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SHORT SUMMARY 

Enhancing child pedestrian safety is crucial due to their unpredictable behaviors, which pose sig-

nificant risks. Existing post-accident measures, such as traffic regulations and infrastructure im-

provements, face limitations in real-time applicability and cost-efficiency. This study proposes a 
deep learning approach using the Trajectory Unified Transformer (TUTR) model to predict the 

future trajectories of child pedestrians, enabling proactive safety interventions. The AI-HUB da-

taset, featuring hazardous child behaviors like sudden road appearances and abrupt direction 
changes, was used for training. Methodologies include video data preprocessing, trajectory ex-

traction, and data augmentation to improve model performance. Evaluation metrics such as Av-

erage Displacement Error (ADE) and Final Displacement Error (FDE) demonstrate high predic-
tion accuracy, with a 0.24 difference between ADE and FDE values. This research highlights the 

potential of integrating TUTR models into autonomous vehicles and infrastructure, providing 

real-time safety measures and reducing child pedestrian accidents. 
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1. INTRODUCTION 

To improve the traffic safety of child pedestrians, numerous studies have explored both proactive 

approaches (Moradi-Pari et al., 2022; Shen et al., 2018) that address hazardous situations in real-

time, and post-accident management (Gitelman et al., 2019; Morrongiello & Barton, 2009; 
Schwebel et al., 2012) focusing on analyzing accident severity (Khan et al., 2024), accident counts 

(Khanum et al., 2023), and implementing safety facilities like fences. Reactive measures, such as 

improving crosswalk visibility, implementing traffic calming strategies, and offering traffic safety 

education, face challenges in real-time application. They incur high maintenance costs and must 
align with existing road infrastructure, reducing their effectiveness (Namatovu et al., 2022). These 

limitations have led researchers to focus on proactive systems leveraging advanced technologies. 

One example is the Smart Walk Assistant (SWA) (Khosravi et al., 2018), which integrates a 
smartphone application with roadside units (RSUs) to provide real-time intersection information. 

However, despite its benefits, this system lacks predictive capabilities to anticipate hazardous 

situations like a child unexpectedly running into the road (Saleh, 2022; Schwebel et al., 2012). 
Addressing this gap requires predictive models capable of anticipating child pedestrians' trajec-

tories in pre-accident scenarios. 
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Recent advancements in deep learning have enabled the development of trajectory prediction 

models for pedestrians. Early studies using RNNs like LSTM and GRU achieved moderate suc-
cess (Alahi et al., n.d.; Liu et al., 2021) but faced limitations, including vanishing gradients, slow 

processing, and difficulty capturing complex dependencies (Sato et al., 2023; Shi et al., 2021). 

Transformer-based models, such as the Trajectory Unified Transformer (TUTR), have emerged 

as superior alternatives, offering improved accuracy and efficiency through multi-attention mech-
anisms (Shi et al., n.d.; Vaswani et al., 2017). 

TUTR distinguishes itself by eliminating post-processing, enhancing real-time applicability (Xu 

et al., 2022; Yuan et al., 2021). It employs a mode-level encoder and social-level decoder to pre-
dict motion patterns and interactions among pedestrians, making it particularly suitable for ad-

dressing unpredictable child pedestrian behaviors (Juzdani et al., 2021). Despite its strengths, 

current research largely focuses on general pedestrian trajectories, leaving a gap in predicting 

child pedestrian behaviors (Swedler et al., 2024). Children often exhibit more erratic patterns, 
making them especially vulnerable in traffic environments (Kendi & Johnston, 2023). 

Integrating TUTR with autonomous vehicle systems can provide real-time insights, improving 

driver stability and reducing reaction times during critical situations (Classen et al., 2023; Saleh, 
2022). This study aims to bridge the gap by employing TUTR to predict child pedestrian trajec-

tories in real-time. By adapting TUTR’s capabilities to unique child behavioral patterns, this re-

search seeks to enhance safety and reduce risks. Furthermore, integrating TUTR with autonomous 
vehicle path planning and collision avoidance systems offers a promising approach to improving 

traffic safety (Classen et al., 2023). 

