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Short summary

This study presents a pioneering model, the Crowdsourced Incentive-Driven Vehicle Routing Prob-
lem with Time Windows (CS-IDVRPTW), designed to jointly optimize routing and incentive
strategies for the crowdsourced last-mile delivery. This model uniquely considers the order accep-
tance probability of crowd-carriers, which is influenced by incentives and detour distances. The
CS-IDVRPTW model is constructed as a Mixed Integer Nonlinear Programming (MINLP) prob-
lem with the objective of minimizing total expected delivery costs. The model is formulated into
two versions: an arc-based formulation and a route-based formulation. Based on the route-based
formulation, we propose a branch-and-price-and-cut (BPC) algorithm to obtain the exact solu-
tion. Extensive numerical studies validate the algorithm’s ability to consistently yield optimal
solutions with notable efficiency, outperforming commercial solvers such as Gurobi across various
instances. Lastly, a sensitivity analysis is conducted, investigating the impact of crowd-carriers’
order acceptance probability under different additional incentives and detour distance sensitivities.
Keywords: Branch-and-price-and-cut, Crowdshipping, Incentive design, Vehicle routing problem

1 Introduction

In the fast-paced era of e-commerce and on-demand economies, last-mile delivery has emerged
as the pivotal yet most challenging aspect of logistics. Consumers demand ever-faster deliveries,
while urban traffic congestion, escalating delivery costs, and mounting environmental concerns
place immense pressure on traditional logistics systems. Amid this tension, crowdsourced delivery
(crowdshipping) has emerged as a game-changing innovation. By leveraging the idle capacity of
ordinary citizens’ vehicles and their mobility, crowdshipping promises to revolutionize logistics by
reducing costs, increasing flexibility, and enhancing delivery reach (Le et al., 2019; Pourrahmani
& Jaller, 2021).
But this silver bullet is not without its caveats. While the crowdshipping model holds immense
potential for utilizing underused societal resources, it faces significant hurdles: how can platforms
attract and motivate casual participants to accept delivery tasks while maintaining efficiency and
quality of service? Crowd-carriers often have other priorities, making their participation uncertain
and variable (Hou et al., 2022; Mousavi et al., 2022). Without effective incentives and optimized
delivery routes, platforms risk failed deliveries, inefficiencies, and spiraling costs.
This study addresses this critical gap by proposing a crowdsourced incentive-driven vehicle routing
problem with time windows (CS-IDVRPTW). By integrating dynamic incentive mechanisms with
sophisticated route planning, this study aims to balance cost efficiency, service reliability, and
participant satisfaction, unlocking the true potential of crowdshipping in urban logistics.
Specifically, the CS-IDVRPTW model introduces a comprehensive framework that strategically al-
locates customer orders between professional couriers and crowd-carriers, enabling a collaborative
approach to last-mile delivery. At the outset, all parcels and professional couriers are stationed
at a central depot. The platform takes charge of assigning orders, predicting the acceptance
probabilities of crowd-carriers based on their detour costs, and offering tailored incentives to moti-
vate participation. Once decisions are made, professional couriers depart from the depot carrying
assigned parcels. They not only deliver orders directly but also deposit parcels designated for
crowd-carriers into strategically placed lockers. If crowd-carriers accept the platform’s incentives
and assigned tasks, they proceed from their starting locations to retrieve parcels from the lockers,
transship them to the customers, and then continue to their intended destinations. Conversely, if
crowd-carriers decline the orders, the platform must dispatch professional couriers from the depot
to complete the delivery, incurring additional costs.
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Fig.1 illustrates an example of the CS-IDVRPTW model within an urban network consisting of a
depot, two lockers (Locker1, Locker2), and four crowd-carriers (CS1, CS2, CS3, CS4), with their
respective starting and ending points labeled as O1 − O4 and D1 − D4. Fig.1(a) presents the
order allocation, route planning, and incentive policies generated by the platform under the CS-
IDVRPTW model, while Fig. 1(b) demonstrates the actual order acceptance by crowd-carriers
after receiving the platform’s assignments and incentives, as well as the subsequent parcel retrieval
process in cases of order rejection. In Fig. 1(a), the delivery of seven parcels is depicted, with the
platform assigning two professional couriers (PC1, PC2) and three crowd-carriers (CS1, CS2, CS3)
to complete the tasks. Parcels 1-3 are directly delivered by PC1 to the customer delivery points,
while parcel 4 is stored in Locker2 for transshipment by CS3. Similarly, parcel 5 is directly delivered
by PC2, but parcels 6 and 7 are temporarily stored in Locker1 for subsequent transshipment by CS2
and CS1, respectively. To increase the likelihood of order acceptance, the platform offers additional
incentives to each assigned crowd-carrier (CS1, CS2, CS3). The incentives are represented as
monetary bundles, with CS1, CS2, and CS3 receiving medium, low, and high-level incentives,
respectively. Fig. 1(b) shows the actual order acceptance by crowd-carriers following the platform’s
optimized order allocation and incentive decisions. It is observed that CS2 ultimately declines to
transship parcel 6. As a result, the platform arranges for another professional courier (PC3) to
retrieve parcel 6 from Locker1 and complete the delivery to the customer, incurring additional
costs.

