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Short summary

This study introduces a comprehensive model to analyze a ride-hailing market in which multiple
companies allocate their vehicles as decision variables across various regions to maximize their
profits. The problem is formulated as a classical multi-player, non-cooperative game with coupled
constraints on the actions of each company. Although the game is non-convex, and therefore
lacks guarantees for the uniqueness of the Nash equilibrium, we propose an iterative algorithm to
compute the equilibrium and check whether multiple equilibria occur for further analysis. Utilizing
this algorithm, we conduct a numerical study to illustrate the model in a duopoly market with two
regions characterized by distinct demand profiles.
Keywords: Ride-hailing, Vehicle dispatch, Non-cooperative game.

1 Introduction

Ride-hailing, referring to a service where customers request personalized rides for commuting via an
online platform, has gained significant popularity due to its efficiency, affordability, and technologi-
cal advancements. Compared to traditional street-hailing transportation, such as taxis, established
companies like Uber, Lyft, and Didi have made it far more convenient for smartphone users to book
rides through dedicated apps as they substantially reduce the matching friction between drivers
and customers (Zha et al. (2016)). Furthermore, ride-hailing contributes significantly to sustain-
ability by reducing parking demand and minimizing empty kilometers driven (Tirachini (2020)).
These benefits have also spurred advancements in the shared mobility sector, driving the growth
of existing companies and promoting the emergence of new players, ultimately offering improved
solutions for urban transportation.
Nonetheless, maintaining a balance between fair competition and market regulation is critical to
ensuring the long-term sustainability of the ride-hailing ecosystem with multiple companies. Game
theory, as an effective tool for analyzing the behaviors of competing agents, has been extensively
applied in the study of ride-hailing markets. For example, static competition among ride-hailing
platforms has been explored in Bernstein et al. (2021) and Zhang & Nie (2021), while Cai et al.
(2024) introduces an evolutionary game model to capture dynamic decision adjustments. Fur-
thermore, the potential for game-based control mechanisms in ride-hailing companies has been
discussed in works such as Maljkovic et al. (2022) and Maljkovic et al. (2023).
Vehicle dispatch problems in ride-hailing markets, On the other hand, involve optimizing fleet al-
location across regions with varying demand patterns to maximize profits. Despite its importance,
this topic has received limited attention in the literature. To address this gap, this study presents
a game-theoretical model to describe how companies influence one another through their dispatch
strategies in a multi-regional ride-hailing market. Each company strategically allocates its fleet
across regions to maximize the number of customers served, while accounting for the strategies
of competitors. The problem is formulated as a multi-player non-cooperative game, and a funda-
mental analysis of the equilibrium properties is conducted. This work provides a foundation for
further exploration and the potential improvement of efficiency in ride-hailing markets.
The remainder of this paper is organized as follows: Section 2 defines the game and outlines an
algorithm for computing the Nash equilibrium. Section 3 presents a numerical study conducted
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on a simplified example system. Finally, Section 4 concludes the paper and discusses potential
directions for future research.

2 Methodology

This section provides a general formulation of the problem. Consider a ride-hailing market with
n competing companies and m regions, each characterized by distinct properties such as area,
average speed, and demand. Each company i ∈ N operates N̄i vehicles and manages its fleet
distribution N̄ j

i , representing the number of vehicles dispatched to Region j ∈ M. Since the
fleet size N̄ j

i consists of discrete variables, we instead introduce the fleet density N j
i = N̄ j

i /A
j in

[veh/m2] to create a continuous and differentiable decision space, where Aj denotes the area of
Region j. The fleet size N̄i can be alternatively expressed as

∑
j∈M Aj ·N j

i . Similarly, we define
the empty fleet density V j

i in [veh/m2] and the accumulated density of empty vehicles in Region j

as V j =
∑

i∈N V j
i . The trip flux Qj

i in [veh/(min ·m2)] represents the trip flow per unit area. At
steady state, N j

i , V j
i and Qj

i should satisfy the following the conservation equations:

