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Short summary

Transport simulation frameworks often exclude parking because data are scarce. This study show
how to predict parking search times as inputs for transport simulation frameworks for Europe,
where only few observations are available, by using a prior distribution constructed from a large
data set on parking search times in North America. An accelerated failure time model is estimated
using Hierarchical Bayes methods so that information between parameters for different regions and
data sources is shared. We make probabilistic predictions for search times in Zurich and Berlin.
Our results show that an appropriate model needs to capture both the likelihood of finding parking
as well as search time. Our results highlight the usefulness of drawing on different data sources
for parameter estimation, and the importance of generalising from sample to population when
simulating a range of plausible parking search times at a given location.
Keywords: parking search time, time-to-event data, prediction, Europe, data integration, partial
pooling

1 Introduction

Parking policies in the form of pricing or restrictions are important for managing travel demand
(Shoup, 2021). Nevertheless, they are often overlooked, under-accounted or simply excluded from
transport simulation frameworks (Thomas, 2024). A review by Young et al. (1991) found that the
majority of early transport models did not account for time spent searching for parking; only Nour
et al. (1981), Gur & Beimborn (1984) and Axhausen et al. (1988) incorporated in their models.
Axhausen et al. (1994) presented an aggregated search time model to investigate the effectiveness
of a parking guidance information system. Belloche (2015a) reference this work and find that
an association between the occupancy ratio and time spent searching for on-street parking given
survey data for Lyon, France. However, occupancy data are difficult to obtain on a large scale
for different locations. Cao et al. (2019) utilised a macroscopic assignment model. However, the
required input from MATSim limiting transferability of its outputs to new locations.
Various agent-based models have been proposed. These include the works of Benenson et al. (2008),
Dieussaert et al. (2009), Vuurstaek et al. (2018), Bischoff & Nagel (2017), Waraich (2016). However,
only Tchervenkov (2022) presented average parking search times in comparison to empirical values,
using the approach by Bischoff & Nagel (2017) to integrate parking search into an iterative MATSim
loop.
Thus, attempts to model parking in transport simulation frameworks are currently hampered by
a lack of data on parking search times. For Europe, only few studies that provide values in the
form of point estimates without any indication of variability and skew. This makes it difficult for
practitioners to come up with robust conclusions about which assumptions they could plausibly
make for parking search time at a given European location.

We develop an approach for predicting parking search times based on small number of observation
from Europe and a large data set from North America. We outline a formal way of combining
observations from these different regions and data sources such that predictions can be made for
existing and new locations in Europe. An accelerated failure time model (AFT) is estimated using
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Hierarchical Bayes to partially pool information from different data sources and locations whilst
accounting for uncertainty. We illustrate our model by simulating parking search times for a loca-
tion “seen” by the model (Zurich) and an “unseen” location (Berlin).

All code will be published at the time of paper presentation.

2 Data

Parking search times

Data for Europe are obtained from reported values in seven studies. Multiple observations are
available for Zurich, Switzerland. Tchervenkov (2022) measured parking search times for 11,461
car trips conducted by 1,151 participants using GPS data. Their overall estimate is 2.9 minutes,
with results also detailed for Zurich’s 12 districts. Montini et al. (2012) use GPS data from over
32,000 person-days. They also report estimates for both the city overall and per district. Cao
et al. (2019) employed a survey-based approach, randomly administering questionnaires to assess
parking search times. They include 89 observations and express results in terms of percentage of
drivers who found a parking spot within specified time intervals. Maurer et al. (2023) tracked
drivers in central Zurich, combining GPS tracking with a survey. Their survey encompasses 871
observations. For Lyon, Belloche (2015b) analysed parking search times of 923 trips across Zurich
districts. For Turnhout, Belgium, van der Waerden et al. (2015) utilised GPS data from 97 car trips
compute average parking search time. Finally, average parking search time for the Netherlands
was calculated at 36 seconds by van Ommeren et al. (2012). Because its log is negative it had
to be excluded from our analysis (see model below). For North America, data were collected by
Geotab Inc. (2020). The data set contains average parking search times at 4,750 polygons spanning
across Canada, the United States (US) and Mexico. These rectangular polygons vary in size and
are restricted to cities with populations exceeding 100,000 inhabitants. For better comparability
with European cities only polygons located in Canada and the US are used, and three observations
are omitted to also avoid negative values of logged search times. Because of missing data on
motorisation rates, 11 cities in Connecticut cities are excluded from the final data set, resulting a
total of 4,635 polygons.

