
1 
 
 

A utility-based spatial analysis of residential street-level 
conditions  

A case study of Rotterdam 
Sander van Cranenburgh1,* 

Francisco Garrido-Valenzuela1 
 

1CityAI lab, Transport and Logistics Group,  
Delft University of Technology 

The Netherlands 
*Corresponding author 

 
Keywords 
Residential location choice; Urban environment; Discrete choice models; Computer vision; 
Street-level images 
 

 Introduction 
Residential location choices shape the infrastructure and functionality of cities. Specifically, 
individuals and households' decisions about where to live have significant implications for 
transportation systems, housing markets, and urban planning (Cox & Hurtubia, 2021). 
Therefore, formulating policies to address urban challenges such as sprawl, housing 
affordability, and spatial inequality requires a thorough understanding of the factors 
influencing residential location choices (Pagliara & Wilson, 2010).  
 
Residential location choices are commonly analysed using Discrete Choice Models (DCMs) 
(Guevara & Ben-Akiva, 2006; Hunt, 2010; McFadden, 1977; Pérez et al., 2003). DCMs are 
grounded in random utility theory, where individuals are assumed to choose the alternative that 
maximises their utility from a set of discrete alternatives, each conceived as a bundle of 
attributes (e.g. cost, time, quality) (Ben-Akiva & Lerman, 1985). Residential location choices 
entail trade-offs along various factors, including (1) Travel and accessibility-related factors, 
such as the commute mode,  commuting time, and distances to amenities like schools, stores, 
hospitals and playgrounds; (2) Socioeconomic environments, such as income levels, ethnic 
distribution, age and education level; and, (3) Built environments and street-level conditions, 
such as built density, housing types and typology, street layout, traffic safeness, greenness, 
parking conditions, and disorders (e.g. due to litter, graffiti, or weeds) (Giles-Corti et al., 2013). 
 
Despite the acknowledged importance of the built environment and street-level conditions to 
residential location choices, they are commonly neglected when analysing them (Schirmer et 
al., 2014). This neglect relates to data practices. Residential location choice models have 
traditionally been built using census data, which does not contain detailed information about 
the built environment and street-level conditions. Only a limited number of residential location 
choice models have incorporated built environment variables, and those have typically relied 
on (tabular) cadastral data (Pinjari et al., 2007). While useful, these data often fall short of 
capturing detailed street-level conditions, such as the number of cars driving or parked in the 
street, the presence of sidewalks, or the amount and type of trees. Additionally, they lack 
information on more intangible street-level conditions, such as ‘openness’, ‘scale, ‘order’, and 
‘continuity’, all of which are known to influence how people perceive and evaluate streetscapes 
(Gjerde, 2011). As a result, comparatively little is known about how local street-level 
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conditions – from a residential location choice perspective – are spatially distributed within 
cities. 
 
Unlike tabular data, street-level images are particularly adept at encoding information about 
street-level conditions. The widespread use of street-level images on housing platforms and 
real-estate agency websites attests to the power of images to describe and convey information 
about street-level conditions as well as their importance to residential location choices. 
Importantly, nowadays, images containing information on street-level conditions are widely 
available from tech firms like Google, Apple, and Baidu's map services. Since these images 
became widely accessible, researchers have extensively utilised them to analyse and 
understand urban environments (Zhang et al., 2024). Notably, the pioneering work of Dubey 
et al. (2016) and subsequent studies have significantly advanced our understanding of how 
urban spaces are perceived in terms of e.g. safeness, vibrancy and liveliness using street-level 
images (Liu et al., 2017; Ma et al., 2021; Wei et al., 2022; Zhang et al., 2022; Zhang et al., 
2018).  
 
In addition to these developments, a new type of discrete choice model has recently been 
proposed, called Computer Vision enriched Discrete Choice Models (henceforth abbreviated 
as CV-DCMs) (Van Cranenburgh & Garrido-Valenzuela, 2025). CV-DCMs can handle images 
by integrating traditional random utility theory-based choice models and computer vision 
models. And, because the CV-DCM model in the study by Van Cranenburgh and Garrido-
Valenzuela (2025) has been trained based on residential location choice data –which involved 
street-level images– that model can be used to predict the utility derived from street-level 
conditions based on street-level images. Hence, it can be used to shed light on the spatial 
distribution of street-level conditions within a city.  
 
The aims of this research are twofold: first, to shed light on the distribution of utility derived 
from street-level conditions in a residential location choice context at a city-level scale, and 
second, to examine the factors shaping this distribution. We use the city of Rotterdam as our 
case study. Rotterdam is the second largest city in the Netherlands, with about 670k inhabitants, 
and boasts a diverse array of neighbourhoods (Custers & Willems, 2024). To achieve our 
research aims, we capitalise on the widespread availability of street-level imagery and the 
recently developed CV-DCM. Specifically, we collect 300k geo-tagged street-level images of 
Rotterdam and calculate the utility derived from the street-level conditions using the CV-DCM. 
Finally, we aggregate the results at the postal code level to produce maps showing the spatial 
distribution.  
 
