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Short summary

This study proposes a parameter-free method to assess the potential of pooled on-demand transit
feeder services in urban areas with unknown demand. We introduce the ’fraction of demand’,
reflecting the probability that a resident will use the service. Demand is generated on the distribu-
tion of residents’ address points at varying demand fraction levels. Through simulations, we match
travellers into pooled rides and evaluate the service’s potential using three performance indicators
(KPIs). We observe how these KPIs change with varying demand fractions and identify the most
promising hub for each area. By setting KPI thresholds, we select the optimal combination of area
and hub that meets these thresholds at the lowest demand fraction. This approach assists munic-
ipalities in selecting the best areas to launch new services despite the absence of exact demand
data. We illustrate its application through a case study in Krakow, ranking 12 pre-selected areas
for feeder service deployment.
Keywords: shared mobility, ride-pooling, on-demand feeder, ride-sharing.

1 Introduction

Cities worldwide aim to reduce car dependency and enhance urban sustainability by promoting
public transport (PT) and shared mobility services. Addressing first-mile challenges, connecting
residential areas with transit hubs, is crucial to encouraging PT usage and decreasing reliance
on private vehicles. Flexible on-demand systems, such as demand-responsive transit (DRT), offer
adaptable and effective solutions, particularly in low-demand areas where traditional fixed-route
services often fail. Ride-pooling, a specific subset of DRT, optimises operations by pooling pas-
sengers travelling in similar directions, reducing costs, travel times, and environmental impact
(Alonso-Mora et al., 2017). However, these systems face challenges such as the lack of demand
data CIVITAS (2024), public resistance (Alonso-González et al., 2020), and funding constraints
(Vuchic, 2017). Additionally, regulatory barriers and the need for equitable service distribution
complicate their implementation (Shaheen & Cohen, 2020).
Krakow, Poland, is attempting to address its first-mile challenges by implementing a flexible on-
demand feeder system. The city plans to introduce on-demand buses to connect residents in one
of 12 candidate low-density areas (Fig. 1) to high-frequency tram and train hubs. The proposal
involves dispatching on-demand small-capacity buses during the morning rush hour with designated
pick-up points feeding into transfer hubs (Fig. 2). From the hubs, travellers continue their journeys
using the city’s efficient public transport network. This feeder service aims to improve accessibility
and reduce private vehicle usage. However, with uncertain demand, the city needs a method
to determine which areas to prioritise for service launch. Designing on-demand feeder systems
is challenging due to the lack of reliable demand data. Traditional methods rely on parameter
tuning, which often misaligns with actual ridership. To overcome this, we propose a parameter-free
approach that uses probabilistic inputs, such as population density, to simulate demand fractions
and evaluate KPIs such as vehicle mileage reduction, passenger comfort, and occupancy. This
method identifies areas with the greatest potential for efficiency at minimal demand levels, ensuring
better alignment between the planned and actual performance of the service.
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Figure 1: Krakow pre-selected areas (in
orange) with corresponding hubs (in yel-
low), tram stops (in pink) and train stops
(in blue).

Figure 2: Example of the spatial distri-
bution of address points (in green), tram
stops (in pink) and light rail hubs (in yel-
low) for the Area 3.

To assess which area has the greatest potential before the service is introduced, we identify those
that:

• require a lower level of demand to achieve efficiency;

• reach stability at the lowest demand level in performance indicators, marking the required
threshold;

• perform better at expected demand levels (if known).

Areas requiring the lowest resident interest to meet efficiency thresholds are prioritised. After
selecting the most promising combination, benchmarks are established for service initiation.
By applying this method in a case study of Krakow, we analyse 12 pre-selected areas and rank
them based on their potential of implementing on-demand feeder services. This approach helps
municipalities in the absence of data on exact demand for a new service compare and select the
most promising area to launch the service.

2 Methodology

Our approach to selecting the preferred area to implement on-demand pooled transit feeders inte-
grated with public transport (PT) is illustrated in Fig. 3. Our methodology involves data collection
(population distribution, road networks, and hub locations) for pre-selected areas. We consider
on-demand bus service as ride-pooling service, a specific subset of DRT, matches passengers trav-
elling in similar directions, optimising operational costs, travel times, and environmental benefits
(Alonso-Mora et al., 2017). Therefore, we apply the Exact Matching of Attractive Shared Rides
(ExMAS) algorithm (Kucharski & Cats, 2020) to match travellers to the pooled rides and eval-
uate ride-pooling potential using three key indicators (based on Shulika et al. (2024b)): mileage
reduction, passenger satisfaction, and occupancy.
Initially, we assess the progression of these KPIs across varying demand fractions, identifying the
most promising hub within each pre-selected area. Following this, we compare the candidate areas
by identifying the proportion of residents (fraction of demand, α) who must be interested in the
service, denoted as the level α, to meet the following minimum efficiency thresholds required to
launch the new service:

• △Tv(vehicle hours reduction) ≥ 0.1: the launching of shared rides (instead of individual
ones) allows for a reduction of vehicle kilometres by at least 10%;

• △Up(travellers utility gains) ≥ 0.025: passenger comfort improves by at least 2.5% compared
to individual travel. For the analysed scenario of free on-demand bus service, this measure
ensures that passengers do not encounter significant discomfort associated with a new service;

• O(occupancy) ≥ 2: the average vehicle occupancy exceeds 2.