Predictors

Different predictors were tested as described in 3. The final model includes two types of predictors.
First, motorisation rates (number of cars registered per 1000 inhabitants) for North America were
computed with 2022 data on vehicle registrations in the US (CEIC, 2022) and Canada (Statistics
Canada, 2022a) and 2019 census data for the US (census.gov, 2019) and 2022 census data for
Canada (Statistics Canada, 2022b), respectively. Motorisation rates for European locations were
obtained from publicly available figures. We hypothesised that higher car ownership may be
associated with more competition for parking, leading to longer search times.
The second type of predictor is street intersection density (SID). Sallis et al. (2016) define it as “the
number of pedestrian-accessible street intersections divided by the area”. Since this study focus on
parking, we create two types of SID to capture differences in infrastructure supporting active and
motorised traffic. We hypothesised that higher SIDs and therefore a more connected street network,
allowing drivers to navigate more easily to find available parking. For the calculation of SID for the
various study areas, polygons delineating these areas were either acquired or digitised. For each
polygon, Open Street Map (OSM) linestrings intersecting the polygons were downloaded with the
OSMnx tool (Boeing, 2017). Tab. 1 displays the classification into active and motorised OSM
objects; other key/value pairs are excluded. Afterwards, all intersections between OSM objects
within the same class were identified and normalised by the area of the respective polygon. The
SID extraction process largely followed the instructions provided by Uhjaval (2024), which were
adapted into a Python script for automation. Fig. 1 provides an overview of the SID calculation
process using a subset of Zurich.
Fig. 2 illustrates the distribution of SID values grouped by study areas. North American polygons
exhibit significantly higher SID values for OSM objects classified as motorised compared to Eu-
ropean SIDs, while the difference in active SID values is smaller but still evident. The density of
data points in the figure also reflects the disparity in sample sizes between the North American and
European studies. Notably, the outlier for European active SID values corresponds to the Grange
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Table 1: OSM keys and values of objects used for the SID calculation.
Class Key Value

active highway living street, pedestrian, track, footway, bridleway, steps, corridor, path,
cycleway, crossing

motorised highway motorway, trunk, primary, secondary, tertiary, unclassified, residential,
motorway link, trunk link, primary link, secondary link, tertiary link,
service, road, busway

Figure 1: Flowchart for the extraction of OSM objects in Zurich.

Blanche district in Lyon. Summary statistics of all variables included in the model are reported in
Table 2.
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Figure 2: SID values of all study areas in North America (NA) and Europe (EU), grouped
by infrastructure supporting active and motorised traffic.

Table 2: Summary statistics of all variables included in the model.
Data source Variable Mean 5 % 95 % Min Max

North America avg. parking search time (min) 4.81 2.29 8.07 1.09 11.55
1 data set motorisation rate per 1000 inhbts. 598 193 736 120 875
(n=4635) SID active per 100 m2 0.018 0.000 0.080 0.000 0.375

SID motorised per 100 m2 0.036 0.004 0.087 0.000 0.224

Europe avg. parking search time (min) 3.57 1.40 8.98 1.18 11.10
6 studies motorisation rate per 1000 inhbts. 587 470 800 415 800
(n=26) SID active per 100 m2 0.115 0.023 0.242 0.005 1.381

SID motorised per 100 m2 0.019 0.008 0.034 0.007 0.071

3 Model specification and estimation

Parking search times are time-to-event data, which can be analysed using hazard scale or accel-
erated failure time (AFT) models. We chose the latter because it model the (logged) time until
an event occurs directly. We assume that logged search time, ln(t), follows a Weibull distribution
such that

ln(tn) ∼ Weibull (αn, σn) (1)