This research makes a substantive and methodological contribution. Substantively, it is the first 
to present a large-scale application of a CV-DCM, demonstrating its potential to generate new 
insights about preferences of urban environments. As a methodological contribution, we 
extend CV-DCMs to deliver insights into the factors underlying the utility distribution derived 
from street-level conditions. Specifically, we have added a semantic regularisation layer to the 
model. This layer is designed to predict key semantic attributes that are believed to influence 
residential location choices, such as the number of cars and the amount of visible sky, alongside 
the location decisions themselves. Thus, the extended model extracts the semantic attributes 
from images, which it, in turn, uses to explain the residential location choices. This integrated 
approach eliminates the need for a separate pipeline to process, segment, or otherwise extract 
information from images, thereby streamlining the analysis. Moreover, because the extended 
model is computationally efficient to deploy, it enables the analysis of a large number of 
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images, making it feasible to assess the utility distribution derived from street-level conditions 
on a city-wide scale. 
 

 Method 
Figure 1 shows an overview of our methodology, which comprises three main steps:  
 

 
Figure 1: Overview of methodology 

 
 

 Step 1: Image data retrieval for Rotterdam 
Step 1 of the method involves the collection of URLs to street-level images of residential areas 
in the city of Rotterdam. We use a similar approach as in (Van Cranenburgh & Garrido-
Valenzuela, 2025). The final database contains of URLs from ~300k street-level images of 
residential streets in Rotterdam. 
 

 Step 2: Semantic CV-DCM 
Step 2 involves applying a trained CV-DCM to the images collected in Step 1. To this end, this 
subsection introduces the CV-DCM (section 2.2.1), extends it (section 2.2.2), and reports on 
the training data (section 2.2.3) and training results (section 2.2.4) of the model that we apply.  
 
2.2.1. CV-DCM 
In this model, the utility of alternative i, denoted Ui, is derived from the numeric attributes Xi 
and attributes encoded in the image Ii, which is presented as part of the alternative, see Figure 
2. In line with the vast majority of discrete choice models, we assume utility is linear and 
additive, see Equation 1. The main advantage of these assumptions is that the 𝛽! parameters 
can be interpreted as marginal utilities; representing the ceteris paribus change in utility 
associated with a one-unit change in the corresponding explanatory variable 𝑥!. The mapping 
𝑔(∘) can be further decomposed into two functions: first, 𝜑(∘)	produces a feature map (aka 
embedding) of the image, denoted 𝑍"# = {𝑧"$#, 𝑧"%#, … , 𝑧"&#}. This mapping is carried out by a 
computer vision architecture, such as a Convolutional Neural Network (CNN) or a Vision 
Transformer (ViT). After that, the feature map is mapped linearly onto utility: ∑ 𝛽'𝑧"'#' .  
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Figure 2: Model structure of CV-DCM (for J =2).  

Subscript n dropped for legibility. 
 
A drawback of the CV-DCM is that its computer vision part is opaque. Even though the feature 
map is mapped linearly onto utility (see Equation 2), the 𝛽' parameters do not carry a 
behavioural meaning. This lack of interpretation is because the elements of the feature map, 
zikn, themselves do not carry a priori semantic meaning. Therefore, the CV-DCM does not allow 
tracing back which attributes encoded in a street-level image contribute to utility and to what 
extent.  
 
One way to obtain more behavioural insights about people's preferences over the attributes 
encoded in street-level images (i.e. image feature map) is to extract semantic objects, like cars 
and trees, from the image and feed these directly into the utility function of a traditional choice 
model. Such an approach is taken in adjacent studies, like Nagata et al. (2020); Ramírez et al. 
(2021). This approach allows for estimating the effect of the attributes on the utility function, 
offering a clear understanding of how specific objects in the environment influence choices. 
Such a top-down approach, however, is constrained by the analyst’s predefined selection of 
objects, limiting the ability to detect unexpected or emergent elements. Furthermore, it cannot 
capture more nuanced visual cues, such as Gestalt principles—proximity, similarity, common 
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fate, common region, closure, continuity, connectedness, and common orientation. These 
factors play a significant role in shaping how people perceive and interact with their 
surroundings and are widely applied in urban planning (Gjerde, 2011).  
 
