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Abstract

This study investigates cyclists’ preferences for cycling environments, such as lane type, pavement type, and
lane width. We conducted a stated route choice experiment where respondents evaluated alternatives varying in
cycling environment, travel time and the number of traffic lights. Unlike previous studies, we used thousands
of street-level images to represent the cycling environment, providing rich information on safety and quality
that text or numbers cannot convey. We analysed the data using recently proposed computer vision-enriched
discrete choice models, which integrate computer vision into traditional discrete choice models. Thereby, we can
infer cyclist trade-offs and estimate willingness-to-pay values. Results show that cycling environments strongly
influence route choice, with cyclists preferring green areas and separated cycling lanes. For an 11-minute trip,
cyclists are willing to take a 1.5-minute detour for a separate lane instead of a mixed-traffic road. These findings
offer insights for designing cycling environments that align with cyclists’ preferences.

Keywords: discrete choice models, computer vision, street-level images, stated choice experiment, cycling route
behaviour, cycling environment

1 Introduction

Numerous transport policies aim to promote cycling due to its significant contributions to health, accessibility,
sustainability, and liveability (Dutch Cycling Embassy, |2018). Furthermore, cycling is widely regarded as a key
solution for achieving the 2015 Paris Climate Agreement targets, including a 40% reduction in CO, emissions by
2030 (European Union, [2023; 1&W, 2020)).

One way for governments to promote cycling is by providing cycling environments that align with cyclists’
preferences. Fosgerau et al. (2023) find that a good cycling environment pulls travellers out of their cars for
short-distance trips. Furthermore, various studies show that cyclists prefer cycling lanes, wider paths (Gossling
& McRae, [2022), and separated lanes over shared ones (Kaplan & Prato, 2015). Additionally, road surface
(Zimmermann et al., |2017)), tram tracks (Kaplan & Prato, 2015), nearby parking spaces (Gossling & McRae,
2022)), and built environment factors such as buildings, greenery, and public facilities are found to impact on
route choice behaviour (Heinen et al.,[2010; Wang et al., 2016; Yang et al., 2019).

Despite the above-mentioned body of knowledge, the understanding of cyclists’ preferences for cycling envi-
ronments remains incomplete. This gap partly arises from the reliance on stated choice experiments that describe
cycling environments using text or numerical values. For example, in a stated choice experiment by Y. Liu et al.
(2020), attributes such as “the average number of building floors along streets”, “the width of the bicycle path”,
“the amount of street greenery”, “the crowdedness”, and “the density of street lamps” were described using text
and numbers. Using text and numbers to describe a cycling environment may leave respondents struggling to fully

grasp the characteristics of the described cycling environment. As a result, the preference parameters estimated



for the cycling environment from such an experiment may be biased.

Unlike tabular data, street-level images are particularly adept at encoding information about the cycling
environment. Specifically, images have two important advantages over traditional textual descriptions or numbers.
Firstly, the images can embed important information about the cycling environment, such as scale, safety, or
quality, that is difficult to convey otherwise. Secondly, humans are adept at extracting and processing information
from images. Moreover, recent advances in computer vision have opened up new ways of handling and extracting
information from images (Pinker, |1988). Capitalising on these developments, a stream of literature has emerged
that explores human perceptions of urban environments. For examples, see Dubey et al. (2016) and L. Liu et al.
(2017), and refer to Zhang et al. (2024)) for a comprehensive review. Within this stream of the literature, several
studies also looked into cyclists’ perceptions of cycling environments using street-level imagery (Costa, Azevedo,
et al., 2024; Costa, Marques, et al.,|2024; Ye et al.,|2024)). But perceptions and preferences are distinct concepts.
Perceptions are subjective interpretations of sensory stimuli, which may influence but do not necessarily determine
individuals’ choices (Wade & Swanston, [2013). In contrast, preferences are grounded in the theory of choice
behaviour (Samuelson, 1938; Luce, 1959; Lancaster,;1966) and govern what people choose and how they make
trade-offs. As yet, no cyclist route preference study has been conducted that uses street-level images to encode
the cycling environment.