(a) Order allocation from the platform (b) Post-optimization stage

Fig. 1. An example of the CS-IDVRPTW model.

This study’s contributions are threefold:
Firstly, we introduce a novel model CS-IDVRPTW. This model first jointly optimizes routing
and incentive strategies in a crowdsourced last-mile delivery environment, addressing the critical
gaps left by previous studies that focused solely on either routing or incentive mechanisms. The
CS-IDVRPTW model also proposes a collaborative delivery structure that strategically allocates
orders between professional couriers and crowd-carriers. This collaborative approach leverages the
strengths of both types of carriers, minimizes operational costs, and optimizes service reliability,
particularly in densely populated urban areas.
Secondly, the CS-IDVRPTW is formulated as a Mixed Integer Nonlinear Programming (MINLP)
problem aimed at minimizing delivery costs. Given its NP-hard nature, a branch-and-price-and-
cut (BPC) algorithm is proposed to obtain the exact solution of the model. Extensive numerical
studies are conducted to demonstrate that the proposed algorithm consistently achieves optimal
solutions with remarkable efficiency, surpassing the performance of commercial solvers such as
Gurobi across a range of tested instances.
Thirdly, sensitivity analyses are conducted to explore the impact of varying crowd-carrier accep-
tance probabilities under different levels of sensitivity to detour distance and incentives. These
analyses aim to investigate how total delivery costs are influenced by crowd-carrier acceptance
probabilities in response to changes in these factors. The experimental results validate the effec-
tiveness of the CS-IDVRPTW model across diverse scenarios, further extending its applicability
and demonstrating its robustness in varying operational contexts.
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2 Problem description

Problem settings

The CS-IDVRPTW is defined on a directed graph G = (V,A), representing a network where n
packages are transported from a depot to various delivery points. The vertex set V is partitioned
as V = V O

C ∪ V D
C ∪ VT ∪ VR ∪ {0, n+ 1}. Here, V O

C and V D
C represent the origins and destinations

of crowd-carriers, respectively. VT denotes the set of lockers used for transshipment between
professional couriers and crowd-carriers, and VR represents all customer delivery requests, with
n being the total number of requests. The nodes 0 and n + 1 both represent the depot, where
professional couriers depart from node 0 and return to node n + 1. Furthermore, F represents
the fleet of professional couriers at the depot responsible for package transportation. At the same
time, C denotes the set of crowd-carriers who are distributed across the urban network and willing
to participate in package delivery. The arc set A = {(i, j)|i, j ∈ V, i ̸= j} includes all directed arcs,
each associated with a travel time tij and a travel cost cij .
All customer delivery requests are dispatched by the platform to both professional couriers and
crowd-carriers, who jointly fulfill these requests. Professional couriers are responsible, according
to the platform’s dispatching decisions, for either delivering packages directly to the destination
or transporting them to a locker, where crowd-carriers can complete the transshipment. Crowd-
carriers receive delivery orders along with incentives from the platform and may choose to accept
these orders based on their willingness. In the model, this acceptance decision is characterized by
the acceptance probability P (D, ρ), which depends on the detour distance D for the crowd-carrier
and the incentive ρ offered by the platform. The specific form of P (D, ρ) can be fitted based on
historical big data from the logistics platform, and it typically satisfies ∂P