Trajectory prediction can be categorized into vehicle and pedestrian prediction. Vehicle models 

like GRU and LSTM predict paths with high accuracy, enhancing overall safety (Ip et al., 2021; 
Liu et al., 2021; Messaoud et al., 2020). For pedestrians, methodologies have evolved from phys-

ics-based models (Helbing & Molnar, 1995) to deep learning approaches. While physics-based 

models simulate movement through interactions (Karamouzas et al., 2014), their high computa-
tional costs and limited accuracy drove the adoption of data-driven models like LSTM, GAN, and 

SGCN (Fang et al., 2022; Sadeghian et al., 2018; Shi et al., 2021). These models offer improved 

efficiency but struggle with long-term dependencies and transparency issues (Shi et al., 2021). 
Transformer models (Vaswani et al., 2017) address these limitations by enabling parallel data 

processing. TUTR builds on this foundation with innovative features, including Global Predic-

tion, Mode-Level Transformer Encoder, and Social-Level Transformer Decoder, which normal-

ize trajectories and cluster motion modes. This dual-stage approach improves accuracy and relia-
bility (Juzdani et al., 2021). 

Although TUTR and similar models excel at general pedestrian trajectory prediction, datasets like 

ETH, UCY, and SSD lack subgroup-specific distinctions (Lerner et al., 2007; Pellegrini et al., 
n.d.). This study focuses on predicting child pedestrian trajectories, addressing a critical gap in 

transportation safety. By analyzing and predicting children’s risk behaviors in real-time, the re-

search aims to prevent accidents and improve outcomes. Leveraging TUTR’s capabilities pro-

vides a robust framework for addressing the unique challenges posed by child pedestrians, con-
tributing valuable insights to traffic safety. The model's structure is illustrated in Figure 1. 

 

 
 

Figure 1TUTR Architecture (Shi et al., n.d.) 
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2. METHODOLOGY 

Data Collection 

This study utilized the AI-HUB dataset "Child Pedestrian Road Risk Behavior Videos in School 

Zones," a comprehensive resource designed to train artificial intelligence systems to recognize 
hazardous behaviors in school zones. The dataset includes 1,124 CCTV and 443 black box re-

cordings, categorized into ten types of hazardous behaviors such as jaywalking, sudden appear-

ances, and fighting. For this study, 519 videos focusing on six specific behaviors—driveway 
walking, fighting, jaywalking, using umbrellas, sudden appearances, and walking with dogs—

were selected. Each video contains 300 image frames annotated in Pascal VOC format, providing 

detailed object class information and bounding box coordinates. The dataset was obtained from 

AI-HUB (2020). 

Data Annotation and Preprocessing 

Since the Pascal VOC format does not support pedestrian ID tracking, the DarkLabel tool was 
used for preprocessing, enabling the extraction of pedestrian coordinates for each frame. This 

preprocessing step allowed the conversion of data into a format suitable for trajectory prediction 

models, similar to ETH and UCY datasets. A total of 1,351 child pedestrian trajectories were 
extracted, and data augmentation techniques such as random rotation, axis inversion, and reflec-

tion were applied to expand the dataset, resulting in 4,053 augmented trajectories. 

Model Training and Testing 

The model implementation was based on the open-source GitHub repository, TUTR: Trajectory 

Unified Transformer for Pedestrian Trajectory Prediction (https://github.com/lssiair/TUTR). This 

repository serves as the official implementation of TUTR, providing a comprehensive framework 
for pedestrian trajectory prediction. 

The Trajectory Unified Transformer (TUTR) model was trained and tested using the leave-one-

out method, where the dataset was divided into five subsets: four for training and one for testing. 

Key model parameters included an observation radius of 2, 8 observation frames, 12 prediction 
frames, a hidden dimension size of 64, and 100 clusters. Training parameters were set with a 

learning rate of 0.001, a batch size of 71, a total of 31 epochs, and 30 batches per epoch. During 

the testing phase, 30 samples were generated to ensure optimal prediction scenarios. For evalua-
tion, a world scale value of 1 was applied to align predictions with real-world settings. 

3. RESULTS AND DISCUSSION 

To evaluate the difference between actual and predicted trajectories for each hazardous behavior 

type and assess prediction reliability, metrics such as Average Displacement Error (ADE), Final 

Displacement Error (FDE), Brier-ADE, and Brier-FDE (Wang et al., 2022) were used. ADE cal-

culates the average distance between predicted and actual trajectories over time (Equation 1): 
 

 ADE =
1

Tpred
∑ √(xt − x̂t)2 − (yt − ŷt)2
T
t=Tobs

 (1) 

 

FDE measures the distance between the final predicted and actual points (Equation 2): 

 

https://github.com/lssiair/TUTR
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   (2) 

 

Brier-ADE and Brier-FDE extend these metrics by incorporating prediction probability , as de-
fined in Equations 3 and 4: 

 

 

 Brier-Ade = ADE + (1 − p)2  (3) 

 

 Brier-Fde =  (4) 

 

Among the six behavior types, "suddenly_appear" showed the largest discrepancy between 

ADE/FDE and Brier-ADE/Brier-FDE, at 0.6, indicating lower prediction probability and higher 
difficulty (Table 1). 