This study aims to fill this gap. It investigates cyclists’ preferences for the cycling environment through a
stated choice experiment in which the cycling environment is represented using street-level images. To do so, we
have developed and administered a novel stated choice experiment in which respondents were presented with
alternatives that varied in terms of the cycling environments (street-level images), travel time and the number of
traffic lights. The survey incorporated images sourced from a cycling infrastructure database maintained by the
municipality of Rotterdam, The Netherlands. We then analyse our stated choice data using recently proposed
model computer vision-enriched discrete choice models (CV-DCMs) (van Cranenburgh & Garrido-Valenzuela,
2025). CV-DCMs integrate computer vision into traditional discrete choice models. Because they are grounded in
Random Utility Maximisation (RUM) principles, they enable inferring cyclist trade-offs as well as willingness-to-pay
estimates. Finally, we apply our estimated model to glean insights into the spatial distribution of the cycling
environment, using Rotterdam as the case study.

The remainder of this paper is organised as follows. Section 2 introduces our data collection effort, including
the design of the stated choice experiment. Section 3 presents the methodology and revisits the CV-DCMs. Section
4 presents the training/estimation results and the model application to our case study: the cycling environment in
the municipality of Rotterdam. Finally, Section 5 provides a conclusion and discusses avenues for further research.

2 Data collection

This section outlines the process of data collection in two parts. First the cycling environment data collection in
Section details the collection and categorisation of street-level images and the associated cycling environment
data. Section[2.2] outlines the generation of the stated choice experiment, detailing the attributes included, the
underlying design, and respondent sampling. To provide a comprehensive overview, Figure |1|illustrates the
workflow.
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Figure 1: Methodology of the data collection

2.1

Our data collection process started with collecting street-level images of the cycling infrastructure. We obtained
our images from the database of cycling infrastructure images of the municipality of Rotterdam (Cyclomedia,
2023). To extract a subset of relevant images, we merged their locations onto the cycling network of Fietsersbond
(2020). Specifically, for each street segment, the nearest street-level image within a 4-metre radius was retrieved,
resulting in approximately 13k panorama images for further processing. These panorama images were then
converted to 90-degree forward-facing images aligned with the cycling direction.

Cycling environment data collection

Next, we analysed and categorised images according to cycling infrastructure, built environment, and vehicle
speed. The decision was taken to categorise the images according to the 15 most common categories. This analysis
provided the basis for selecting images for the stated choice experiment. Table [1| shows the attributes and their
corresponding levels.

Table 1: Attributes and corresponding levels

Cycling Infrastructure Built Environment Speed Limit

Recreational area

Solitary cycling lane
Separated cycling lane
Normal road

Residential area
Neighbourhood access

Not applicable
30 km/h
50 km/h

Main road
Industrial area

Cycling suggestion lane

In addition, we merged the image data with cycling environment data, including: built environment features,
such as trees and buildings; Cycling infrastructure features, such as pavement type and lane width; and Traffic
and environment features, such as car speed, weather and lightning. Street-level image captures times enabled
matching with weather data of Visual Crossing (2024). Table[2]lists the attributes and their data sources. Merging
these environmental features enabled us to design the stated choice experiment in such a way that meaningful
trade-offs were observed. Note that for merging, different distance thresholds were used for different features.

Page 3 of



For example, buildings and water were assigned if present within 20m of the image, while for attributes like
grass, plants, parking, and trams, a 10m buffer was used. Trees were counted along the segment. The final
image database contains approximately 13k images, with fifteen categories based on combinations of the Cycling
Infrastructure, the Speed Limit, and the Built Environment.