∂D < 0 and ∂P
∂ρ > 0.

For any crowd-carrier i ∈ C, their transportation journey begins at the origin point Oi ∈ V O
C

and ends at the destination point Di ∈ V D
C . If they accept the platform’s order, they will detour

to transfer packages from lockers to the requested destinations. It is important to note that, to
enhance delivery efficiency, the platform does not know in advance whether crowd-carriers will
accept their assigned orders once all professional couriers have departed from the depot for initial
deliveries. This implies that orders stored in lockers but rejected by crowd carriers must be retrieved
by professional couriers for subsequent delivery to customers, resulting in additional penalty costs.

Arc-based formulation

This section presents the arc-based formulation (ABF) of the CS-IDVRPTW model, detailed as
follows:
The objective of the model is to minimize the total platform costs, which include the costs incurred
by professional couriers (ZPC), incentive costs for crowd-carriers (ZIC), and the expected costs
accounting for crowd-carriers’ order acceptance probabilities (E[ZCS ]). The objective function is
defined as follows:

min ZPC + ZIC + E[ZCS ] (1a)

where ZPC =
∑
k∈F

∑
j∈{n+1}∪VR∪VT

∑
i∈{0}∪VR∪VT

cijxijk, (1b)

ZIC =
∑
k∈C

∑
p∈VT

∑
i∈VR

ρkDpikµpik, (1c)

E[ZCS ] =
∑
k∈C

∑
p∈VT

∑
i∈VR

[
P (Dpik, ρk)ρ0Dpik

+
(
1− P (Dpik, ρk)

)(
c0p + cpi + ci,n+1 − ρkDpik

)]
µpik. (1d)

min
∑
k∈F

∑
j∈{n+1}∪VR∪VT

∑
i∈{0}∪VR∪VT

cijxijk +
∑
k∈C

∑
p∈VT

∑
i∈VR

[
P (Dpik, ρk)(ρ0 + ρk)Dpik

+
(
1− P (Dpik, ρk)

)(
c0p + cpi + ci,n+1

)]
µpik, (2a)

where Dpik(µpik) =
(
cOkp + cpi + ciDk

− cOkDk

)
µpik,∀p ∈ VT ,∀i ∈ VR,∀k ∈ C. (2b)
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min
∑
k∈F

∑
j∈{n+1}∪VR∪VT

∑
i∈{0}∪VR∪VT

cijxijk +
∑
p∈VT

∑
i∈VR

∑
k∈C

A(µpik, ρk)µpik, (3a)

where A(µpik, ρk) =
[
(ρ0 + ρk)

(
cOkp + cpi + ciDk

− cOkDk

)
−

(
c0p + cpi + ci,n+1

)]
· P (Dpik(µpik), ρk) +

(
c0p + cpi + ci,n+1

)
. (3b)