N j
i = V j

i + wjQj
i + T jQj

i (1)

Dj =
∑
i∈N

Qj
i (2)

Here wj = wj
match + wj

pickup denotes the expected waiting time of a customer in Region j after
submitting a request, comprising the matching time wj

match and the pickup time wj
pickup. The

travel time T j represents the average duration a customer spends in a vehicle. Consequently, N j
i

is divided into three groups: the idling group V j
i , the deadheading group wjQj

i , and the traveling
group T jQj

i . Moreover, Dj represents the realized demand in Region j and should be expressed as
a function of the fleet size. To simplify the problem formulation, we make the following assumptions
about the market:

(1) Dedicated drivers: N̄i remains constant ∀i during the operation.

(2) Zero matching time: Matching operates on the first-come-first-served (FCFS) and the
nearest-first (NF) principles, and is perfectly efficient, i.e. wj

match = 0 ⇒ wj = wj
pickup.

(3) Regional Isotropy: T j , wj and Dj are time-invariant ∀j but may differ between regions.

We further assume that the pickup time wj
pickup is a convex and decreasing function of V j satisfying

the following conditions:

wj(V j → 0)→ +∞ and wj(V j → +∞)→ 0 (3)

Additionally, the regional realized demand is assumed to be a concave and increasing function of
V j such that

Dj(V j = 0) = 0 and Dj(V j → +∞)→ Dj
max, (4)

where Dj
max is the maximum realizable demand flux in Region j. These assumptions reflect that

a higher density of idling vehicles results in shorter distances for drivers to reach customers and
increases the probability of customers opting for ride-hailing services. Following the FCFS and
NF assumptions, the regional realized demand flux is proportionally distributed among companies
based on their empty fleet densities. Specifically, the realized demand for Company i in Region j

is expressed as

Dj
i =

V j
i

V j
·Dj(V j) =

V j
i

V j
i + V j

−i

·Dj(V j
i , V

j
−i), (5)

where V j
i =

∑
l∈N ,l ̸=i V

j
l represents the aggregated empty fleet density in Region j excluding

Company i. In addition, inspired by the concept of supply flux Sj
i introduced in Xu et al. (2019),

we rearrange Eq.(1) as,

Sj
i =

N j
i − V j

i

wj(V j) + T j
(6)
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For conciseness, we omit the argument V j = V j
i + V j

−i in Dj(V j) and wj(V j) in the following
sections. At steady state, the supply equals the realized demand, thus Qj

i = Sj
i = Dj

i . This yields:

N j
i − V j

i

wj + T j
=

V j
i

V j
·Dj ⇒ N j

i = V j
i ·

(
1 +

wj + T j

V j
Dj

)
. (7)

The right part of Eq.(7) provides an explicit relation between N j
i and V j

i , which will be elaborated
in the next subsection.

Formulation of the game

As discussed previously, all the quantities are expressed or assumed as functions of the empty fleet
density V j

i , thus it is convenient to formulate the problem with V j
i as the decision variable. This

change of variables is valid since the one-to-one relation between N j
i and V j

i for N j
i , V j

i ∈ Rm
+

given fixed V j
−i can be easily proved by constructing the derivative of N j

i w.r.t. V j
i and proving its

continuity and positivity. Once V j
i is optimized, N j

i can be computed based on Eq.(7). The goal
of company i is then to maximize its aggregate traffic flow Qi =

∑
j∈M Qj

i over its empty fleet
densities V j

i given fixed V j
−i ∀j,

Qi(Vi,V−i) =
∑
j∈M

AjDj
i =

∑
j∈M

AjV j
i

V j
·Dj , (8)

subject to the conservation equation,

N̄i =
∑
j∈M

AjN j
i =

∑
j∈M

AjV j
i ·

(
1 +

wj + T j

V j
Dj

)
. (9)