Table 2: Collected attributes and their linking method

Attribute Levels Source Linking method

Built Environment

Trees Count BGT Count within 20m buffer
Grass Yes/No BGT Present within 10m
Plants Yes/No BGT Present within 10m
Water Yes/No BGT Present within 20m
Buildings Yes/No BGT Present within 20m
Industrial buildings Yes/No BGT Present within 20m
Cycling Infrastructure

Infrastructure type  Categories Fietsersbond Initial network
Pavement type Asphalt/Clinkers Fietsersbond Initial network

Parking Yes/No BGT Present within 10m
Width Metres BGT Present within 10m
Colour Red/Not red BGT Present within 10m
Tram Yes/No BGT Present within 10m
Traffic and Environment

Car speed 30/50 km/h Rijkswaterstaat Present within 10m
Weather Sunny/Cloudy Visual Crossing Matched with image timestamp
Lighting Brightness score  Calculated Computed from image

2.2 Stated choice data collection (SC)
2.2.1 Selected attributes and ranges

In our stated choice experiment, respondents were presented with a route choice. Based on the literature of
Bernardi et al. (2018]), Ton et al. (2017), and Verhoeven et al. (2018)), expert input, and their relevance to
cycling decisions and policy, we conceptualised the cycling route alternatives using three attributes: the cycling
environment (represented using a street-level image), the travel time and the number of traffic lights. We used 8,
11, and 14 minutes for the travel time, representing realistic durations for urban cycling trips; for traffic lights, we
used 1, 2, and 3.

2.2.2 Efficient design

An efficient design was chosen to maximise the information obtained from a stated choice experiment, resulting
in more reliable parameter estimates for a given number of observations (Rose & Bliemer, 2009). Priors for the
model parameters were based on findings from Significance (Significance,|2022), as shown in Table 3| The design
was created using Ngene software (ChoiceMetrics, 2024)), generating 30 choice tasks. In the experiment, images
were randomly sampled from the image database based on their category. Furthermore, to manage cognitive load,
each respondent was presented with 15 choice situations. The question order and the position of alternatives
(left/right) were randomised.
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Table 3: Prior beta parameters. Adapted from Significance (2022)

Parameter Beta Value Cycling Infrastructure Speed Limit Built Environment
b _time -0.2707
b_trafficlights -0.1330
b_img.dummy[0] -1.002 Normal road 50 Access road
b_img.dummy[1] -0.921 Normal road 50 Industrial
b_img.dummy[2] -0.850 Normal road 50 Residential
b_img.dummy|[3] -0.720 Cycling suggestion lane 50 Access road
b_img.dummy[4] -0.663 Normal road 30 Industrial
b_img.dummy[5] -0.582 Normal road 30 Main road
b_img.dummy[6] -0.512 Normal road 30 Access road
b_img.dummy[7] -0.471 Cycling suggestion lane 30 Access road
b_img.dummy[8] -0.466 Normal road 30 Residential
b_img.dummy[9] -0.390 Separated cycling lane N/A Main road
b_img.dummy[10] -0.319 Separated cycling lane N/A Access road
b_img.dummy[11] -0.273 Separated cycling lane N/A Residential
b_img.dummy[12] -0.116 Solitary cycling lane N/A Main road
b _img.dummy[13] -0.046 Solitary cycling lane N/A Residential
b_img.dummy[14] 0 Solitary cycling lane N/A Recreational

2.2.3 Survey design

The survey was developed using Plotly (2024)). The survey comprised three parts: 1) a Stated choice experiment;
2) Perception questions involving the rating images on traffic safety, social safety, and aesthetics; and 3) Questions
about socio-demographic characteristics and cycling behaviour. The survey can be accessed at: http://cycling-
route-survey.tbm.tudelft.nl/.

Figure [2| shows an example of a choice task from the experiment. Respondents were given the following
instructions:

Imagine you are cycling from your work, train station, school, or daily activity to your home.

There are two cycling routes you can take.

The routes differ only in travel time, the number of traffic lights, and the cycling environment shown in
the photo.

In all other aspects, such as the weather, the cycling routes are the same.

Which route would you choose?

You can assume the following:

- You are cycling alone.

- You are not in a hurry.

— The photo gives a good idea of what the entire route looks like.

— The travel time is the total time for the route, including waiting at traffic lights.
— The weather is partly cloudy with no rain.
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Figure 2: Example of a choice situation

2.2.4 Survey implementation

The survey was conducted between the end of September and the beginning of October 2024. Respondents
were recruited through the panel company Cint (2024). The respondents were financially compensated and
were individuals aged 18 years and above who engaged in cycling. To ensure that the sample was by and large
representative of the Dutch population, entrance to the survey was controlled based on gender, age, and region
through the data of CBS (2024). In total, 753 valid surveys have been collected. Regarding the images, a total of
6,484 unique images were used.