cij is the travel cost for a professional courier along arc (i, j) ∈ A. Let xijk be a binary variable
that takes the value 1 if the professional courier k travels along arc (i, j) ∈ A, and 0 otherwise.
Therefore, Eq. (1b) calculates the costs incurred by professional couriers. Also, let µpik be a binary
variable that takes the value 1 if crowd-carrier k is assigned to a locker p to pick up a package of
customer request i, and 0 otherwise. ρk, as another decision variable, represents the additional
incentive rate per unit of detour distance for crowd-carrier k. Dpik is the detour distance for crowd-
carrier k to transship the package from locker p to customer request i. Then Eq. (1c) calculates the
total additional incentives offered to all crowd-carriers. In Eq. (1d), P (Dpik, ρk) is the order accept
probability for crowd-carrier k under detour distance Dpik and incentive rate ρk. ρ0 is the basic
incentive rate per unit of detour distance for crowd-carriers. Therefore, ρ0Dpik calculates the initial
compensation offered to crowd-carrier k if he transships the package of customer i from locker p.
c0p + cpi + ci,n+1 is the extra cost to retrieve the package from the locker for subsequent delivery
to the customer if the offer is rejected, and crowd-carriers will also return the additional incentives
ρkDpik to the platform in this case. By substituting Eq. (1b), Eq. (1c), and Eq. (1d) into Eq. (1a),
we obtain the expanded objective function Eq. (2a) in the nonlinear form. In addition, Eq. (2b)
indicates Dpik is a function of µpik. Therefore, Eq. (2a) can also be expressed as a combination
of Eq. (3a) and Eq. (3b). It is important to note that, since µpik is a binary variable, we have
µ2
pik = µpik.

The objective function is subject to several constraints, including flow conservation constraints,
capacity constraints, time window constraints, crowd-carrier and professional courier collaboration
constraints, and some equations and inequalities to determine the task allocations.

Route-based formulation

To more efficiently solve the problem using the BPC algorithm, this section reformulates the
CS-IDVRPTW as a route-based formulation (RBF), where route costs arise from the travel of
professional couriers and the allocation of crowd carriers’ orders along with associated incentives.
As indicated in Eq. (3a),

∑
p∈VT

∑
i∈VR

∑
k∈C

A(µpik, ρk) can be interpreted as the cost incurred by

crowd-carriers for delivery, encompassing both travel expenses and platform incentives.
Let R denote the set of feasible routes. Associate each route r ∈ R with a binary decision variable
λr, which indicates whether route r is selected. Let ϕijr be a binary variable specifying whether
route r travels arc (i, j) ∈ A, and let zpikr be a binary variable indicating whether a crowd-carrier
k ∈ C transships the package in the locker p ∈ VT for the customer request r ∈ VR on route r. It
is important to note that,

∑
r∈R

µpik = zpikr,∀p ∈ VT , i ∈ VR, k ∈ C. Therefore, the cost of a route

r is calculated by

cr =
∑

i∈VC∪VL∪{0}

∑
j∈VC∪VL∪{n+1}

cijϕijr +
∑
p∈VT

∑
i∈VR

∑
k∈C

A(zpikr, ρk)zpikr (4)

In addition, let θir be a binary parameter that takes value 1 if either a customer request or locker
i ∈ VR ∪ VT is directly visited in route r. The RBF is presented as follows:

min
∑
r∈R

crλr (5)

s.t.
∑
r∈R

(θir +
∑
p∈VT

∑
k∈C

zpikr)λr = 1,∀i ∈ VR, (6)

∑
r∈R

∑
p∈VT

∑
i∈VR

zpikrλr ≤ 1,∀k ∈ C, (7)

∑
r∈R

λr ≤ F , (8)
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λr ∈ {0, 1},∀r ∈ R (9)

Objective (5) minimizes the total delivery cost incurred by both professional couriers and crowd-
carriers for the selected routes. Constraints (6) ensure that each delivery request is visited exactly
once. Constraints (7) restrict each crowd-carrier to be assigned at most one order. Constraints (8)
limit the number of vehicles available for use. Constraints (9) define the domains of the decision
variables.

