% 100% 50% 100%

Mobility

All alternatives
Total prob.-w. distance [km] 426,983 426,730 426,486 427,229 427,512
Total prob.-w. distance on main corridors [km] 257,719 256,502 255,158 260,517 263,315
Total prob.-w. proportion on main corridors 72,706 72,386 72,034 73,382 74,059

Alternative with the highest choice probability
Average distance [km] 3.171 3.167 3.164 3.173 3.176
Total excess distance [km] 13,086 12,833 12,589 13,332 13,614
Share of choice situations with change [%] — 3.575 7.084 3.656 7.146

Safety

Total prob.-w. exp no. of crashes [n] 6.950 3.474 0 4.730 2.469
Total prob.-w. exp no. of near-crashes [n] 49,823 25,140 0 36,786 23,423

Tab. 4: Results of scenarios analyses based on the PMXL w/ exp model.

5 Modelling safety in bicycle route choice

Bicycle route choice literature suggests the crucial importance of the safety aspect. How-
ever, the methods currently applied in research seem to be limited in terms of i) how the
safety aspect is incorporated in the model specification, ii) how the route choice with this
component is modelled.

The current approaches are reliant on confounding effects, as also apparent from the
results of this study. It is debatable whether cyclists consider the exact distance of
dozens of different infrastructure categories along different alternatives. It may be more
sensible to assume that cyclists’ motives are related to complex constructs, as in the
case of safety (e.g., comfort, coherence, aesthetics, well-being, effort). This calls for new
methodological approaches to route choice modelling. Specifically, latent class models
and their generalisation, structural equation models, have barely been investigated in the
context of bicycle route choice.

Such an approach to modelling bicycle route choice would be advantageous since a
confirmatory evaluation method would facilitate causal inference (Golob 2003). There
are several ways in how these latent constructs can be defined in the context of cyclists’
route choice. Bhat et al. (2015) suggested interacting safety consciousness with exogenous
variables, such as traffic volumes. Further ideas include the pyramid of needs for the
bicycle network (Reggiani et al. 2022) or the traditional infrastructure design principles
(Groot & CROW 2016). If the narrative in bicycle route choice modelling field can
be shifted towards such soft umbrella attributes, a comparability and transferability of
route choice models across contexts would be possible, requiring only local-dependent
definitions of these latent motives.
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