3 Methodology

3.1 Computer vision-enriched discrete choice models

In this study, we employ Computer Vision-enriched Discrete Choice Models (CV-DCMs) to estimate cyclists’ route
choice preferences (van Cranenburgh & Garrido-Valenzuela, 2025). CV-DCMs are grounded in Random Utility
Theory (RUT) McFadden (1974), which assumes individuals select the maximum utility alternative. Furthermore,
it assumes utility is composed of an observed part and an unobserved part from the researcher’s perspective.
Equation [1] shows the utility function of the linear-additive model, where i denotes the alternative and m denotes
the attribute. Under the assumption that ¢ is i.i.d. Extreme Value distributed, the choice probabilities attain the
well-known logit formula (2).

Vin
Vin
Prn= = 2
o @

CV-DCMs combine traditional numerical attributes and information encoded in image data into the RUM-based
discrete choice modelling framework, as shown in Figure [3| Images are represented as three-dimensional tensors,
with pixels containing RGB colour channels. But, raw pixels cannot be used directly in the model. CV-DCMs use a
feature extractor —typically a deep neural network— to extract the salient features from the image. These, in
turn, are mapped linearly onto utility. Our application uses a Data Efficient Image Transformer (DeiT), a vision
transformer, as the feature extractor (ImageNet, Touvron et al.,2021)). This model produces a feature map
of size 1 x 1000. Equation [3|shows its utility function.

m k

—_—

Utility from numerical attributes  Utility from image features
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Figure 3: Model structure of the CV-DCM.
Adopted from van Cranenburgh and Garrido-Valenzuela, [2025

3.2 Training
3.2.1 Cross-entropy loss function

To train the CV-DCM, we use a cross-entropy loss function. Minimising the cross-entropy is equivalent to
maximising the (log-)likelihood of the data. Furthermore, our loss function also includes an L2 regularisation
term to prevent overfitting from happening. The loss function is shown in Equation [4, where 3 are the marginal
utilities associated with the numerical attributes, and w are weights of the computer vision part of the model.

N J R
. 1
’LU,B :argri)uél szynj IOg(Pnj|an;Sjna5)+ ’}/Z’IUE (4)
’ n=1 j=1 r=1
J ——

Cross-entropy loss L2 regularisation

3.2.2 Training and hyperparameter tuning

We implemented and trained the CV-DCM using PyTorch. PyTorch is designed to train deep neural networks
and facilitate GPU support, accelerating training. We set the hyperparameters to the optimal values found by
(van Cranenburgh & Garrido-Valenzuela, 2025)), which are reported in Table [4]

Table 4: Hyperparameters CV-DCM training

Hyperparameter Value
Optimisation algorithm Stochastic Gradient Descent
Learning Rate 1x107°
Batch Size 5
L2 weight decay (v) 0.1
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4 Results

4.1 Training and estimation results

Besides the CV-DCM (Model 1), we estimated two traditional discrete choice models for comparison. Model 2 is a
linear-additive RUM-MNL model, which uses the travel time and the number of traffic lights as attributes only.
Hence, this model ignores the presented images. Therefore, we expect this model’s model fit to be lower than
that of the CV-DCM. Model 3 extends Model 2 by also using cycling environment attributes of the place of the
street-level image, which were merged onto data (see section[2.1)). Table [5|reports the training and estimation
results.

Table 5: Training and estimation results

Model 1 Model 2 Model 3

Model type CV-DCM RUM-MNL RUM-MNL
Number of parameters 86m 2 15
Estimation time 1.5 hour <1 sec <1 sec
Train Set (N = 9,135)
Log-Likelihood -5,656 -6,157 -5,704
Rho-squared 0.109 0.028 0.099
Cross-entropy 0.617 0.674 0.624
BIC - 12,332 11,208
Test Set (N = 2,128)
Log-Likelihood -1,326 -1,421 -1,339
Rho-squared 0.101 0.036 0.092
Cross-entropy 0.623 0.668 0.629
BIC - 2,857 2,793

