
A Branch-and-Price-and-Cut Algorithm for Discrete Network
Design Problems Under Traffic Equilibrium

David Rey1 and Michael W. Levin2

1SKEMA Business School, Université Côte d’Azur, Sophia Antipolis, France,
david.rey@skema.edu

2Department of Civil, Environmental, and Geo- Engineering, University of Minnesota,
Minneapolis, USA, mlevin@umn.edu

Abstract

This study addresses discrete network design problems under traffic equilibrium conditions
or DNDPs. Given a network and a budget, DNDPs aim to model all-or-nothing decisions such
as link addition to minimize network congestion effects. Congestion is measured using traffic
equilibrium theory where link travel times are modeled as convex flow-dependent functions and
where users make selfish routing decisions. In this context, the collective route choice of users is
a Wardropian equilibrium and DNDPs admit a bilevel optimization formulation where the leader
represents the network designer, and the follower is a parameterized traffic assignment problem
(TAP). This study introduces a novel and exact branch-and-price-and-cut (BPC) algorithm for
DNDPs that exploits the structure of the problem and harnesses the potential of path-based
formulations for column generation (CG). Leveraging the convexity and the separability of the
objective function, we develop successive relaxations of the bilevel problem that lead to an
efficient outer approximation scheme that relies on solving a sequence of linear programs. We
combine this OA procedure with a CG approach whose pricing subproblem can be solved in
polynomial-time. This scheme is embedded within a single tree BPC algorithm to determine
lower bounds while upper bounds are computed by solving parameterized TAPs. Numerical
experiments conducted on a range of DNDP instances based on three transportation networks
reveal that our BPC algorithm significantly outperforms state-of-the-art methods for DNDPs.
Notably, we close several open instances of the literature, and we show that our BPC algorithm
can solve DNDP instances based on networks whose number of nodes and of commodities is one
order of magnitude larger than any previously solved instance.

Keywords: Bilevel optimization, Branch-and-price-and-cut, Network design, Traffic equilib-
rium, Selfish routing

1

1 Introduction
We consider discrete network design problems under traffic equilibrium. Discrete network design
problems aim to model all-or-nothing decision problems, such as link or node addition, in a network.
Traffic equilibrium refers to selfish routing and congestion effects in a network. In discrete network
design problems under traffic equilibrium or DNDPs for short, the goal is to minimize congestion
effects while accounting for users’ collective route choice in response to the design. Such problems have
well-documented applications in transportation and routing (Magnanti and Wong 1984) and can be
used to inform decision-making in problems where the collective behavior of users influences congestion
and therefore the choice of the network design. It-is well-known that DNDPs are NP-hard even if link
travel time functions—also known as latency functions or delay functions—are linear (Roughgarden
2006). In transportation planning applications, multiple commodities representing the travel of users
between their origin and destination often coexist and congestion functions are typically modeled as
convex nonlinear functions of link flow (Colson et al. 2007). DNDPs are often modeled using bilevel
optimization formulations where the leader represents the network designer and the follower represents
a parameterized traffic equilibrium problem (Yang and H. Bell 1998). In this context, identifying the
network design that optimizes the designer’s objective function is notoriously challenging. Existing
methods to solve DNDPs exactly do not scale well, mainly due to their inability to optimize over
large networks. This difficulty stems from the nonlinearity of link travel time functions but also from
the necessity to compute network equilibrium flows repeatedly to find optimal solutions.