Without loss of generality, we assume Aj = 1 ∀j as Dj already incorporates regional properties
including the area. Therefore, the objective of each company can be rewritten as minimizing the
negative flow over Vi given fixed V−i as below,

Ji(Vi,V−i) = −
∑
j∈M

V j
i

V j
·Dj , (10)

where Vi = vec{V j
i }j∈M ∈ Rm

+ and V−i = vec{V j
−i}j∈M ∈ Rm

+ . The feasible region of Vi is
determined by the intersection of Vi ≥ 0 and the following coupling constraint,

gi(Vi,V−i) = N̄i −
∑
j∈M

V j
i ·

(
1 +

wj + T j

V j
Dj

)
. (11)

According to the conservation equation, gi = 0 when all the available vehicles from company i are
dispatched. In practical operations, however, certain vehicles or drivers may temporarily suspend
their operations or withdraw from the fleet, for reasons such as off-peak hours, an increase in the
commission rate, and so on. While these factors are not addressed in this study, it is admissible to
relax the equality constraint into an inequality, namely gi ≤ 0, since the conservation constraint is
active in this problem thus the optimal solution remains unchanged. Therefore, the competition
can be formulated as a game where each Company i ∈ N solves an optimization problem Pi given
the fixed strategies V−i of other companies as follows,

Pi : min
Vi∈Rm

+

Ji(Vi,V−i)

s.t. gi(Vi,V−i) ≤ 0
(12)

The generalized Nash equilibrium (GNE) of the game is then defined as a collective strategy
V∗ = [V⊤

1 , · · · ,V⊤
n ]

⊤ such that for each i ∈ N the following inequality holds:

Ji(V
∗
i ,V

∗
−i) ≤ inf

Vi∈Rm
+

{
Ji(Vi,V

∗
−i) | gi(Vi,V

∗
−i) ≤ 0

}
(13)

In other words, no company can improve its profit by unilaterally changing its dispatch strategy
from V∗

i to another feasible one.
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Iterative algorithm

An iterative algorithm is provided below to compute and evaluate the convergence of the GNE
of the game. In each iteration, Pi is used to compute Vi as the best response to the strategies
(assumed to be known to all companies) of other companies, continuing until Vi converges for all i.
It is worth noting that due to the coupling constraint, every update of Vi will change the feasible
regions of V−i. Therefore, instead of updating the strategies simultaneously for all i, we update
the strategies sequentially in descending order of fleet size during each iteration.

Algorithm 1 Iterative computation of the GNE
Input: T j , Dj(·) : R→ R, wj(·) : R→ R, Ninit, max_iter, tol
Output: N∗ ∈ Rnm

k ← 0

Vk ← getVfromN(T j , Dj(·), wj(·),Ninit) ▷ Vk: the k-th iteration of V j
i ∀i, j

while k ≤ max_iter or ∆J ≥ tol do
k ← k + 1

for i = 1 : n do
Vk ← Vk−1

Vk
i ← Pi : argminVi∈Rm

+
{Ji(Vi,V

k
−i) | gi(Vi,V

k
−i) ≤ 0}

end for
∆J =

∑
i∈N ∥Ji(Vk

i ,V
k
−i)− Ji(V

k−1
i ,Vk−1

−i )∥
end while
N∗ ← getNfromV(T j , Dj(·), wj(·),Vk)

The computation of Vk
i based on Pi relies on non-convex optimization algorithms. In this study,

the MATLAB function fmincon is applied with different initial conditions Ninit. Future work
could focus on implementing more efficient non-convex optimization algorithms tailored for Pi.
It can be shown that Ji is convex in Vi given fixed V−i, while gi ≤ 0 specifies non-convex
but proximally smooth sets (Clarke et al. (1995)), also referred to as weakly convex sets (Vial
(1983)). These properties allow for the efficient computation of the so-called local generalized
Nash equilibrium (LGNE) using quasi-variational inequality (QVI) proposed in Scarabaggio et al.
(2024). The theorem of LGNE guarantees both the existence and the convergence to the (locally)
unique LGNE under mild conditions. For further research, it would be valuable to analytically
investigate the existence and uniqueness of the GNE, as well as the difference between the GNE
and the LGNE.