3 Methodology

Fig. 2 illustrates the flowchart of the proposed BPC algorithm. The BPC algorithm addresses
each node of the branch-and-bound tree by embedding a column generation procedure to compute
lower bounds through solving linear relaxations. Subsequently, additional subset row cuts (SRCs)
are incorporated to strengthen these lower bounds.
As the core of the algorithm, column generation is an iterative procedure that addresses the linear
relaxation of the route-based model (5)-(9), referred to as the linear master problem. The process
begins with an initial set of columns that ensures model feasibility by covering all customer requests.
At each iteration, a restricted linear master problem (RLMP), consisting of a subset of route
variables R′ ∈ R is solved using the simplex method. This produces dual solutions, which serve
as inputs for the pricing problem. The reduced costs of edge travel and crowd-carrier assignments
are then updated based on the dual solutions. A comprehensive bi-directional labeling algorithm
is employed to solve the pricing problem, identifying new columns with negative reduced costs. To
enhance computational efficiency, an upper limit, solmax, is set on the number of columns generated
per iteration. Optimality is confirmed when all labels are generated, and no additional column
with a negative reduced cost is identified. Subsequently, SRCs are added to further improve the
lower bounds. If the optimal solution is non-fractional, the algorithm updates the upper bound
for the CS-IDVRPTW and checks the termination condition. Otherwise, branching strategies are
applied to ensure the algorithm ultimately yields an optimal integer solution.
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Fig. 2. The flowchart of the proposed branch-and-price-and-cut (BPC) algorithm

4 Results and discussion

In this section, we extensively test the proposed BPC to solve the CS-IDVRPTW problem, demon-
strating its efficacy. All experiments were conducted on a computer outfitted with an AMD Ryzen
7 5800H CPU operating at 3.2 GHz and equipped with 16 GB of RAM.
Given that P (D, ρ) is estimated using historical data from a logistics platform, obtaining such
comprehensive data directly from real-world operations presents significant challenges. To over-
come this and to accurately capture the relationship between the acceptance probability P , the
detour distance D, and the platform incentive ρ, we formulated P (D, ρ) using a sigmoid function,
as shown in Eq.(10).
Tables 1 present a comparative analysis of the computational outcomes produced by three algo-
rithms: Gurobi, the Branch-and-Price (BP) algorithm, and the proposed BPC algorithm. These
algorithms were applied to Solomon’s dataset, specifically cases "r101" to "r112". The case names
are appended with suffixes ’S’ and ’M’, which represent small- and medium-scale instances, re-
spectively. For the small-scale instances, the scenarios incorporate 10 customers, 3 lockers, and 5
crowd-carriers. Meanwhile, the medium-scale instances consider 25 customers, 5 lockers, and 10
crowd-carriers. It should be noted that the positions of the lockers and the starting and ending
points for crowd-carriers are generated randomly. In addition, the results displayed in Table 1 have
been obtained by setting the parameter values of α and β at 0.02 and 4, respectively.

P (D, ρ) =
1

1 + eαD−βρ
(10)

Table 1 illustrates that both the BP and the BPC algorithm are capable of determining the exact
optimal solution for all instances. More specifically, for small-scale instances, the proposed BPC
algorithm is nearly 110 times faster on average than Gurobi in deriving the optimal solutions. For
medium-scale instances, Gurobi fails to find the optimal solution within 10 hours for all instances
and the average gap is 16.95%. In contrast, the proposed BPC algorithm can derive the optimal
solution in an average time of 795.733 seconds, thereby significantly enhancing the computational
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Table 1 Experiment results