Areas that meet these thresholds at the lowest demand levels are considered most favourable.
Benchmarks provide insights into minimum demand, demand growth points, and consistent KPI
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Figure 3: An overview of the applied methodology for selecting a preferred area to imple-
ment on-demand pooled transit feeders.

performance levels. The case study demonstrates the application of our method in Krakow, eval-
uating 12 areas for the implementation of services. Our findings highlight the importance of
identifying zones where ride-pooling can thrive at minimal initial demand. Scripts for reproducible
results are available in the public repository (Shulika et al., 2024a).

Input

The method relies on OpenStreetMap (OSM) data for the city’s road network, population dis-
tribution (coordinates of residential address points), and candidate areas near public transport
hubs provided by analysts. The non-deterministic approach uses random selection of travellers to
analyse results across multiple replications, ensuring meaningful insights through aggregated KPIs.

Demand generation

For each candidate area A, the total population is used to estimate the maximum potential demand.
Demand fractions range from 0.1% to 5%, representing minimum feasible pooling to stable KPI
levels. Travel requests {qi = (oi, d, τi)} are generated, where oi represents origins, d is the nearest
public transport hub, and τi denotes travel time sampled uniformly within the simulation period.
If multiple hubs exist, the demand is split accordingly (Fig. 4). The process repeats for each
demand fraction and replication.

ExMAS

ExMAS, an open-source Python algorithm, optimally matches travellers to pooled rides while
minimizing mileage (Kucharski & Cats, 2020). To assess whether a pooled ride candidate rk is
attractive to the traveller i, we compare shared rides to private rides using utility formulas:

Uns
i = βcλli + βtti

Us
i,rk

= βc(1− λs)λli + βtβs(t̂i + βdt̂
p
i ) + ε,

(1)

where Us
i,rk

, Uns
i denote, respectively, the utility of shared ride (for i-the traveller, ride rk) and the

utility of non-shared ride (for i-th traveller). λ stands for the per-kilometre fare, while λs denotes
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Figure 4: An example of visualising ride-pooling algorithm shows sample rides for Area 3:
all sampled travellers of an area are heading from origins (dots) to hub 1 (left pink triangle
denoted 1) or to hub 2 (right green triangle denoted 2) as their transit destination points
(hubs).

a discount for sharing a ride. βc, βt, βs, βd are the exogenous behavioural parameters: cost
sensitivity, value of time, willingness-to-share and delay sensitivity, respectively. ti and t̂i stand
for the travel time of non-shared and shared rides, respectively, t̂pi is a pick-up delay associated
with pooling, and ε is a random term (for the sake of simplicity, assumed here to be constant
and null, which yields a deterministic formulation). It assumes that pooling is chosen only when it
offers better utility than solo travel, considering costs (fares, delays, detours) and benefits (reduced
costs). For each traveller, utilities of shared and nonshared rides are compared, ensuring that each
traveller is assigned uniquely. ExMAS explores all ride combinations based on discrete choice
theory, but does not explicitly model vehicle fleets.

Performance indicators

We report three KPIs of interest (for full definitions of possible KPIs we refer to Shulika et al.
(2024b)). For each combination of area A, hub H and a single realisation of demand with given
fraction of demand α, we report:

• what is the potential mileage reduction ∆Tv(α,A,H);

• how is the (perceived) traveller utility improved ∆Up(α,A,H);

• what is the average occupancy O(α,A,H).

Potential mileage reduction and passenger comfort are defined by comparing vehicle hours and
traveller utility when the ride-pooling service is available and when it is not applied. Occupancy
represents the ratio of total passenger hours in the solo ride-hailing scenario to total vehicle hours
in the pooled scenario (Shulika et al., 2024b).

Thresholds

For each area A and hub H, thresholds for KPIs are:

α∗
∆Tv

(A,H) = min
α∈[0.001,0.05]

∆Tv(α,A,H) ≥ 0.1, (2a)

α∗
∆Up

(A,H) = min
α∈[0.001,0.05]

∆Up(α,A,H) ≥ 0.025, (2b)

α∗
O(A,H) = min

α∈[0.001,0.05]
O(α,A,H) ≥ 2.0. (2c)

The goal is to identify areas and hubs surpassing these thresholds at the lowest α.

