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SHORT SUMMARY 

Traffic prediction is essential for the success of Intelligent Transport Systems (ITS), as accurate 

and reliable traffic information directly impacts stakeholders' ability to make informed decisions 

regarding route selection. A range of statistical and deep learning methods have been employed 

for these predictions; however, these approaches are often time-consuming due to the extensive 

training, validation, and testing required on historical datasets. Zero-shot learning—a category of 

machine learning algorithms—has emerged to overcome these challenges. Unlike conventional 

models, zero-shot techniques are pre-trained on extensive historical time series data from diverse 

domains, so they do not require manual training. This study evaluates the prediction accuracy of 

various zero-shot learning models with statistical and deep learning models. Through comprehen-

sive experiments involving seven types of machine learning models and multiple frequencies of 

time series data, our findings reveal that zero-shot learning models excel in predicting traffic vol-

ume. 
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1. INTRODUCTION 

Background 
 

Traffic congestion is a significant issue with increasingly negative impacts such as unreliable 

travel times and increased fuel consumption and emissions. Therefore, predicting traffic condi-

tions accurately greatly enhances network capacity utilization and alleviates congestion by ena-

bling traffic management personnel to manage traffic more efficiently.  

 

Most publicly available traffic volume and congestion data are time series data, which consist of 

a sequence of data points measured and recorded at specific time intervals. The digital revolution 

across various domains, such as transportation and e-commerce, has led to an explosion of differ-

ent types of data, particularly time series data. This data often exhibits complex patterns that clas-

sical models, like Autoregressive Integrated Moving Average(ARIMA), may struggle to analyze 

effectively, especially when detecting drift, abrupt changes, and outliers (Akhtar & Moridpour, 

2021). 

 

Machine learning models have demonstrated remarkable capabilities in understanding the rela-

tionships between successive data points to address traditional models' limitations and better cap-

ture the data's non-linearities. 
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Literature Review 

 

Numerous machine learning models with different architectures, including Graph Neural Net-

works (Liu et al., 2024), LSTMs (Gopali et al., 2024), Transformers (Wen et al., 2022), and en-

coder-decoder models (Das et al., 2023) have been proposed. However, many of these models 

require lengthy and computationally intensive training and validation processes, as illustrated in 

Figure 1. This complexity can make it daunting for non-experts to adopt machine-learning tech-

niques. 

 

 

Figure 1: General Training and Validation of deep learning models 

Zero-shot learning has emerged as a method to expedite the prediction process (Ye et al., 2024). 

These models have been pre-trained on large datasets that are publicly available and exhibit a 

variety of data distributions and statistical properties. The term "zero-shot" refers to the capability 

of these models to predict future data points without the need for lengthy and computationally 

intensive training and validation phases. 

 

This innovation empowers non-AI professionals to deploy models quickly and easily without the 

burden of lengthy training and validation processes (Radford et al., 2021).We believe that insuf-

ficient research has been conducted comparing the performance of zero-shot models in predicting 

traffic flow within the transportation domain. 

 

To this end, our paper addresses the main research question: "Do zero-shot learning models pro-

vide better predictive accuracy for traffic flow than traditional statistical and deep learning models 

with default hyperparameters? If so, to what extent are they better or worse than their counter-

parts?" 

 

The remainder of this paper is organized as follows: Section 2 describes the dataset, and the mod-

els used in the experiments. It also includes information on the training and testing procedures, as 

well as the hardware configuration utilized for running the models. Section 3 presents a detailed 

analysis of the results for various models across different datasets. Finally, Section 4 summarizes 

the overall performance of the zero-shot learning models and discusses potential strategies for 

improving model performance in cases of high kurtosis and skewness in the data. 

2. METHODOLOGY 

This section provides an overview of the dataset, the training and testing of the machine learning 

algorithms, and the hardware configuration used in the experiments. 
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Dataset 

We utilized two popular datasets for our analysis: 

 

Swiss Tunnel Data: This dataset contains 747 data points, each representing the daily traffic 

volume recorded in Baregg, Switzerland (Galit Shmueli & Kenneth C. Lichtendahl Jr et al., 2016). 

The data were collected over two years, from 2003 to 2004. 

 

Kaggle Data: This dataset includes approximately 48,120 data points across four road junctions. 

The traffic volume at each intersection was recorded hourly for three years, from 2015 to 2017. 

It is worth noting that all years except 2017 feature data from three junctions. Statistical descrip-

tions of both datasets are provided in Tables 1 and 2, respectively (Kaggle, 2020). 