The contributions of this study are as follows: we develop a novel methodology to solve DNDPs
to optimality at scale. Unlike most existing approaches to solve DNDPs, we formulate a path-based
convex relaxation of the original bilevel optimization problem. We combine outer approximation
(OA) (Duran and Grossmann 1986, Fletcher and Leyffer 1994) and column generation (CG) (Dantzig
and Wolfe 1960, Lübbecke and Desrosiers 2005) to obtain a tractable linear model that efficiently
computes lower bounds. We propose a single tree branch-and-cut-and-price (BPC) algorithm that
gradually adds cuts and path variables to this linear model and exploits the performance of state-of-
the-art traffic assignment algorithms to computer upper bounds. We enrich our BPC algorithm with
initialization heuristics and new value function cuts. Extensive numerical experiments that compare
the performance of our BPC algorithm with three benchmarks, including two exact algorithms from
the literature, highlight the benefits of the proposed approach. Notably, these experiments show that
the solving the linear path-based model via a CG approach is computationally efficient and avoids
scaling issues from solving a link-based multicommodity network design problem. Our numerical
results solve a number of unsolved DNDP instances and we introduce new larger problem instances
on medium to large-sized transportation networks to the community. For reproducibility purposes,
all data and codes of this study are made publicly available.

2 Methodology
DNDPs can be formulated as bilevel optimization problems where the leader problem aims to
identify the optimal selection of a discrete resource to add to a network to minimize the total system
travel time (TSTT) and the follower problem represents users’ reaction, typically as a static traffic
assignment problem (TAP) under Wardrop’s user equilibrium (UE) principle (Wardrop 1952). For
presentation and experimentation purposes, we use the link addition DNDP—hereby referred to as
DNDP—as our target discrete network design problem under traffic equilibrium since this is the
most studied DNDP in the literature.

The DNDP can be defined on a network with a node set N and link set A as a multicommodity
network flow problem with nonlinear link travel time functions. Let dw be the demand for commodity

2

w ∈ W ⊂ N ×N . Let Πw be the set of paths connecting commodity w ∈ W and let Π = ∪w∈WΠw

be the set of all paths. Let [δπa]a∈A,π∈Π be the link-path incidence matrix of the network. We denote
hπ the flow on path π ∈ Π and h = [hπ]π∈Π the vector of path flows. Let ta(·) represent the travel
time function on link a ∈ A, typically modeled as a positive and increasing function of the total link
flow xa to ensure the uniqueness of the UE link flows. Let A1 be the set of existing links and let A2

be the set of candidate links to improve the network, A = A1 ∪ A2. For each link a ∈ A2, let ga be
the cost of adding this link to the network and let ya ∈ {0, 1} be the variable representing this choice.
Let B be the available budget for optimization.

The leader represents a network designer that aims to minimize the TSTT defined as the sum
of xata(xa) over all links a ∈ A, subject to a budget constraint capturing the cost of link addition
decisions y, hereby referred to as leader variables. The link flow pattern variables x = [xa]a∈A are
determined by the follower problem, which is the TAP formulation under UE (Beckmann et al. 1956,
Leblanc 1975, Magnanti and Wong 1984). The impact of the leader variables y in the follower is
achieved through the linking indicator constraints that require null flow on A2 links that remain
closed.

The follower problem is a TAP based on Beckmann et al. (1956)’s formulation parameterized by
leader variables y:

TAP(y) :min
x,h

∑
a∈A

∫ xa

0

ta(v)dv (1a)

s.t.
∑

π∈Πw

hπ = dw ∀w ∈ W (1b)

∑
π∈Π

hπδ
π
a = xa ∀a ∈ A (1c)

xa = 0 if ya = 0 ∀a ∈ A2 (1d)
hπ ≥ 0 ∀π ∈ Π (1e)

Let TAP(y) also denote the set of optimal link flow solutions x of the parameterized TAP (1).
The DNDP can be formulated as the following bilevel optimization problem:

min
y

∑
a∈A

xata(xa) (2a)

s.t.
∑
a∈A2

yaga ≤ B (2b)

ya ∈ {0, 1} ∀a ∈ A2 (2c)
x ∈ TAP(y) (2d)

Note that although the follower problem contains two groups of variables: path flows and link
flows, only the latter are used to compute the leader objective function. Furthermore, it is well-known
that, if link travel time functions ta(·) are positive and increasing then, for any leader decision y, the
objective function of the follower is strictly convex with regards to variables x and there is a unique
UE link flow pattern x ∈ TAP(y) (Sheffi 1985).