2.2.2. Semantic CV-DCM 
In light of the considerations in section 2.2.1, we propose to extend the CV-DCM to provide 
more behaviour insights while keeping the model capable of capturing nuanced visual cues. 
Specifically, we propose adding a semantic regularisation layer to the model that aims to 
explicitly predict semantic attributes that are believed to be important to the residential location 
choice, such as the cars, sky and trees, see Figure 3. The semantic attributes (nodes) are 
predicted from the feature map, which, in turn, are assumed to map linear onto utility. Because 
the regularised nodes carry semantic meaning and are mapped linearly onto utility, the 
associated 𝛽6.! parameters can be interpreted as the marginal utilities of the semantic objects. 
Thus, by adding the semantic regularisation layer, the model captures the utility of the semantic 
attributes in an explicit and transparent way (as opposed to via 𝛽'). Equation 2 formally 
introduces the Semantic CV-DCM.  
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Figure 3: Semantic CV-DCM (for J =2).   
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2.2.3. Training data 
To train the Semantic CV-DCM, we need two sources of data: (1) a data set containing the 
choices over choice tasks with numeric and visually encoded attributes, and (2) a data set 
containing ground truth levels of the semantic attributes encoded in the images used in the 
choice data set. Regarding the former, in this study, we use the residential location choice data 
collected by.1 Figure 4 shows a screenshot of a choice task from their stated choice experiment. 
 

 
Figure 4: Screenshot of the stated choice experiment (image source: Google) 

(translated to English)  
 
Regarding the data set containing the ground truth levels of the semantic attributes encoded in 
the images, we used state-of-the-art zero-shot object detection and segmentation models to 
construct it. Unlike traditional object detection models that have been trained using supervised 
learning, zero-shot models can detect objects beyond those predefined classes for which the 
models have been trained. More specifically, our detection and segmentation pipeline combines 
an object detection model called GroundingDINO and a segmentation model called Segment 
Anything Model (SAM). GroundingDINO is a zero-shot model for detecting objects developed 
by Liu et al. (2023). It integrates a transformer-based detection model called DINO (Zhang et 
al., 2022) and grounded pre-training. DINO achieves object detection based on text prompts. 
We applied this pipeline to all images used in the stated choice experiment, using a list of 
semantic attributes informed by a brief literature review. Figure 5 illustrates four examples of 
the segmented images based on this list of segments. 
 

 
 
1 https://github.com/TUD-CityAI-Lab/Computer-vision-enriched-DCMs 

https://github.com/TUD-CityAI-Lab/Computer-vision-enriched-DCMs
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Figure 5: Four examples of segmented images using GroundingDINO and SAM 

 
2.2.4. Training results 
Table 2 shows the training results related to the choice data. The first column reports the 
benchmark model, i.e. the plain-vanilla CV-DCM of Van Cranenburgh and Garrido-
Valenzuela (2025); the second column shows the results of the Semantic CV-DCM. Looking 
at the model fit in the test data set, we see that the Semantic CV-DCM fits the data almost 
equally well as the benchmark model. The fact that the benchmark CV-DCM outperforms the 
Semantic CV-DCM is expected because the CV-DCM imposes less structure on how the utility 
is derived from attributes encoded in the image. For instance, the benchmark CV-DCM may 
learn a nonlinear relation between the number of cars and utility. In contrast, the Semantic 
DCM imposes a linear relationship. The comparatively better fit on the training dataset 
suggests that the model slightly overfitting to the training data.  
 
Next, we look at the interpretable parameters of the Semantic CV-DCM. Firstly, in line with 
expectations, we see that the estimates associated with the numeric attributes – housing cost 
and commute travel time – are virtually the same as those of the benchmark model. Secondly, 
the signs of the semantic parameters have the intuitively expected signs. In this application, we 
fixed 𝛽5("*-"#76.!  to zero for normalisation. Given this normalisation choice, we expect positive 
signs for the parameters associated with e.g. trees, grass, and sky. After all, a positive parameter 
for a semantic attribute means that increasing its proportion – at the expense of the proportion 
of buildings (which is the reference category) – will increase the utility derived from the street-
level conditions. Likewise, we expect negative signs for the parameters associated with, e.g. 
roads and fences, because increasing their proportion – at the expense of buildings – can be 
expected to decrease the utility derived from the street-level conditions. 
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Table 2: Training results semantic CV-DCM 
Data set 
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βtt -0.23 -0.24 
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.  

