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Abstract: During boarding and alighting in urban mass transit, some train doors become overcrowded while others
are underutilized. This imbalance increases dwell time as trains wait for the last passengers to board or alight. We
propose a nonconvex MINLP to minimize boarding and alighting times—a function of the number of boarding and
alighting passengers—by optimally allocating passengers to doors. To capture the process of passengers’ choosing
doors, we developed a choice model with financial incentives to guide passengers to specific doors. Optimal discounts
are determined within the choice model and integrated into the optimization framework to adjust passengers per door.

___________________________________________________

1 Introduction
Urban mass transit systems often struggle with high operational costs and tight schedules. A major source of inefficiency
is the dwell time of vehicles at stations, which is significantly influenced by variability in boarding and alighting times
(Kuipers et al., 2021). Passengers tend to favor boarding through particular doors, such as those near the station entrance
or closer to their destination’s exit. This preference often leads to overcrowding at certain doors while others remain
underused (Oliveira et al., 2019), creating an imbalance that increases dwell time as the vehicle waits for the last
passengers to board or alight. This research aims to reduce dwell times during peak hours by optimizing the allocation
of passengers to doors and trips, thereby enhancing overall system efficiency (Figure 1).

Optimization model
(including door choice)

Unbalanced allocation of passengers to doors
→Prolonged dwell time

Balanced allocation of passengers to doors
→Minimal maximum dwell time

no passengers alighting

alighting

Figure 1: Overview of research objective.

To achieve this, our methodology integrates three main components:
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• Optimization of on- and off-boarding processes: This involves developing an optimization model that minimizes
dwell time by strategically allocating passengers to doors and trips.

• Door-trip choice prediction: This component utilizes discrete choice models to predict passengers’ selection of
doors and trips. The goal is to better understand and influence passenger behavior, promoting a more balanced
distribution across doors and trips—e.g., encouraging passengers to align with optimization strategies.

• Dwell time prediction: We use a combination of pedestrian simulation models and empirical data to predict dwell
times based on the number of boarding and alighting passengers.

Our integrated framework for simultaneously combining these components focuses on the operational and behavioral
aspects of passenger flow management in urban mass transit systems (see Figure 2). This approach not only aims to
reduce dwell times but also enhances the overall efficiency and reliability of transit operations. The integrated approach
has the advantage of identifying the overall optimal solution by considering the interaction between door choice and
the optimization model. In contrast, the sequential approach tends to result in suboptimal solutions, as it neglects the
interdependence between these two components.

Optimization of
on- and off-boarding

processes w.r.t.
dwell time

Door/trip
choice prediction

Dwell time
predicition

number of passengers boardingdwell time

incentives

Figure 2: Overview of research objective.

2 PROBLEM DESCRIPTION
The objective is to minimize the maximum total dwell time by optimally allocating passengers to doors and trips,
achieved by subtly influencing their door choices. Since boarding decisions affect dwell times during later alighting, the
model considers the entire public transport network to achieve an optimal flow of passengers. The public transportation
network comprises stations served by multiple lines, with each line connecting stations to others through a series of trips
scheduled according to a predefined line plan and timetable for a specific operational day. The optimization is tailored to
this particular day, ensuring a comprehensive and context-specific approach. Each vehicle operating within the network
has a fixed number of doors for boarding and alighting. Additionally, transfers are possible at stations where different
lines intersect, allowing passengers to reach their destination when direct trips are unavailable.

The problem is modeled as a directed network G = (I,A,q), where the nodes correspond to points in time and space
where passengers enter, exit, or travel along the public transport system using the lines. We define a set I, which
includes origin nodes O ⊂ I (indexed by o), destination nodes J ⊂ I (indexed by j), and door-trip nodes E ⊂ I (unique
combinations of train doors and trips for a given trip and station, indexed by i,k,v). The operational day is divided
into multiple time intervals {t, t +1, t +2, ...} to monitor the times at which each line arrives at each station and thus
determine the time associated with each node. To track dwell time at each station for each trip, we define a set D,
representing all door-trip nodes belonging to the same station and trip. The set Ed ⊂ E represents the subset of door
nodes within the same door-trip set D, e.g., all doors belonging to the same train.