We exploit the properties of the objective function of DNDP and propose a novel link-based
Outer Approximation (OA) model to obtain a Mixed-Integer Linear Programming (MILP) relaxation

3

of the SO relaxation. Leveraging the path-based formulation of this MILP relaxation, we develop a
Column Generation (CG) with a polynomial-time pricing subproblem.

For presentation purposes, we define the following sets: let X be the set of (unrestricted) feasible
link flows:

X ≡

{
x ∈ R|A| :

∑
π∈Π

hπδ
π
a = xa, ∀a ∈ A,

∑
π∈Πw

hπ = dw, ∀w ∈ W,hπ ≥ 0, ∀π ∈ Π

}
(3)

Let Y be the set of feasible link addition decisions:

Y ≡

{
y ∈ {0, 1}|A2| :

∑
a∈A2

yaga ≤ B

}
(4)

2.1 System Optimum Relaxation
Let Q =

∑
w∈W dw be the total demand. A mathematical programming formulation of the system

optimum DNDP, denoted SO-DNDP is:

min
y∈Y,x∈X

∑
a∈A

xata(xa) (5a)

s.t. xa ≤ yaQ ∀a ∈ A2 (5b)

Here the linking constraint (1d) is reformulated into a so-called big-M constraint (5b) which is
linear and for which a finite bound is known. The SO relaxation (5) of the DNDP formulation (2) is
a MINLP with a convex objective function, which motivates the use of dedicated algorithms, notably
OA methods.

2.2 Outer Approximation
The nonlinear link travel time functions ta(·) make problem (5) difficult to solve. It is well-known
that the objective function (2a) of the DNDP (and of SO-DNDP) is convex, which we use to write an
OA of the objective function (Duran and Grossmann 1986, Fletcher and Leyffer 1994). Furthermore,
the objective function of DNDP (TSTT) is separable with regards to link flow variables x (Beckmann
et al. 1956), which means that the OA can be made tighter by creating a link-based OA instead of a
single OA of the entire objective function. We exploit these properties to build a link-based OA of
the terms xata(xa) composing the objective function.

Formally, given a vector xk ∈ X of feasible link flows, the gradient of xata(xa) at xk is:

xk
ata(x

k
a) +

d
[
xk
ata(x

k
a)
]

dxk
a

× (xa − xk
a) = xk

ata(x
k
a) + (xk

at
′
a(x

k
a) + ta(x

k
a))× (xa − xk

a) (6a)

= xa

(
xk
at

′
a(x

k
a) + ta(x

k
a)
)
− (xk

a)
2t′a(x

k
a) (6b)

= xaα
k
a + βk

a (6c)

where αk
a ≡ xk

at
′
a(x

k
a) + ta(x

k
a) and βk

a = −(xk
a)

2t′a(x
k
a) are constants. Because of convexity of the

TSTT objective function, for any xk ∈ X , xaα
k
a + βk

a is a linear under-estimator of xata(xa).
Let µa ≥ 0 be a real decision variable representing the contribution of link a ∈ A to the objective

function (2a). Let Ca be the set of indices k corresponding to the link flows xk
a at which OA is

4

performed, i.e. Ca represents the set of OA cuts used to under-estimate the contribution of link
a ∈ A to the objective function. Given a collection of index sets [Ca]a∈A, the following formulation is
a MILP relaxation of SO-DNDP:

min
y∈Y,x∈X ,µ≥0

∑
a∈A

µa (7a)

s.t. µa ≥ xaα
k
a + βk

a ∀a ∈ A, k ∈ Ca (7b)
xa ≤ yaQ ∀a ∈ A2 (7c)
ya ∈ {0, 1} ∀a ∈ A2 (7d)

Solving Formulation (7) yields a lower bound (LB) on the optimal objective function value (OFV)
of DNDP. In contrast to the DNDP literature, this formulation exploits the link-separability property
of the objective function of the DNDP. Farvaresh and Sepehri (2013) developed a MILP relaxation
of SO-DNDP based on the OA of the entire objective function as opposed to link-based OAs. Their
MILP formulation was also formulated using a link-based multicommodity network flow model.
Instead, Formulation (7) is path-based and contains an exponential number of path flow variables h.
We exploit the MILP structure of Formulation (7) and its amenability to CG techniques to avoid
enumerating all paths within Formulation (7).