σn =
µn

Γ
(
1 + 1

αn

) (2)

where n indicates an observation, and α and σ are shape and scale parameters, respectively. The
shape parameter captures the likelihood of finding parking as time progresses and therefore the
distribution’s skew and tails. The scale parameter captures the typical time it takes to find parking
with higher values indicating longer search times, and vice versa.
Data include observation for Europe as reported in six studies and a large data set for North
America (see Sec. 2). Parking search times in Europe and North America are related, they have
the same data generating process. But they also differ, namely in terms of data sources (6 European
studies, 1 North American data set) countries (3 in Europe, 2 in North America) and cities (3 in
Europe, 306 in North America). To account for these differences we estimate our model using a
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hierarchical Bayes (Gelman, 2006; Gelman et al., 2013) approach. Shape and scale parameters of
the Weibull distribution are themselves specified as models:

ln(αn) = a+ ag[n] + xa
nA (3)

ln(µn) = b+ bg[n] + xb
nB (4)

where a and b are overall intercepts of shape α and mean µ, respectively. Parameters ag, bg
capture deviations of groups from the overall mean, where each group g = 1, ..., G is a combination
of country, city and data source and G = 325. Predictors xa

n and xb
n are mean-centred and scaled

motorisation rates and SIDs. Prior distributions are:

a ∼ Student-t(3, 0.5, 2.5)
b ∼ Student-t(3, 0, 2.5)

ag ∼ N(0, τa)
bg ∼ N(0, τb)

τa ∼ Student-t+(4, 0, 2)

τb ∼ Student-t+(4, 0, 2)
A ∼ Student-t(3, 0, 2.5)
B ∼ Student-t(3, 0, 2.5)

(5)

Thus, shape and scale parameter vary by group at lower levels of the hierarchy and common param-
eters are estimated at the higher level in the form of standard deviations τa and τb. Estimates for
each group-specific intercept ag and bg are partially informed by data for the specific group and by
data available for all other groups. This process is referred to as partial pooling, where the degree
of pooling is determined by the data. It leads to more stable and generalisable estimates (Gelman
et al., 2013), which is important for making predictions for particular in new locations.
The joint posterior density combines the likelihood in (1) to (4) with prior distributions in (5).
Estimation is performed in Stan using Hamiltonian Markov chain Monte Carlo sampling (Stan
Development Team, 2024) and the R package brms version 2.21 (Bürkner, 2017). Four independent
Markov chains, with 2,500 warmup iterations and 5,000 sampling iterations each are estimated.
Convergence is checked via the split potential scale reduction factor (Rhat) (Vehtari et al., 2021).
The reliability of estimates is further verified by checking that bulk and tail effective sample sizes
(ESS) are sufficiently large.
To evaluate model fit we conduct posterior predictive checks, and out-of-sample predictive accuracy
of the model is evaluated using Pareto-smoothed importance sampling leave-one-out (PSIS-LOO)
diagnostics (Vehtari et al., 2017). The latter is important for checking if predictions can be gener-
alised to the population.

4 Model results

Various predictors were tested including some based on OSM data (e.g. counts of various tags re-
lated to shopping and leisure activities per area, proportions of land use types). However, the sam-
pler did not converge, if these predictors were included in the model, suggesting non-identifiability
of their parameters in the likelihood. Thus, OSM land use and groups of OSM tags are unsuitable.
They lack systematic variation with parking search times. Instead, models including motorisation
rate and/or SIDs as predictors converged. Various combinations were compared based on their
predictive performance using PSIS-LOO. The best model includes motorisation rate, motorised
SID and active SID in the sub-model for the scale parameter, and motorisation rate and active
SID in the sub-model for the shape parameter. This highlights the heterogeneity of parking search
times in terms of both scale and shape.
We present the results for the best model. Scale reduction factors of all parameter are 1, indicating
convergence of the sample, and bulk and tail ESS are sufficiently large (see Tab. 3). Fig. 3 shows
ten data sets simulated from the posterior predictive distribution which closely match with the
observed data. This indicates that our model fits the sample well. To verify that the model param-
eters can be generalised to the population, we investigate the out-of-sample predictive accuracy of
our model, the results of which are depicted in Fig. 4. All observations have k-Pareto values below
0.7, which indicates that removing any observation would have little effect on the joint posterior
distribution (and therefore on our predictions) so that inferences about the population can be
made.
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Figure 3: Kernel density estimate of the observed data set y = ln(tn) (dark line), with
density estimates for 10 simulated data sets yrep drawn from the posterior predictive dis-
tribution (yellow lines).