 

Table 1: Evaluation Metrics 

 

Types of 

risky be-

haviors 

drive-

way_wal

k 

fighting jay_walk 
putup_ 

umbrella 

Suddenly 

appear 
with_dog AVG 

 

Evaluation metrics 

ADE 3.53 3.60 3.56 3.60 3.61 3.54 3.57 

FDE 6.39 6.50 6.42 6.50 6.52 6.41 6.45 

Brier-ADE 3.57 3.85 3.57 3.65 4.21 3.94 3.8 

Brier FDE 6.43 6,85 6.43 6,55 7.12 6.81 6.7 

 

The model’s loss decreased from 5.62 to 3.75 during training, demonstrating successful conver-
gence (Figure 2). 

 

 
 

Figure 2:Average Total Loss 
 

Visualization results demonstrated that the predicted trajectories effectively captured various be-

havioral patterns exhibited by child pedestrians (Figure 3). 
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Figure 3:General Motion Mode 
 

For instance, in the "suddenly_appear" scenario, the model successfully reflected the complex 

actions of a child running onto the road, engaging in hazardous behavior such as jaywalking, and 
returning to the sidewalk. While the predicted trajectories generally aligned with the observed 

paths, slight deviations were noted due to the unpredictable and erratic nature of this behavior 

(Figure 4). 

 

 

 
 

Figure 4:Predicted Trajectories and Corresponding Probabilities 
 

In Figure 3, the general motion modes are visualized, showing the normalized trajectories of child 
pedestrians moving from right to left. This provides an intuitive overview of how the model pro-

cesses and predicts standard movement patterns. Figure 4 highlights individual trajectories with 

detailed visual representation: the observed trajectory in green, the ground truth in blue, and the 

predicted trajectory in red. For trajectories with the highest accuracy, the final position is marked 
with an orange star, emphasizing the model’s capability to predict future positions with reasonable 

precision despite the variability in behavior types. 

The model achieved an average ADE of 3.57 and FDE of 6.45, with Brier-ADE and Brier-FDE 
averaging 3.8 and 6.7. Behaviors like "driveway_walk" and "putup_umbrella" demonstrated high 
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reliability due to consistent patterns. Conversely, "suddenly_appear" was more challenging to 

predict due to its erratic nature, evidenced by a higher discrepancy in Brier metrics. 
These results highlight TUTR’s suitability for predicting child pedestrian behaviors, particularly 

in real-time applications. However, reliance on reenacted data limits generalizability. Future re-

search should utilize real-world datasets and integrate advanced sensors, such as radar, to improve 

accuracy and reliability, ultimately enhancing autonomous system safety in school zones. 

4. CONCLUSIONS 

This study aimed to improve traffic safety by predicting the trajectories of child pedestrians using 
the AI-Hub dataset "Child Pedestrian Road Risk Behavior Videos in School Zones" and the 

TUTR model. Unlike prior studies focusing on adult pedestrian behaviors or post-accident 

measures, this research addressed the unique and unpredictable movement patterns of children, 
emphasizing real-time risk prediction. By analyzing hazardous behaviors such as jaywalking and 

sudden appearances, the study demonstrated the potential to reduce accidents involving child pe-

destrians. The TUTR model achieved strong predictive reliability, with overall ADE/FDE values 

of 3.57/6.45 and Brier-ADE/Brier-FDE values of 3.8/6.7, reflecting minimal discrepancies and 
high accuracy. For behaviors like driveway_walk and jay_walk, the differences between ADE 

and Brier-ADE metrics were as low as 0.04 and 0.01, respectively, further confirming the model’s 

effectiveness. Despite these promising results, the reliance on reenacted video data presents lim-
itations. Future research should employ real-world datasets to capture more dynamic behaviors 

and enhance model applicability. Integrating such predictive systems with autonomous vehicle 

path planning and collision avoidance could significantly enhance traffic safety, ensuring both 

the safety of child pedestrians and improved driver response in critical situations. 
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