3 Results and discussion

To demonstrate and analyze the properties of the ride-hailing market model, we consider an ex-
ample system with n = 2 ride-hailing companies and m = 2 regions, denoted by i ∈ N = {1, 2}
and j ∈ M = {A,B}, respectively. Specifically, we use a concave and monotonically increasing
function that involves an exponential component to represent the changes in the realized demand
w.r.t. V j , i.e.,

Dj(V j) = Dj
max ·

(
1− exp (−αjV j)

)
(14)

Meanwhile, a conventional function of wj for a two-dimensional space (Xu et al. (2019)) is applied
as follows,

wj(V j) = βj ·
(
V j

)− 1
2 (15)

For simplicity, we set αj = α = 0.12 and βj = β = 4 to be identical across all regions and
remain constant throughout the simulation. To differentiate the regions, Region A is characterized
by higher demand and heavier congestion leading to a longer traveling time. In details, we set
[DA

max, D
B
max] = [16, 9] and [TA, TB ] = [8, 6]. The fleet size N j

i (since the area Aj is assumed to
be 1, we use N in place of N̄) is varied across different scenarios to reveal supply surpluses and
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shortages. Several simulations are performed to illustrate the convergence of Algorithm 1, the
uniqueness of the GNE, and how the demand is shared between the companies relative to their
fleet sizes.

Convergence test

We first perform a convergence test for the iterated Nash equilibria of both companies. By setting
N1 = 120, N2 = 80 and the initial conditions NA

1,init = NB
1,init = 60, NA

2,init = NB
2,init = 40, we

plot the iterations of N j
i and the corresponding realized Qj

i in Fig.1. The results show that the
equilibria converge after 7 iterations of the best response problem Pi. Note Ninit is converted to
(Vi,init,V−i,init) ∀i in order to iterate the equilibria (V∗

i ,V
∗
−i), before computing (N∗

i ,N
∗
−i).
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Figure 1: Convergence of the Nash equilibria

We also plot the variation of the optimization variable V j
i in Fig.2 for both companies. The initial

coupling conservation equation g(Vi,init,V−i,init) = 0 and that at equilibria g(V∗
i ,V

∗
−i) = 0 are

plotted in blue dashed and solid curves respectively. For Company 1, the conservation constraint
hardly changes since the values of [V A

2 , V B
2 ] thus [NA

2 , NB
2 ] exhibit little variation during iteration.

In constrast, the constraint of Company 2 significantly changes due to substantial updates in
[V A

1 , V B
1 ]. The iteration trajectories of V j

i are plotted in red solid curves with circle markers
indicating the intermediate values and a pentagram marking the equilibrium.
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Figure 2: Iteration of V j
i and the visualization of coupling constraints

Uniqueness test

As mentioned previously, the optimization problem Pi is non-convex due to the coupling constraints
derived from the conservation equation. The non-convexity of these constraints has also been
revealed in Fig.2, where the feasible region specified by g ≤ 0 forms a triangle with its hypotenuse
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bent inwards. To check whether the equilibrium is unique, we consider multiple initial conditions
and plot the trajectories of [NA

1 , NA
2 ], i.e. the dispatch strategy of both companies in Region A,

in Fig.3. A total of 81 different initial conditions are considered, with NA
i,init ranging from 10% to

90% in steps of 10%. The trajectories are displayed in different colors while the black pentagram
marks the equilibrium. It can be seen that all the trajectories eventually converge to the same
point, indicating the equilibrium is empirically unique in this setting.
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Figure 3: Convergence of NA
i with different initial conditions

We then demonstrate another case where the equilibrium is not unique, and the results are given
in Fig.4. For clarity, we set TA = TB = 8 in this case to help visualize multiple equilibria.
By comparing Fig.4(a) and (c), we observe that the Nash equilibrium of [NA