Figure 4: Pareto-k-values from PSIS-LOO.

Posterior estimates are reported in Tab. 3. First, the magnitudes of the estimated standard devi-
ations of the varying intercepts, τa and τb, suggest that there is evidence of substantial variation
in parking search time across data sources and locations. It is higher and more uncertain when
it comes to the likelihood of finding parking over time (the shape), than in terms of much time
is spent to find it (the scale). Second, the posterior mean the overall intercept of the shape, a is
greater than one (exp(0.177)=1.19). This says that at average motorisation rate and SIDs levels,
the likelihood of finding parking increases as time progresses, which is expected. The likelihood of
finding parking also is higher in areas with higher SIDs for active traffic, but it decrease as time
progresses in areas with higher motorisation rates. The posterior mean of the scale parameter,
b, is expected log parking search time if motorisation rate and SIDs are at the mean. It shows
that overall expected parking search time ranges between 4.3 and 4.5 minutes; and it is longer in
areas with higher SID of active traffic shorter in areas with higher SID of motorised traffic. The
association between motorisation rate and scale is uncertain and possibly zero.
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Table 3: Posterior means, lower and upper 95 % credible intervals (CI), Rhat diagnostic,
and bulk and tail effective sample sizes (ESS) of the ACF model parameters. Motorisation
rate is scaled by 100; SIDs per 100 m2 and motorisation rates are mean-centered.

Parameter Mean l-95% CI u-95% CI Rhat Bulk ESS Tail ESS

a intercept of shape α 0.177 0.021 0.138 1.00 3297 5448

A1 motorisation rate -0.122 -0.160 -0.084 1.00 3182 5288

A2 SID active 2.269 1.520 2.998 1.00 10186 8000

τa std. deviation of ag 0.177 0.138 0.221 1.00 2773 4899

b intercept of mean µ 0.391 0.374 0.409 1.00 1752 3028

B1 motorisation rate -0.043 0.006 -0.056 1.00 2613 4435

B2 SID motorised -0.551 -0.771 -0.334 1.00 10245 7154

B3 SID active 0.707 0.086 0.540 1.00 10040 7326

τb std. deviation of bg 0.102 0.089 0.116 1.00 2356 4423

These results can be interpreted as follows. The likelihood of finding parking in the first place
is lower in areas with higher motorisation rates compared to areas with lower motorisation rates.
The likelihood of finding parking in the first place is higher in areas with better infrastructure
supporting active traffic compared to areas with worse infrastructure, but it takes longer to find
parking in these areas. Parking search times tend to be shorter in areas with better infrastructure
for motorised traffic than in areas with worse infrastructure supporting motorised traffic. Finally,
our results highlight that accounting for the likelihood of finding parking as captured by skewness
and tail behaviour of the data distribution is also important when modelling the time to find
parking.