2.3 Column Generation
To solve Formulation (7), we consider its linear programming (LP) relaxation. Let Π̄ ⊂ Π be a
restricted set of paths and let Π̄w ⊂ Πw be the corresponding commodity-based restricted path sets.
The restricted master problem (RMP) is:

min
y,x,h,µ

∑
a∈A

µa (8a)

s.t. µa ≥ xaα
k
a + βk

a ∀a ∈ A, k ∈ Ca (8b)∑
a∈A2

yaga ≤ B (8c)

∑
π∈Π̄w

hπ = dw ∀w ∈ W (8d)

∑
π∈Π̄

hπδ
π
a = xa ∀a ∈ A (8e)

xa ≤ yaQ ∀a ∈ A2 (8f)
0 ≤ ya ≤ 1 ∀a ∈ A2 (8g)
hπ ≥ 0 ∀π ∈ Π̄ (8h)

Since the objective of (SO-)DNDP is to minimize network-wide congestion, link and path flows
are indirectly minimized. Hence, constraints (8d) and (8e) can be rewritten as inequalities to restrict

5

the sign of their dual variables, namely:∑
π∈Πw

hπ ≥ dw ∀w ∈ W (9a)

∑
π∈Π

hπδ
π
a ≤ xa ∀a ∈ A (9b)

We denote σw ≥ 0 the dual variable of the demand constraint (9a) and ζa ≥ 0 the dual variable
of the link flow constraint (9b). Given a commodity w ∈ W and a path π ∈ Πw, the reduced cost of
variable hπ, denoted cπ, is:

cπ = −σw +
∑
a∈A

δπa ζa (10)

The reduced costs of path-flow variables h can be computed in polynomial-time by solving, for
each commodity w ∈ W, a shortest path problem in the directed network (N ,A) with link costs
given by the dual vector ζ = [ζa]a∈A and deducing σw from the shortest path length.

This CG approach is novel and provides a paradigm shift for solving DNDPs at scale: as shown
in our numerical experiments in Section 3, the pricing of path flows variables is computationally
inexpensive and the path-based formulation of the SO-relaxed OA model of DNDP is more efficient
than its link commodity-based counterpart. We integrate the OA approach and the CG within a
single tree branch-and-price-and-cut (BPC) algorithm to solve DNDPs under traffic equilibrium.

3 Numerical Results
We conduct numerical experiments to test the performance of the BPC algorithm for the link
addition DNDP. We consider three benchmarks: a branch-and-cut (BC) algorithm which follows the
same single tree BB algorithm as BPC but uses a commodity link-based formulation instead of the
path-based formulation, therefore no CG is required. Therefore, the only difference between BPC
and BC is the use of a path-based formulation and the CG procedure. We also compare BPC and
BC with two benchmark algorithms from the literature: Leblanc (1975)’s BB algorithm—hereby
referred to as Leblanc—which solves SO-TAPs to determine LBs; and Farvaresh and Sepehri (2013)’s
BB algorithm which uses Fletcher and Leyffer (1994)’s OA algorithm to determine LBs—hereby
referred to as FS_NETS. All four implemented algorithms, i.e. BPC, BC, FS_NETS and Leblanc
and; use the same check(k) procedure to scan a BB node k before further processing it if it is labeled
unfixed. All TAPs are solved using our implementation of Bar-Gera (2010)’s TAPAS algorithm.