Hub and Area Selection

For each area, the hub achieving the best KPI performance becomes its optimal hub (H∗). The
most promising area (A∗) is determined by identifying combinations that meet KPI thresholds
with the lowest demand α.
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Benchmarks

After selecting the most promising combination (A∗, H∗) we run ExMAS simulations across de-
mand fractions α ∈ [0, 0.01] in 30 replications. This allows us to explore the most unstable phase,
which typically occurs during the initial launch when demand is at its lowest. We establish the
following benchmarks:

• minimum pooling demand: the minimum fraction of demand α required to successfully pool
travellers into shared trips;

• KPI growth point: the demand fraction α at which ride-pooling potential starts to grow;

• consistent KPI achievement: the demand fraction α at which a stable level of all three KPIs
is reached.

These benchmarks help set realistic expectations for performance in a specific early stage of service.

3 Results and discussion

The method was tested in 12 areas of Krakow, Poland, paired with nearby transport light rail hubs.
Inputs include OSM road network data, municipal population distribution, and hub locations.
Areas vary in population density and hub proximity (Table 1). For each area-hub pair demand
fractions α range from 0.001 to 0.05, with detailed benchmarks assessed for α values from 0 to 0.01.
Simulations replicate demand generation 10 times for area-hub pairs and 30 times for the most
promising combinations. The parameters include a six-passenger vehicle capacity, a 30-minute
morning peak simulation window, and cost/travel behaviour metrics based on local data.

Table 1: Characteristics of pre-selected areas.
Name Surface Population Density Hub

[residents] [residents
km2 ] Name Type Avg. distance to hub [km]

Area 1 1263 489.8 1.’Czerwone Maki P+R’ 6.183

Area 2 1286 585.6 1.’Czerwone Maki P+R’ 3.385
2.’Norymberska’ 5.416

Area 3 4550 676.9 1.’Czerwone Maki P+R’ 1.762
2.’Norymberska’ 3.454

Area 4 3719 1781.2 1.’Czerwone Maki P+R’ 1.744

Area 5 1593 658.6
1.’Czerwone Maki P+R’ 4.369

3.’Krakow Sidzina’ 1.634
4.’Krakow Opatkowice’ 4.163

Area 6 2396 851
5.’Kurdwanów P+R’ 1.953

6.’Nowosadecka’ 2.077

Area 7 5651 676.9
7.’Bronowice Małe’ 2.309

9.’Kraków Mydlniki(PKP)’ 1.553

Area 8 1836 904.5
7.’Bronowice Małe’ 1.072

9.’Kraków Mydlniki(PKP)’ 1.924

Area 9 4002 2202.2
7.’Bronowice Małe’ 1.662
8.’Bronowice SKA’ 1.863

9.’Kraków Mydlniki(PKP)’ 2.911

Area 10 3069 9880.8
10.’Dunikowskiego’ 0.503

11.’Rondo Piastowskie’ 0.374

Area 11 1925 1586.4
13.’Wańkowicza’ 3.243

12.’Zajezdnia Nowa Huta’ 1.916

Area 12 941 1334.3
13.’Wańkowicza’ 3.084

12.’Zajezdnia Nowa Huta’ 1.879

The method effectively selects optimal hubs and areas. Fig.5 exemplifies the stage of the proposed
methodology for selecting the preferred hub within each area, using Area 3 as an example. Similar
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analyses are conducted for all candidate areas, enabling tailored recommendations for each. The
preferred hubs for all areas are summarised in Table 2.

Figure 5: Three key performance indicators of ride-pooling plotted against the fraction of
demand for Area 3. The lines represent the average performance across multiple simula-
tions, while the dots represent individual simulation results. Both hubs in Area 3 show
similar trends, but hub 1 has a slight edge in potential.

Table 2: Ranking of candidate areas.

Area Hub
Threshold

Total KPI Final area
∆Tv ≥ 0.1 ∆Up ≥ 0.025 O ≥ 2

rank score rank
α rank α rank α rank

1 1.’Czerwone Maki P+R’ 0.005 11 0.01 4 0.02 4 29 10
2 2.’Norymberska’ 0.002 4 0.02 7 0.02 4 15 6
3 1.’Czerwone Maki P+R’ 0.001 1 0.009 2 0.01 2 5 2
4 1.’Czerwone Maki P+R’ 0.003 10 0.05 11 - 11 32 11
5 1.’Czerwone Maki P+R’ 0.002 4 0.009 2 0.01 2 8 3
6 6.’Nowosadecka’ 0.002 4 0.01 4 0.02 4 12 5
7 9.’Kraków Mydlniki (PKP)’ 0.001 1 0.01 4 0.02 4 9 4
8 9.’Kraków Mydlniki (PKP)’ 0.002 4 0.02 7 0.02 4 15 6
9 9.’Kraków Mydlniki (PKP)’ 0.001 1 0.005 1 0.007 1 3 1
10 10.’Dunikowskiego’ 0.02 12 - 12 - 11 35 12
11 12.’Zajezdnia Nowa Huta’ 0.002 4 0.02 7 0.02 4 15 6
12 12.’Zajezdnia Nowa Huta’ 0.002 4 0.02 7 0.03 10 21 9