5 Probabilistic predictions for locations in Europe

Hierarchical Bayes models assume infinite exchangeability between group-specific parameters, where
our groups are combinations of data sources, countries and cities. The implied conditional indepen-
dence allows making predictions for locations unseen by the model, alongside those that the model
has already seen. The posterior predictive density of parking search time, t̃, given motorisation
rate and SID active and SID motorised, x̃a and x̃b, and given existing data t, xa and xb is

p(t̃ | x̃a, x̃b, t, xa, xb) =

∫
p(t̃ | θ, x̃a, x̃b, g ∈ E) p(θ | t, xa, xb) dθ (6)

where θ = {a, b, A,B, τa, τb} and E is the set parameters relating to Europe. Because of partial
pooling, the predictive density in (6) is informed by both the global average parking search time and
European-specific search times and their associations with motorisation rates and SIDs. It reflects
the uncertainty in the model parameters and also the variability of the data by marginalising the
density of t̃, given parameter estimates θ, over the posterior distribution of the parameters given
the observations of t, xa and xb included in data.
Fig. 5 shows the posterior predictive density of parking search time in Zurich, where xa = x̃a and
xb = x̃b refer to the motorisation rate and SIDs of Zurich. Values reported by studies of Zurich are
indicated by coloured dashed lines. They mostly lie within the mass of the predictive density, which
is expected. However, based on our model, longer average parking search times of 5 to 7 minutes,
than those observed in the data are also quite probable, whereas search times of less than 2 minutes
seem less likely. This demonstrates the effect of partial pooling. Zurich-specific information was
balanced by the model with the information from all data sources. As a result, Zurich-specific
estimates are regularised by “shrinking” them toward the global average, and the model suggests
low probability of observing very short search times based on the little data available for Zurich.
Thus, practitioners who need to pick a value for Zurich may confidently choose a value between 3
to 4 minutes. An assumption of longer search time can also be reasonable made, but very short
parking search times are unlikely given all available evidence. This highlights the importance of
generalising from sample (or observation) to population when picking values for model parameters
for transport simulation frameworks.
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Figure 5: Posterior predictive distribution of average parking search time in Zurich,
Switzerland. Dashed lines indicate values reported in the four studies included in the
analysis.

Figure 6: Posterior predictive distribution of average parking search time in Zurich,
Switzerland and Berlin, Germany.

Next, we predict parking search time for Berlin, which is not included in the data. Values for mo-
torisation rate, SID active and SID motorised in Berlin, x̃a and x̃b are required. The motorisation
rate for Berlin is 319.4 cars per 1000 inhabitants, SID active is 0.019 and SID motorised is 0.011.
Transformations are applied. Also, values for the Berlin-specific intercepts ag∗ and bg∗ are drawn
from posterior densities N(0, τa) and N(0, τb), respectively. Fig. 6 depicts the posterior predictive
density of average parking search time in Berlin (in grey) alongside that of Zurich (in yellow). Its
mean is 5.7 minutes and its mode is 9.8 minutes. A practitioner may confidently choose values
between 4 and 7 minutes depending on the context of the scenario. The prediction for Berlin is
higher than that for Zurich. This is informed by global average search time, European-specific
search times and the estimated associations between the rate and scale of the Weibull distribution
and motorisation rate and SIDs.

6 Conclusion

We present a method for simulating average parking search times at different locations in Europe.
In doing so, we test and rule out predictors based on OSM land use and OSM tags, and we identify
useful predictors to be active and motorised SIDs and motorisation rate, data for which are readily
available and calculable (code provided on Github).
Our approach has several advantages. The ACF model is based on theory account for the time-to-
event nature of parking search times. The models finds that both length of time and likelihood of
finding parking over time have are important. The probabilistic approach provides practitioners
with a range of plausible values, which makes it more flexible than having to choose one value
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based on a point estimate. It also makes transparent the uncertainty of the predicted search time,
which can be communicated and taken into account by practitioners when making assumptions for
their simulation frameworks. Another advantage is that, if new data points or data sets become
available, the herein estimated joint posterior density can be easily updated to improve the accuracy
of model predictions. This also means the spatial refinement of the model as new data (for example
at district level) can become available.
There are limitations to our approach. First, it assumes that all drivers can only search and find
parking within the spatial unit. Second, the model does not account for variability of search time
over the course of a day. Third, predictors capturing specifically demand-side influences on parking,
are missing. However, this is important for practitioners considering the effects of demand-side
parking policy interventions on mode choice. We leave this for future research.
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