We use three transportation networks from a public repository containing traffic assignment, i.e.
network and trips, data (Transportation Networks for Research Core Team 2024) to generate DNDP
instances: SiouxFalls (SF), Eastern Massachusetts (EM) and BerlinMitteCenter (BMC). SF is a test
network with 24 nodes, 76 links and 528 commodities widely used in DNDP studies (Farvaresh and
Sepehri 2013, Wang et al. 2013, Rey 2020). EM contains 74 nodes, 258 links and 1113 commodities;
and BMC contains 398, 871 links and 1260 commodities—the latter network was also used by Fontaine
and Minner (2014) for solving the linearized link addition DNDP. To increase congestion effects on
EM and BMC networks, we inflate trips by a factor of 4 and 2, respectively. Network information is
summarized in Table 1.

We use the SF DNDP instances introduced by Rey (2020) which consist of 20 instances: 10
with 10 additional new links, i.e. |A2| = 10 thus |A| = 86; and 10 with 20 additional new links,
i.e. |A2| = 20 thus |A| = 96. For the EM and BMC networks, since these networks already have

6

Network (Acronym) Nodes Links Commodities Trip inflation factor

SiouxFalls (SF) 24 76 528 1
Eastern Massachusetts (EM) 74 258 1113 4

BerlinMitteCenter (BMC) 398 871 1260 2

Table 1: Transportation networks used for generating DNDP instances.

many links, we generate DNDP instances by randomly sampling |A2| links among existing links. For
each sample, we verify the impact of closing these links one at a time by solving the corresponding
UE-TAP and recording the TSTT percentage change relative to the original network. We discard
samples if more than 1/3 of the sampled links do not generate an absolute change in TSTT greater
than 1%. For both EM and BMC networks, we generate 20 DNDP instances: 10 with |A2| = 10
and 10 with |A2| = 20 and the cost of opening A2 is determined by randomly perturbing a linear
function of links’ free-flow travel time and capacity. For all three networks and for each of the 20
samples of A2 links and their costs, we generate three DNDP instances with a budget of 25%, 50%
and 75% of the total cost of opening all links. This constitutes a dataset of a total of 180 DNDP
instances including 60 instances of each transportation network. All algorithms are implemented
in Python on a Windows machine with a i9 CPU at 3.19 GHz and 64 GB of memory. All LPs
and MILPs are solved using CPLEX 22.1 MIP solver (International Business Machines Corporation
2024) with a single thread. We set an optimality gap of 1% for algorithm convergence and we set a
runtime limit of 1 hour for each instance. For reproducibility, all data and codes are made available
at https://github.com/davidrey123/DNDP-path.

The main results of this study are reported in Figure 1 which depicts performance profile-like
curves (Dolan and Moré 2002) of the four DNDP algorithms implemented, i.e. BPC, BC, FS_NETS
and Leblanc. Specifically, for each algorithm, we report the percentage of instances solved over
runtime. Figure 1a report performance profiles over all 180 instances considered. Performance profiles
over the 60 instances of each network are reported in Figures 1b, 1c and 1d for SF, EM and BMC
networks, respectively. This benchmarking reveals that, overall, BPC dominates all other three
DNDP algorithms. It is able to solve to optimality over 50% of the instances within 315s while BC
and Leblanc require 591s and almost 1383s to solve the same percentage of instances, respectively.
Within the 1 hour runtime limit, BPC is able to solve 86.7% of the 180 instances whereas BC and
Leblanc achieve 80.3% and 71.1%, respectively. In contrast, our implementation of FS_NETS is
able to solve only 48.3% of the 180 instances considered within the runtime limit. A closer look at
network-based performance sheds several insights. On SF instances, BC tends to slightly dominate
BPC. We also find that FS_NETS dominates Leblanc for a significant range of runtimes. This
highlights that, for small networks, the link-based multicommodity network flow model which is
used in both BC and FS_NETS provides a viable alternative to path-based counterparts. EM
instances reveal a different pattern: here FS_NETS is dominated by all other algorithms while
BPC slightly dominates BC. This emphasizes the gains obtained by exploiting the separability of
the leader objective function to generate OA cuts within the BC and BPC algorithms. Results on
BMC instances—which is the largest network tested—demonstrate the substantial benefits of the
BPC algorithm over the benchmarks considered. BPC is found to require 582s for solving 50% of
these instances—which corresponds to 10-link BMC instances—and is able to solve 68.3% of BMC
instances within the runtime limit. Leblanc is the second-best performing algorithm and requires
2096s to solve 50% of these instances. BC ranks third and requires 2545s to solve 50% of these