 

Table 1: Swiss Tunnel Data Description 

 

Seasonality Std. Dev Variance Kurtosis Skew Stationarity 

TRUE 12456.35 

 

155160667 

 

 

0.38 

 

-0.57 FALSE 

 

Table 2: Kaggle Data Description 

 

Kaggle Data 2015, total data points=4392 

Junc-

tion 

Seasonal-

ity 

Std. Dev Variance Kurtosis Skew Stationarity 

1 True 

 

7,78 60,60 -0,28 0,51 True 

2 True 

 

3,33 11,10 26,55 3,25 True 

3 True 4,35 18,93 14,85 3,26 False 

Kaggle Data 2016, total data points=26352 

1 True 

 

16,82 283,06 -0,22 0,62 True 

 

2 True 

 

4,29 18,42 -0,40 0,31 True 

 

3 True 9,71 94,47 24,57 3,55 True 

Kaggle Data 2017, total data points=17376 

1 True 

 

22,84 522,08 -0,61 0,36 True 

 

2 True 

 

8,25 68,18 -0,37 0,54 True 

 

3 True 11,42 130,45 33,64 3,83 True 

4 True 3,52 12,4 4,73 1,33 True 
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Models 

To address the research question mentioned above in section 2.1 we have chosen the fol-

lowing three sets of models as shown in Table 3. 

 

Table 3: Three types of models 

 

Zero-shot  Statistical  Deep Learning 

TimeGPT 

Chronos_tiny 

ETS 

Seasonal Naïve 

PatchTST 

Simple FF NN 

TiDE 

 

 

TimeGPT is the first foundation model specifically designed for time series data and is based on 

the self-attention mechanism proposed by Vaswani (Vaswani et al., 2017). It features a multi-

layer encoder-decoder architecture, each incorporating residual connections and layer normaliza-

tion. TimeGPT has been trained on an extensive dataset containing 100 billion data points (Garza 

et al., 2023). 

 

Chronos_tiny is one of the pre-trained time series forecasting models developed by Amazon. 

This model first transforms a time series into a sequence of tokens through normalization and 

quantization techniques. Following this transformation, a language model is trained on the nor-

malized and quantized tokens. Chronos has been pre-trained on 55 publicly available datasets, 

including the popular Monash Time Series and the M-Competition datasets (Ansari et al., 2024). 

 

ETS (Exponential Smoothing with Trend and Seasonality) can identify general patterns in the 

data and can be extended to account for trends and seasonal variations. Exponential smoothing 

assigns greater weight to recent observations while progressively reducing the influence of older 

data as the distance from the current data points increases (Ryan Tibshirani, 2023). 

 

Seasonal Naïve is one of the simplest forecast models that employs the concept of random walk. 

In this model, the one-time-step ahead forecast value is equal to the most recent past value (Ivan 

Svetunkov, 2023). 

 

Simple Feed Forward Neural Network (Simple FF NN) is a basic neural network consisting 

of three main layers: the input, the hidden, and the output. Each layer contains three key compo-

nents: nodes (or units), weighted connections, and activation functions. In this type of network, 

information flows in a single direction, from the input layer to the output layer. The learning 

process involves backpropagation, which adjusts the initial weights in the network to minimize 

prediction errors (Shaygan et al., 2022).  

 

PatchTST (Patch Time Series Transformer) is a transformer-based forecast model that seg-

ments time series data into different patches and employs channel independence. It is recognized 

for its superior accuracy in long-horizon forecasting while reducing computational and memory 

demands (Nie et al., 2023). 

 

TiDE (Time Series Dense Encoder) is a multilayer perceptron encoder-decoder model for long-

horizon time series forecasting. It combines the simplicity and speed of linear models, achieving 

optimal error rates for linear dynamical systems (Das et al., 2023). 
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For the zero-shot model, we chose TimeGPT and Chronos as they are open-sourced, easy to use, 

and pre-trained on 100 billion data points while others such as Lag-Llama (Rasul et al., 2023) and 

GTT (Feng et al., 2024) are pre-trained on 0.3 and 2.4 billion data points. 

 

Most research papers on traffic prediction concentrate on Recurrent Neural Networks (RNNs) 

and Graph Neural Networks (GNNs). However, only a few studies examine the performance of 

transformer-based models. This work addresses this gap by providing empirical evidence on how 

well transformer-based models perform. 

 

ML Training and Testing 

 
98% of all datasets are utilized for training. The model’s performance in forecasting the remaining 

2% of data points in the time series is evaluated using Mean Absolute Error (MAE) and Root 

Mean Square Error (RMSE). 

 

Since our goal is to predict time series with large values, particularly in the Swiss Tunnel data, 

we employ MAE and RMSE to assess the accuracy of the machine learning models. Additionally, 

because the datasets exhibit abrupt changes and outliers, MAE and RMSE are preferred metrics 

since they are less sensitive to outliers and perform well when future values vary (Rob J Hyndman 

& George Athanasopoulos, 2021). 