Set A represents the arcs, which indicate feasible connections between nodes regarding time and space. An arc (i,v) ∈ A
indicates that passengers can feasibly move (board or alight) from door-trip i to door-trip v. To ensure feasible flows for
each origin o ∈ O, we define the set Ã(oiv). We assume that passengers board and alight through the same door, as they
are unlikely to move to a different door within a crowded train. Transfers between i ∈ E and v ∈ E, are represented
by the subset F ⊂ A. The parameter q represents the weights of the arcs, representing passenger flow capacities. Set
B ⊂ A represents the arcs where boarding and transfer occurs. Specifically, an arc i,v belongs to B if (i,v) ∈ A and either
i ∈ O or i ∈ E with (i,v) ∈ F . The total demand is defined by a time period-specific origin-destination matrix, with
a predetermined path from each origin to its destination. We assume passengers choose the shortest path in terms of
travel time from their origin to their destination (Müller et al., 2022). To manage capacity constraints while meeting
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demand, we allow passengers arriving for a trip at time period t can either board a vehicle on the same trip or wait for a
subsequent trip of the same line (time periods are defined by dividing the operational day into discrete intervals, each
referred to as a period. Period t represents the specific time window in which passengers arrive at a station and may
board a scheduled trip departing during t or wait for a subsequent trip in a later period (t +1, t +2, . . .). The set of all
periods, denoted by T , spans the entire scheduling horizon). The non-negative variable Xoiv j indicates the number of
passengers starting at the station and trip of node o and traveling along arc (i,v) to reach destination j. The four indices
are essential for capturing the complexity of the system, as they enable us to account for passengers transferring between
trains at various stations and times. The variable Xoiv j tracks passenger flow in one direction (boarding or alighting)
and also enables tracking counterflows that occur simultaneously through the same door-trip, where passengers board
and alight at the same time. For simplification and a better understanding of passenger flow, Figure 3 illustrates the
counterflows at node v ∈ Ed . The highlighted arcs in gray illustrate the variable Xoiv j, demonstrating that passenger
flows have a specific origin and destination determined by demand.

d ∈ D

v1
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i2
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Xo1v1 j1 j1
Xo2o2v1 j2

Xo2o2v2 j2 Xo1v2 j1 j1

Station C

Passenger flow from o1 Passenger flow from o2

(a) Passenger flow from o1 and o2 boarding the train through doors
v1,v2 ∈ Ed to reach their destination.
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(b) Passenger flow from o3 transferring from i1, i2 boarding the
train through doors v1,v2 ∈ Ed to reach destination j2.

Figure 3: Simplified example of the passenger flow considering part of the network variable Xoiv j.

This level of detail is crucial for the choice model, as it ensures the model can differentiate between passengers who
remain on the train, alight, or transfer and correctly apply the probabilities of passengers choosing a specific boarding
door at the transfer station. This network model allows us to represent passenger flows over time and space.

Figure 4 shows a simplified example of a network, with Line I and Line II operating in only one direction. At station C,
passengers can transfer between lines without a direct connection from their origin to their destination. For instance,
when traveling from station B to station A, passengers first board Line II and then transfer at station C to take Line I.
Passengers who need to transfer can either take the next available trip t on Line I or wait for the following trip t +1. To
minimize dwell times effectively, it is essential to define a function that captures the factors contributing to dwell time at
each station and for each trip. This general dwell time function serves as the foundation for the optimization process.
For a train at each station, the maximum dwell time τd , associated with each set of door-trips v at the station and time
period combination d ∈ D, with v ∈ Ed is modeled as a function of the number of passengers boarding and alighting
through door v. Specifically, the relationship is expressed as:

P1
v = ∑

o∈O
∑

i∈Biv
∧ Ãoiv

∑
j∈J

Xoiv j ∀v ∈ Ed (1a)

P2
v = ∑

o∈O
∑
j∈J
˜Aov j

Xov j j ∀v ∈ Ed (1b)

τd ≥ α0 +α1 ·P1
v +α2 ·P2

v +α3 ·P1
v ·P2

v ∀d ∈ D,v ∈ Ed . (1)

The dwell time function, derived from Puong (2000), Lam et al. (1998), reflects pedestrian behavior and integrates
insights from previous studies on dwell time modeling. Thereby P1

v is the number of boarding passengers (including
transfer passengers) and P2

v the number of alighting passengers at trip-door node v. The α values represent the
corresponding coefficients.
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Figure 4: Public transport network visualization, showing two trips and two lines.

We proved that the counterflows of boarding and alighting passengers at the doors result in a nonconvex optimization
problem. Nonconvexity presents a significant challenge, as finding the optimal values for the decision variables Xoiv j
to minimize dwell time involves solving a nonconvex optimization problem. Furthermore, these values depend on
passenger behavior, particularly their choices regarding doors and trips, directly influencing dwell time. So far, this
behavioral aspect has not been incorporated into the analysis.

2.1 Door choices
In this section, we explain how passenger preferences for waiting areas and boarding doors are incorporated into
the previously mentioned optimization model. This approach acknowledges that passengers often have specific
preferences—such as doors located near the station entrance or close to the exit at their destination (Küpper and Seyfried,
2023). To capture these behavioral factors, we integrate a choice model within the optimization framework. Inspired by
Yu et al. (2021), we influence passengers’ door and trip choices to encourage compliance with the optimal allocation of
passengers. We use economic incentives, such as discounts, to motivate the passengers to board through specific (less
crowded) doors. This implies that passengers originating from o and traveling to j receive a discount on the regular fare
when they use door-trip v. Thus, the second problem we aim to solve is determining the optimal discounts to ensure that
the values of Xoiv j lead to a minimization of the maximum dwell time.

To predict passengers’ choices, we assume that both the vehicle design and station platform layout are known. The
platform is divided into the same number of waiting areas as the number of train doors. For example, if a train has two
doors, the platform is divided into two corresponding areas. We assume that passengers choose the door for boarding that
is closest to their waiting positions. This allows us to track the expected number of passengers who wait at the station
and choose to board the train through a specific door-trip (see Figure 5). The choice model predicts the probabilities of a
passenger selecting each feasible door.

Passengers select one door-trip for boarding from all feasible options. The remaining doors for the trip in time period t
and any subsequent trips up to |T | define the set of alternatives AT , AT ⊂ E (see Figure 5). The choices are made based
on the principle of utility maximization using a Multinomial Logit (MNL) framework. The probability of a passenger
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Figure 5: Illustration of passengers selecting a specific door-trip for boarding. This is an example of a passenger choosing
between four feasible door-trips for boarding when changing from Line I to Line II at trip t = 1.

choosing a door increases with its utility. The probability of a passenger originating from o and traveling to j, boarding
or transferring from node i to door-trip v, is denoted by Yoiv j:

Yoiv j =
∑l∈L exp

(
Uoiv jl

)
·Loiv jl

∑v′∈AT ∑l′∈L exp
(
Uoiv′ jl′

)
·Loiv′ jl′

∀o ∈ O, j ∈ J, i ∈ B(i,v),v ∈ E, Ã(o, i,v) (2)

where Uoiv jl represents the exponential utility of door-trip v, defined as Uoiv jl = exp(ũoiv jl), with ũoiv jl denoting the
systematic utility. It depends on attributes such as the distance to the entrance and the assigned price, including a
potential discount. The binary decision variable Loiv jl determines whether a specific pricing level l is applied for the use
of door-trip v. For each combination of o, i,v, j, exactly one pricing level can be selected, ensuring that probabilities
for non-selected discounts are zero. The cumulative discount offered along the path from o to j is limited by an upper
bound. A higher discount for a specific door-trip increases its utility, raising the probability Yoiv j of passengers selecting
that door-trip for boarding.