7

https://github.com/davidrey123/DNDP-path

0 500 1000 1500 2000 2500 3000 3500
Runtime (s)

0

20

40

60

80

100

%
 o

f i
ns

ta
nc

es
 so

lv
ed

 o
ut

 o
f 1

80
 in

st
an

ce
s

BPC
BC
FS_NETS
Leblanc

(a) All instances

0 500 1000 1500 2000 2500 3000 3500
Runtime (s)

0

20

40

60

80

100

%
 o

f i
ns

ta
nc

es
 so

lv
ed

 o
ut

 o
f 6

0
in

st
an

ce
s

BPC
BC
FS_NETS
Leblanc

(b) SF instances

0 500 1000 1500 2000 2500 3000 3500
Runtime (s)

0

20

40

60

80

100

%
 o

f i
ns

ta
nc

es
 so

lv
ed

 o
ut

 o
f 6

0
in

st
an

ce
s

BPC
BC
FS_NETS
Leblanc

(c) EM instances

0 500 1000 1500 2000 2500 3000 3500
Runtime (s)

0

20

40

60

80

100

%
 o

f i
ns

ta
nc

es
 so

lv
ed

 o
ut

 o
f 6

0
in

st
an

ce
s BPC

BC
FS_NETS
Leblanc

(d) BMC instances

Figure 1: Performance profiles of DNDP algorithms: BPC, BC, FS_NETS and Leblanc.

instances; while FS_NETS only manages to solve 11.7% of these instances within the 1 hour runtime
limit.

4 Conclusion
In this study, we presented a novel single tree branch-and-price-and-cut (BPC) algorithm for discrete
network design problems under traffic equilibrium or DNDPs for short. DNDPs are notoriously
challenging optimization problems which admit a natural Stackelberg game formulation in the presence
of traffic equilibrium constraints. In this bilevel optimization formulation the leader represents the
network designer while the follower represents a parameterized traffic equilibrium problem. In
transportation, Wardrop’s user equilibrium is often selected to model network users’ route choice
under congestion effects. Exploiting the separability and the convexity of the leader objective function,

8

we introduce a new outer approximation (OA) scheme for the system-optimum (SO)-DNDP which
corresponds to the high-point relaxation of the DNDP. Combining these successive relaxations of
the bilevel problem with the path-based formulation of the DNDP, leads to a linear programming
formulation that can be solved efficiently by column generation (CG). We develop a BPC framework
to implement our approach and propose initialization techniques, cut generation rules and interdiction
and value function cuts for algorithmic tuning.

We validate the performance of our BPC algorithm through comprehensive computational
experiments over 180 problem instances based on three transportation networks of varying sizes.
We use three alternative methods to compare the performance of the BPC algorithm including its
branch-and-cut (BC) counterpart where a link-based multicommodity network model is used instead
of the path-based network model. We show that our BPC algorithm outperform BC and existing
approaches in the literature. Notably, we demonstrate that our BPC algorithm is efficient on both
small and larger scale problem instances whereas other DNDP algorithms either fail to scale-up
due to their reliance on link-based multicommodity network models (i.e. BC and FS_NETS) or to
the inherent structure (Leblanc). In contrast, the BPC algorithm is able to consistently solve—or
achieve competitive optimality gaps on—problem instances of varying number of variable links
and/or network features. For reproducibility purposes, all data and codes used in this study are
made publicly available at https://github.com/davidrey123/DNDP-path. For presentation and
experimentation purposes, we focused on the link addition DNDP which is the most studied DNDP
in the literature. We emphasize that most of the methods developed can be immediately applied to
other DNDPs such as mixed discrete-continuous DNDPs or node-addition DNDPs.