est s.e. p-val est s.e. p-val est s.e. p-val
Parameters
Bt -0.10 -0.11  0.012 0.00 -0.23 0.0139 0.00
Bu -0.24 -0.23 0.021 0.00 -0.31 0.0215 0.00
Bnormalroad 0.00 Fixed Fixed
Bsuggestionlane -0.05 0.054 0.37
Bseparatedlane 0.36 0.054 0.00
ﬂklinkers -0.11 0.041 0.01
Bsunny 0.09 0.033 0.01
ﬁbrightness 0.04 0.008 0.00
ﬁtrees 010 0015 000
6water 018 0038 000
Bhouse -0.31 0.049 0.00
Bindustrial -0.63 0.059 0.00
Bgras 0.24 0.038 0.00
Bparking -0.09 0.039 0.02
Biram -0.23 0.107 0.03
6plants 0.03 0.037 0.45
WTP traffic light [min] 2.38 2.12 0.2522 0.00 1.38 0.1034 0.00

We can make the following observations based on Table |5| Firstly, the Rho-square indicates that the CV-DCM
model (Model 1) explains a reasonable amount of the variance in the choice data. In contrast, Model 2, which
ignores the information encoded in the images, attains a very low model fit. From this comparison, we can infer
that the computer vision part of the CV-DCM extracts meaningful information from the images to explain the route
choice behaviour in the data. Similar to traditional DCMs, the 3 coefficients of the CV-DCM represent marginal
utilities and can be used to calculate Willingness-to-Pay (WTP) estimates. Specifically, the WTP to reduce one
traffic light can be determined by taking the ratio of the coefficients, 3, /5. Based on the CV-DCM, the WTP
to eliminate a traffic light from the cycling route is estimated to be 2.38 minutes. Finally, examining Model 3,
we observe that it achieves a significantly better fit than Model 2, though it still falls short of the CV-DCM. This
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suggests that environmental features and the images share overlapping information. For example, the presence of
a building along the cycling route can be detected both in the street-level image and through data extracted from
a GIS database. Although it does not attain an as good fit as the CV-DCM, it provides more explanations because
the betas associated with the cycling environment features are interpretable. In particular, Model 3 reveals that
cyclists strongly prefer separated cycling lanes over normal roads. Specifically, the findings indicate that cyclists
are willing to extend an 11-minute trip by 1.5 minutes to use a separate cycling lane rather than a mixed-traffic
road. Similarly, natural features such as trees, water, and grass are significantly more appreciated than normal
roads, whereas industrial areas, parking spaces, and trams are less favoured by cyclists.

4.2 Model application in Rotterdam

To investigate the spatial distribution of the attractiveness of the cycling environment in Rotterdam, we applied
our trained CV-DCM model to 13k images taken across Rotterdam’s cycling network. For each image, the CV-DCM
predicts a utility level, which can be conceived as a measure of the cycling environment’s attractiveness. Figures
and [4b| show the results. In Figure the results are aggregated at the street-segment level, whereas in Figure
the results are first aggregated at the neighbourhood level and subsequently grouped into five clusters using
Jenks natural breaks (J. Chen et al.,|2013). The legends display the corresponding colourmaps, but it is important
to note that utility values do not have an absolute reference level (Train, 2009). Consequently, the mean utility is
not zero-centred. Instead, the mean utility level is -0.46 in Figures|4aland Both figures highlight a noticeable
pattern: the cycling environment tends to be relatively poor in the city centre but improves considerably in the

periphery.

Cycling environment

Average predicted utility scores
For each neighbourhood

Cycling environment

Predicted utility scores
For each segment

Neighbourhood
Segments Utility score

— -1.85 - -0.89 -0.88 - -0.7

-0.89 - -0.57 -0.7 - -0.54
-0.57 - -0.24 -0.54 - -0.34
0_1:2 K -0.24- 0.16 0 1 2km -0.34--0.04
— 0.16- 1.15 - -0.04-0.33
(a) Utility levels, aggregated at street segments (b) Utility levels, aggregated at neighbourhood level