This probability is used to define the number of boarding and alighting passengers for each node in the optimization
model, the flow variable Xoiv j. For the boarding passengers, the probability is multiplied by the origin-destination
demand ODo j, representing the total number of passengers traveling from o to j, to calculate the flow through door-trip
v:

Xoov j = Yoov j ·ODo j ∀o ∈ O, j ∈ J,v ∈ E,A(o,v) (3)

Similarly, the origin-destination matrix can determine the number of transfer passengers. Transfer passengers, meaning
those changing trains to reach their destination, are similarly assigned their utility, price discount, and resulting
probability Yoiv jl . This enables the model to assign different discount levels for boarding and transferring passengers
while ensuring the cumulative discounts along each path from o to j remain within predefined limits. Since the number
of passengers traveling from o to j is known, and the feasible paths are defined, the transfer passengers can be derived
based on the number of passengers arriving at node i. For instance, if 10 passengers originating from o and traveling to j
arrive at trip-door i, and A(i,v) is a feasible transfer flow, it follows that they must transfer from i to door v or one of its
alternatives. The resulting flow in the optimization model is:

Xoiv j = ∑
k∈I∧Ã(o,k,i)

Yoiv j ·Xoki j ∀o ∈ O, j ∈ J, i ∈ E,v ∈ E,F(i,v), Ã(o, i,v) (4)
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The resulting flows are decision variables in the optimization model, directly impacting the station dwell time. Overall,
the optimization process integrates the influence of pricing levels l on the choice probabilities Yoiv j, and the resulting
flows Xoiv j through door-trips. The flow is used to determine the maximum dwell time.

3 FUTURE WORK
As this is work in progress, there are multiple aspects to be addressed to enhance the model and its performance.

The nonlinearity and nonconvexity of the model, particularly in the multiplication of the flow variable by the probability
variable Yoiv j in Equation 4, presents challenges in finding optimal solutions, even for small instances. While good
solutions with a gap of 0.1% can be obtained within seconds, achieving an optimal solution within a reasonable runtime
(e.g., 48 hours) remains infeasible, even for small instances. To overcome the nonlinearity, a linearization technique
will be applied to approximate the multiplication of a continuous variable Xoiv j and a positive variable Yoiv j, where
Yoiv j ∈ [0,1] (Asghari et al., 2022). Similar approaches will be used to approximate the multiplication of the two
continuous positive flow variables Xoiv j in the dwell time function (Equation 1). Future work will, furthermore, focus
on proving the optimality gap introduced by this approximation, quantifying the trade-off between solution quality
and computational efficiency. Additionally, the probability function, which is also nonlinear due to the presence of
exponential terms in the utility function and the division by the sum of these exponential terms for all alternatives,
contributes to the overall complexity of the model. It will be linearized using methods similar to existing choice
modeling literature (Haase, 2009, Ljubić and Moreno, 2018).

The model currently relies on outdated and sparse dwell time functions from the literature. To address this, we plan
to validate these functions using observational data from Frankfurt Main Station provided by Jülich Institute and
simulations based on the social force model. However, the nonlinear and nonconvex nature of the function remains
essential to accurately capture the counterflows at the doors.

Another step to ensure the model’s scalability and applicability is to test it on multiple instances of real-world size. For
this purpose, we have developed an instance generator capable of efficiently creating instances with varying numbers of
stations, lines, trips, and passengers. Furthermore, the public transport network’s structure will be allowed to change
dynamically over time to account for variations in operational patterns, such as different lines operating during peak and
off-peak hours. This dynamic adjustment will better reflect real-world transportation patterns throughout the day.

Finally, we plan to include more attributes to the utility function that influence passengers’ decisions regarding which
area of the platform they choose to wait in before boarding the train. These additional factors will help refine the choice
model and better capture passenger preferences.
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