βcar_c      (count)  -0.25 

βcar_p       (proportion)  -0.59 

βbuilding  (proportion)  0.00* 

βgrass      (proportion)  0.96 

βroad      (proportion)  -0.59 

βsky           (proportion)  1.42 

βtrees      (proportion)  1.40 

βplants      (proportion)  1.05 

Βfence      (proportion)  -0.81 

Βwater      (proportion)  0.13 

Βunsegmented (proportion)  -0.25 
* Fixed to zero for normalisation 

 
 Step 3: Model application and aggregation  

In the application, we utilise the trained Semantic CV-DCM model to compute utilities derived 
from the street-level conditions based on the street-level images of Rotterdam. Notably, in the 
application, we exclude utilities associated with the numeric attributes ‘commute travel time’ 
and ‘housing cost’, which were part of the training data but are unimportant to our application, 
in which we want to examine the spatial distribution of utility derived from street-level 
conditions. Excluding the numeric attributes thus allows us to isolate the utility levels that 
reflect the street-level conditions. 
 

 Results: spatial distribution of residential street-level condition 
The middle plot of Figure 6 shows the main result of this study: the spatial distribution of the 
utility derived from street-level conditions to residential location choices in Rotterdam. The 
colour scale is such that the colour red indicates a low utility derived from the residential street-
level conditions, and the colour green indicates a high utility derived from the residential street-
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level conditions. Figure 6 reveals several key insights into the distribution of the street-level 
conditions in Rotterdam.  
 
Firstly, the city centre (encircled in cyan), which comprises the neighbourhoods ‘CS-Kwartier’, 
‘Stadsdriehoek’, ‘Cool’, ‘Oude Westen’, ‘Dijkzigt’, ‘Nieuwe Werk’, exhibits comparatively 
poor street-level conditions. Except for ‘Dijkzigt’ and ‘Nieuwe Werk’, they have below-
average street-level conditions. This suggests that the high real-estate prices typically 
associated with central locations cannot be attributed to the attractiveness of street-level 
conditions. It indicates that factors other than the immediate street environment, such as 
proximity to amenities, employment opportunities, or connectivity, play a more significant role 
in driving up property values in the city centre. The comparative attractiveness of the residential 
street-level conditions in ‘Dijkzigt’ and ‘Nieuwe Werk’ is explained by, respectively, the 
presence of the museum district and a medium-sized city park.  
 
Secondly, street-level conditions vary considerably, even within small areas. For example, in 
the neighbourhood ‘Hillegersberg Noord’ (at the top of the plot), a single dark red spot stands 
out in an otherwise attractive area, illustrating how conditions can rapidly improve or 
deteriorate even within close proximity. So, even though ‘Hillegersberg Noord’ is generally 
considered an upscale and attractive neighbourhood, this area contains pockets where the 
street-level conditions are not appealing. 
 
Thirdly, the best residential street-level conditions are found on the city’s edges, located 
particularly near parks and green areas. This spatial pattern reflects the city’s spatial hierarchy, 
where the older, high-density areas dominate the core, which is surrounded by more suburban 
or commercial/industrial zones. Notable examples include areas near ‘Kralingse Bos’ in the 
North and ‘Charlois Zuidrand’ in the South, as well as residential neighbourhoods with 
abundant greenery, including trees and plants, such as ‘s-Gravenland’ in the East. These 
findings underline the importance of greenery in contributing to the attractiveness and utility 
derived from street-level conditions for the residential location choice.  
 
Fourthly, and perhaps most surprisingly, the southern neighbourhoods of Rotterdam perform 
moderately well in terms of residential street-level conditions. In common parlance, the 
southern neighbourhoods, such as ‘Bloemhof’, ‘Tarwewijk’, and ‘Pendrecht’, are perceived as 
‘probleemwijken’ (problem areas) due to higher poverty and crime rates. However, these 
results show that despite the challenges in these neighbourhoods, the street-level conditions 
there are not as poor as one might expect. In other words, there are positive aspects to the street-
level conditions in these neighbourhoods that may not be immediately apparent in conventional 
socioeconomic analyses. 
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Figure 7: Spatial distribution of residential street-level conditions utility (from images) in Rotterdam (middle). Locations of areas with the 
highest proportion of semantic attributes are encircled in blue. Impact on street-level utility compared to the mean is shown on both sides for 

selected areas. 
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 Conclusion and discussion 
This paper utilises recently proposed computer-vision enriched discrete choice models (CV-
DCMs) to provide novel insights into the spatial distribution of utility derived from street-level 
conditions. Thereby, it advances the residential location choice literature by offering insights 
into the role street-level conditions play in these decisions. Additionally, it complements 
previous research on urban environment perceptions based on street-level imagery by 
introducing a preferences-based counterpart. Finally, it makes a methodological contribution 
by extending the CV-DCM models with a semantic regularisation layer. This layer extracts key 
semantic attributes from images, which the model then uses to predict the residential location 
choices. Thereby, we elucidate the computer vision part of the CV-DCM and eliminate the 
need for separate image processing pipelines. The next steps involve further analysis of the 
results and a deeper examination of the proposed method to enhance its ability to understand 
residential location choices. 
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