 

All models were executed with the default hyperparameter settings provided in the AutoGluon 

framework on an Intel i7 2.6 GHz CPU with 64 GB of RAM. To ensure reproducibility, all the 

code for our experiments has been made available on GitHub along with the hyperparameters 

used in each of the models https://github.com/rkoti/Zero-shot_traffic_Volume.  

3. RESULTS AND DISCUSSION 

In this section, we analyze the prediction accuracy of the models in three different combinations 

as shown in Table 4 below. 

 

Table 4: Evaluation schema of various models 

 

Models Models 

Zero-shot Zero-shot 

Statistical 

Deep Learning 

 

 

We present the RMSE and MAE for all models across all datasets and compare the percentage 

difference between these metrics. 

 

Swiss Tunnel Data 

 
Figure 2 provides the overall metric values for all the models. The x-axis provides the MAE and 

RMSE scores for all the models in the y-axis. 

 

https://github.com/rkoti/Zero-shot_traffic_Volume
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Figure 2: RMSE AND MAE scores for all the models 

 

Zero-shot vs. Zero-shot  

 
As shown in Figure 3, the Chronos_tiny model has RMSE and MAE scores of 23% and 7% higher 

than the TimeGPT model (indicated by the red arrow and red background). Since lower scores 

for these metrics indicate better performance, it is evident that the TimeGPT model outperforms 

the others. 
 

 

Figure 3: Comparison of zero-shot models by their percentage difference between 

the two metrics 

 

Zero-shot vs. Statistical and other Deep Learning models 

 

When comparing zero-shot models to statistical models in Figure 4, we observe that zero-shot 

models significantly outperform the latter, as indicated by the lower RMSE and MAE scores 

highlighted by the green arrows and green background. Additionally, zero-shot models excel 

beyond other deep-learning models, as demonstrated in Figure 5. 

 

 

Figure 4: Comparison of zero-shot and statistical models by their percentage dif-

ference of the two metrics 
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Figure 5: Comparison of zero-shot and deep learning models by their percentage 

difference of the two metrics 

 

Kaggle Data 

 

 

Figure 6: RMSE score for various junctions 

Figures 6 and 7 show the overall RMSE and MAE scores along the x-axis for all models and 

junctions. To evaluate the Kaggle dataset, we calculated the average RMSE and MAE for each 

junction by year. 

 

 

Figure 7: MAE score for various junctions 
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Zero-shot vs. Zero-shot  

 

 

Figure 8: Comparison of zero-shot models by their percentage difference between 

the two metrics 

 

From Figure 8, we can infer that although Chronos_tiny has a marginally higher error rate for the 

year 2015, it outshines the TimeGPT model for the two consecutive years of 2016 and 2017. 

 
Zero-shot vs. Statistical models 

 
Figure 9 shows that zero-shot models have a lower average error score than statistical models. 

Chronos_tiny demonstrates relatively better performance. 

 

 

 

Figure 9: Comparison of zero-shot and statistical models by their percentage dif-

ference of the two metrics 

 

Zero-shot vs. other Deep Learning models 

 
From Figure 10, we can infer that in 2015, the average error rate of the zero-shot models across 

all junctions was lower than that of their counterparts. However, in 2016 and 2017, these models 

experienced a higher error rate compared to other models, including both statistical and deep 

learning approaches. Specifically, TimeGPT showed a notably higher error rate than other mod-

els, particularly in 2017.  
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Figure 10: Comparison of zero-shot and deep learning models by their percentage 

difference of the two metrics 

 

This can be attributed to the data presented in Table 2 above, where the combination of higher 

variance, kurtosis, and skewness values diminishes the predictive power of the zero-shot models 

under consideration. 

4. CONCLUSIONS 

The cost of road congestion in Europe is estimated to be over €110 billion a year (Christidis, 

2012). Therefore, it is crucial to utilize the transportation infrastructure efficiently to reduce con-

gestion. One of the ways to solve the congestion problem is to predict the traffic flow accurately.  

 

To this end, this paper examined the performance of zero-shot learning models compared to other 

statistical and deep learning models to predict traffic flow on hourly and daily data. These models 

enable non-domain experts to quickly leverage forecasting capabilities in their specific fields 

without the need for extensive computational resources.  

 

Our experiments demonstrated that these models could generate fairly accurate traffic flow pre-

dictions compared to other established models. However, we observed that data characterized by 

high kurtosis and skewness sometimes performed slightly less accurately than the other deep-

learning models. This suggests that these zero-shot models may require fine-tuning on fat-tailed 

datasets before they can be effectively deployed. With the availability of machine learning frame-

works such as AutoGluon, the fine-tuning of the zero-shot models can be formed with ease even 

by non-AI transportation domain experts.  
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