Fig.6 shows the ride-pooling potential in pre-selected areas and their preferred hubs. Not all areas
reach the thresholds. In particular, Area 10 fails to meet the second and third thresholds, and
Area 4 only misses the third threshold. For Area 9, even at a demand level of up to 3%, the
thresholds are exceeded. This observation is confirmed by ranking data (Table 2). Ranking the
areas according to the minimum demand fraction required to meet three performance thresholds,
Areas 3, 7, and 9 achieve the lowest fractions and rank highest, while Area 10 requires a higher
fraction and ranks lowest. The total ranking indicates Area 9 paired with Hub 9 ’Krakow Mydlniki
(PKP)’ as the most promising, with a score of 3. Area 3 with Hub 1 ’Czerwone Maki P+R’ ranks
second, while Area 10 with Hub 10 ’Dunikowskiego’ ranks last.
For Area 9, we evaluate three benchmarks at demand fractions α ∈ [0, 0.01] over 30 replications
(Fig. 7). The results reveal that the pooled rides emerge at a demand fraction of 0.025%. A
significant growth in ride-pooling efficiency occurs at 0.05%, marking the point where the service
becomes more efficient. The third benchmark, where KPIs consistently meet thresholds, is reached
at demand fractions of 0.1%, 0.5%, and 0.7% for three KPIs, respectively. These benchmarks
provide the municipality with valuable projections on service efficiency and sustainability during
the early phases of implementation.

6



Figure 6: Three key performance indicators of ride-pooling plotted against the fraction
of demand for pre-selected areas and the most promising corresponding hubs. Horizontal
dashed red lines represent the set thresholds.

Figure 7: KPIs and three benchmarks for the combination of Area 9 and Hub 9 ’Kraków
Mydlniki (PKP)’, plotted against demand levels. Each dot represents an individual sim-
ulation results, while the lines show average performance. Horizontal dashed red lines
indicate established KPI thresholds, while vertical blue lines mark three benchmarks.

4 Conclusions

We propose a parameter-free approach using demand fractions to simulate potential demand and
evaluate on-demand transit feeders in urban multimodal networks. This method helps municipal
authorities compare areas for service launch, even without exact demand data. The Krakow case
study demonstrates the method’s effectiveness in identifying areas with high potential for on-
demand feeder services. Using three KPIs: vehicle kilometre reduction, passenger comfort, and
vehicle occupancy, we evaluate the feasibility of service implementation in 12 areas. Area 9, paired
with Kraków Mydlniki (PKP), ranks highest (Table 2), tending to have a favourable balance of
population density, distance to hubs, and infrastructure suitable for pooled transit (Table 1). In
contrast, lower-ranking areas, such as Area 10, with a high population density but close proximity
to the Dunikowskiego hub, demonstrate the least potential. We establish benchmarks for service
performance in Area 9 with Hub 9. These benchmarks reveal that ride-pooling efficiency improves
significantly at 0.05% demand, with efficiency thresholds met at demand fractions 0.1%, 0.5%,
and 0.7% for three KPIs, respectively. This information helps municipal planning by forecasting
the growth and sustainability of the service. The study findings suggest the viability of using a
parameter-free approach to assess the potential for on-demand transit feeders in urban multimodal
networks., providing municipalities with insights on optimal locations for service implementation.

Limitations and Future Work

Despite its advantages, this study has limitations. The ExMAS algorithm only evaluates point-to-
point ride-hailing, comparing it to solo ride-hailing. Furthermore, demand must be predetermined,
and the fleet is not explicitly handled. The study is based on Krakow, a mid-sized European city,
and focusses on the first mile segment from pick-up points to hubs, without considering the entire
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trip. Additionally, we assume that everyone who wants to travel by a given transport system wants
to reach one hub. We only consider population potential, without taking into account other factors
such as motivation for travel or current transportation habits. Future research should consider the
entire traveller trip, including the public transit segment from the hub to the final destination. It
should also take into account demographic factors and time-of-day variations to improve demand
estimation. Further studies could test the method in various urban contexts to identify universal
patterns and better understand how on-demand feeder services can complement traditional public
transit.
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