Figure 4: Spatial distribution of utility derived from the cycling environment

4.2.1 Explaining cycling environment utility levels

A drawback of the CV-DCM is that its computer vision part is opaque (van Cranenburgh & Garrido-Valenzuela,
2024)). However, one can look at the most extreme predictions to elucidate what it has learned. Specifically,
looking at the images that produce the lowest and highest utility levels provides insights into the factors the
model uses for its predictions. Accordingly, Figure [5| shows nine random images from the highest and lowest
utility score clusters used to produce Figure We observe that the highest utility levels are associated with
separated cycling lanes, greenery and few buildings or traffic. In contrast, the lowest utility levels are associated
with images of urban areas with buildings, vehicles, and shared narrow roads. This pattern aligns with prior
findings that cyclists prefer routes with greenery and separated lanes (P. Chen et al.,|2018; Rossetti et al.,[2018]).
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(a) Images sampled from cluster 1 (b) Images sampled from cluster 5

Figure 5: Images with the highest (left) and lowest (right) utility levels

To further elucidate what the CV-DCM has learned about cyclists’ preferences for cycling infrastructure, we
grouped the images based on the type of lanes and the maximum car speed on the road. Figure 6] shows the
results in a boxplot, in which the columns are sorted from lowest mean utility to highest mean utility. Figure [6]
indicates that ordinary roads are the least preferred option, followed by cycling suggestion lanes. Interestingly,
the maximum car speed (30 km/h or 50 km/h) appears to have little influence, possibly because participants did
not infer speed from the images. Separated and solitary cycling lanes are the most preferred lanes.

Utility Scores by Cycling Infrastructure and Speed
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Figure 6: Utility scores by cycling infrastructure and Car speed

We grouped the images on the built environment categories, also used to create the stated choice experiment.
Figure|7| shows that recreational areas, characterised by separated cycling lanes and greenery, are most preferred
by cyclists. Main roads and neighbourhood access roads follow, while residential and industrial areas score
similarly, with industrial areas slightly lower. Dense buildings and clinker roads likely reduce the appeal of
residential areas.
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Utility Scores by Built Environment
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Figure 7: Utility scores by cycling infrastructure and Car speed

While this analysis highlights valuable insights, the correlation between cycling infrastructure and the built
environment presents a challenge. For instance, recreational areas often feature solitary cycling lanes surrounded
by greenery. This overlap complicates interpretation, as utility scores may reflect the combined appeal of
infrastructure and environment rather than isolating their individual impact.

5 Conclusions and discussion

This paper investigated cyclists’ preferences for cycling environments, such as lane type, pavement type, and
greenery. To do so, we conducted a novel stated cycling route choice experiment in which respondents were
presented alternatives that varied in terms of the cycling environment, travel time and the number of traffic lights.
In contrast to previous studies, we used street-level images to represent the cycling environment. For the stated
choice experiment, over 6k were used. We analysed our choice data using recently proposed model computer
vision-enriched discrete choice models, which integrate computer vision into traditional discrete choice models
and compared the results with traditional discrete choice models. Our results show that the cycling environment
is an influential factor in cyclists’ route choice behaviour. Specifically, we find strong support for the notion that
cyclists prefer separated cycling lanes. Specifically, we find that cyclists are willing to detour 1.5 minutes to cycle
on a separate lane instead of a mixed-traffic road for an 11-minute trip.

While the use of real-world images in stated choice experiments offers significant advantages, it also raises
important questions. For example, it is plausible that the visual representation of the cycling environment
disproportionately captures attention, potentially diverting focus from numerically presented attributes (e.g.,
travel time and traffic lights in our study) and ultimately leading to biased estimates. Future research could
investigate this hypothesis through an A/B testing framework. Moreover, although images greatly enhance
respondents’ understanding of the choice context compared to text and numerical descriptions alone, the presented
scenarios may still deviate from real-world conditions. In our case, single images are used to represent entire
routes, whereas in reality, the cycling environment can vary significantly along the route. Future studies could
address this limitation by incorporating a series of images or videos to provide a more realistic representation of
the choice situation. Finally, while the parameters of the CV-DCM associated with numerical attributes retain
their interpretability, the weights derived from the computer vision model component lack transparency. Future
research could explore model structures that enhance the interpretability of the computer vision component.
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