Cases Gurobi BP BPC

Time (s) LB UB Gap Time (s) LB UB Time (s) LB UB

R101_S 365.33 238.39 238.39 0.00% 0.51 238.39 238.39 0.46 238.39 238.39
R102_S 857.57 217.39 217.39 0.00% 7.52 217.39 217.39 9.42 217.39 217.39
R103_S 904.94 217.39 217.39 0.00% 7.76 217.39 217.39 8.90 217.39 217.39
R104_S 227.33 198.21 198.21 0.00% 2.30 198.21 198.21 2.19 198.21 198.21
R105_S 264.83 237.78 237.78 0.00% 0.99 237.78 237.78 1.24 237.78 237.78
R106_S 246.63 208.81 208.81 0.00% 2.28 208.81 208.81 1.31 208.81 208.81
R107_S 243.09 208.81 208.81 0.00% 2.12 208.81 208.81 1.52 208.81 208.81
R108_S 543.84 198.21 198.21 0.00% 8.53 198.21 198.21 10.34 198.21 198.21
R109_S 181.76 219.98 219.98 0.00% 5.21 219.98 219.98 3.53 219.98 219.98
R110_S 249.48 212.91 212.91 0.00% 3.36 212.91 212.91 1.77 212.91 212.91
R111_S 242.94 201.03 201.03 0.00% 3.05 201.03 201.03 3.18 201.03 201.03
R112_S 744.00 198.21 198.21 0.00% 13.39 198.21 198.21 2.21 198.21 198.21

Average 422.65 0.00% 4.75 3.84

R101_M >36000 511.41 543.52 5.88% 2020.56 543.52 543.52 507.18 543.52 543.52
R102_M >36000 385.16 471.49 18.31% 250.58 459.32 459.32 194.65 459.32 459.32
R103_M >36000 334.22 410.21 18.52% 383.54 410.21 410.21 346.14 410.21 410.21
R104_M >36000 316.37 388.14 18.49% 786.34 388.14 388.14 1221.56 388.14 388.14
R105_M >36000 430.29 491.11 12.38% 564.04 486.33 486.33 271.86 486.33 486.33
R106_M >36000 362.67 418.13 13.26% 367.31 418.13 418.13 235.50 418.13 418.13
R107_M >36000 325.99 400.53 18.61% 4660.02 399.08 399.08 2781.04 399.08 399.08
R108_M >36000 314.66 379.53 17.09% 4370.33 377.02 377.02 1879.90 377.02 377.02
R109_M >36000 357.58 433.80 17.57% 1494.14 426.10 426.10 1294.47 426.10 426.10
R110_M >36000 305.31 417.88 26.94% 347.14 401.50 401.50 252.26 401.50 401.50
R111_M >36000 333.33 400.56 16.78% 1305.42 399.17 399.17 436.73 399.17 399.17
R112_M >36000 302.19 375.16 19.50% 286.54 394.10 394.10 127.50 394.10 394.10

Average >36000 16.95% 1403.00 795.73
Note: LB: Lower Bound. UB: Upper Bound. Gap=(UB-LB) / UB · 100%

speed.
Furthermore, we observe that although the BP algorithm without cuts can also notably improve
the computational speed compared to Gurobi, it is still slower than the BPC algorithm. This
discrepancy becomes more pronounced as the size of the instances increases. The inclusion of cuts
in the algorithm, despite making the resolution of the RLMP more complex, effectively elevates
the lower bound of the solution, thus further reducing the search range.
In addition to the above, we have conducted experiments under different α and β values. Due to
space limits, the results are not shown here. We found that the smaller the α/β value, the more
orders will be assigned to the crowd-carriers, and the lower the overall expected cost of delivery.

5 Conclusions

The CS-IDVRPTW model proposed in this study is a pioneering attempt to jointly optimize routing
and incentive strategies in a crowdsourced last-mile delivery setting. By reasonably estimating
the influence of additional incentives and detour distances on the order acceptance probability
of crowd-carriers, the platform can effectively allocate orders to professional couriers and crowd-
carriers. Additionally, it can provide suitable incentives to crowd-carriers, thereby reducing the
total expected delivery cost of the platform.
To solve the CS-IDVRPTW model, a self-designed BPC algorithm is introduced. According to
the results of computational experiments, the BPC algorithm significantly accelerates the compu-
tational speed compared to the Gurobi solver.
Furthermore, we conducted a sensitivity analysis based on the order acceptance probability of
crowd-carriers under different additional incentives and detour distance sensitivities. We found
that when crowd-carriers are more sensitive to incentives and less sensitive to detour distances, the
platform will assign more orders to them, and the total delivery cost will be lower.
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