This research can be extended in several directions. From a methodological standpoint, further
research may explore the integration of additional cuts or penalty methods to reduce the optimality
gap during search. While the value function cuts considered tend to reduce the number of BPC
iterations, their incorporation leads to excessive computational efforts. Techniques to mitigate these
effects could be explored. From a modeling perspective, this study focused on discrete NDPs, however
the proposed OA relaxations and the CG approach can be applied to continuous NDPs as well. In
this context, the branch-and-bound framework may be omitted and continuous NDPs could benefit
from exploiting the OA and CG procedures developed in this study. DNDPs under traffic equilibrium
have several practical applications notably in transportation networks but also in telecommunications
networks (Correa and Stier-Moses 2011). Discrete NDPs arising in these contexts can benefit from
the proposed approach by adapting its core elements to specific problem contexts and also extend to
other discrete problems such as bilevel facility location or network operation scheduling problems
under Wardropian equilibria.

References
Bar-Gera H (2010) Traffic assignment by paired alternative segments. Transportation Research Part B:

Methodological 44(8-9):1022–1046.
Beckmann M, McGuire CB, Winsten CB (1956) Studies in the economics of transportation. Technical report.
Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization. Annals of Operations Research

153(1):235–256.
Correa JR, Stier-Moses NE (2011) Wardrop equilibria. Encyclopedia of Operations Research and Management

Science. Wiley .
Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Operations Research 8(1):101–111.
Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Mathematical

programming 91:201–213.

9

https://github.com/davidrey123/DNDP-path

Duran MA, Grossmann IE (1986) An outer-approximation algorithm for a class of mixed-integer nonlinear
programs. Mathematical Programming 36(3):307–339.

Farvaresh H, Sepehri MM (2013) A branch and bound algorithm for bi-level discrete network design problem.
Networks and Spatial Economics 13:67–106.

Fletcher R, Leyffer S (1994) Solving mixed integer nonlinear programs by outer approximation. Mathematical
Programming 66:327–349.

Fontaine P, Minner S (2014) Benders decomposition for discrete–continuous linear bilevel problems with
application to traffic network design. Transportation Research Part B: Methodological 70:163–172.

International Business Machines Corporation (2024) IBM ILOG CPLEX Optimization Studio. URL https:
//www.ibm.com/products/ilog-cplex-optimization-studio.

Leblanc LJ (1975) An algorithm for the discrete network design problem. Transportation Science 9(3):183–199.
Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Operations Research 53(6):1007–1023.
Magnanti TL, Wong RT (1984) Network design and transportation planning: Models and algorithms.

Transportation Science 18(1):1–55.
Rey D (2020) Computational benchmarking of exact methods for the bilevel discrete network design problem.

Transportation Research Procedia 47:11–18.
Roughgarden T (2006) On the severity of Braess’s paradox: Designing networks for selfish users is hard.

Journal of Computer and System Sciences 72(5):922–953.
Sheffi Y (1985) Urban transportation networks, volume 6 (Prentice-Hall, Englewood Cliffs, NJ).
Transportation Networks for Research Core Team (2024) Transportation Networks for Research. URL

https://github.com/bstabler/TransportationNetworks.
Wang S, Meng Q, Yang H (2013) Global optimization methods for the discrete network design problem.

Transportation Research Part B: Methodological 50:42–60.
Wardrop JG (1952) Some theoretical aspects of road traffic research. Inst Civil Engineers Proc London/UK/.
Yang H, H Bell MG (1998) Models and algorithms for road network design: a review and some new

developments. Transport Reviews 18(3):257–278.

10

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://github.com/bstabler/TransportationNetworks