1 , NA
2 ] in [%] shifts

symmetrically from [100, 48] to [48, 100] as the fleet size [N1, N2] changes from [95, 105] to [105, 95].
However, as shown in (b), multiple equilibria occur when two companies have equal fleet sizes.
More specifically, there exists a curve that contains infinitely many Nash equilibria.
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Figure 4: Multiple Nash equilibria occur with different values of Ni

Impact of fleet fraction on dispatch strategy and demand

The last simulation explores how capital influences the dispatch strategy. With a fixed Ntot =

N1+N2, we visualize the changes in Nash equilibria of the dispatch strategy [NA
1 , NB

1 , NA
2 , NB

2 ] and
the corresponding realized demand [QA

1 , Q
B
1 , Q

A
2 , Q

B
2 ], as functions of the fleet fraction of company

1 N1/Ntot in percentage. Specifically, N j
i [%] = N j

i /Ni × 100%, Qj
i [%] = Qj

i/D
j
max × 100% and

Qtot[%] =
∑

i,j Q
j
i/

∑
j D

j
max × 100%. For simplicity, we consider Ntot = 270, 200 and 120, all of

which yield unique Nash equilibria.
Fig.5 shows how the equilibrium and the realized demand change when Ntot = 270. The left plot
depicts the trends of N j

i , while the right shows the corresponding Qj
i . When Company 1’s fleet
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fraction is less than 5%, it focuses only on the lower-demand Region B. On the contrary, the larger
company’s strategy remains unaffected by the small company’s presence and primarily follows the
regional demand profile. As Company 1 increases its fleet fraction past 10%, it starts allocating
more vehicles to Region A with NA

1 > NB
1 , until Company 1 becomes a monopoly. The demand

share for each company is roughly linear to its fleet size, and nearly all demand is satisfied, as Qtot

approaches 100%.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Figure 5: The Nash equilibria and regional demand share w.r.t. N1 with Ntot = 270

Next, We reduce the total fleet size to Ntot = 200, with the results displayed in Fig.6. In this
scenario, about 80% of the total demand is served (as seen in Qtot in the right plot). When
N1/Ntot is below 20%, Company 2 as the larger company captures all the demand of Region A.
As N1/Ntot exceeds 35%, Company 1 increases both its fleet fraction and its share of demand in
Region A, until N1/Ntot ≈ 80[%] when it pushes Company 2 out of Region A and begins shifting
its the fleet to Region B. During this period, competition between the two companiesis is primarily
concentrated in Region A, as QA

1 changes significantly w.r.t. N1, while QB
1 remains constant.

After N1/Ntot > 80[%], Company 1’s demand share in Region B rises rapidly as more vehicles are
allocated to that region.
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Figure 6: Nash equilibria and demand share with Ntot = 200

The last scenario we simulate is for Ntot = 120, where the limited supply leads to only 50% of
the total potential demand being captured by the ride-hailing market. In this case, the smaller
company focuses its operation solely in Region B until its fleet fraction reaches 40% of the total
fleet. Interestingly, both companies choose to send a significant portion of their vehicles to Region
B, despite Region A having a higher demand, which can be attributed to Region B’s lower average
travel time. It is also notable that when the two companies are of similar size, i.e. when N1/Ntot ≈
50%, they both allocate about 50% of their total fleet to each region. However, this dispatch
strategies result in unhealthy competition as Qtot at N1/Ntot = 50% is lower than at N1/Ntot = 0%
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or 100% (monopoly). Such unnecessary competition, though not immediately obvious, undeniably
reduces the efficiency of the market.
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Figure 7: Nash equilibria and demand share with Ntot = 120

4 Conclusions

This study develops a comprehensive model to describe a ride-hailing (RH) market, where compa-
nies allocate their vehicle fleets across multiple regions to maximize the number of customers served.
The problem is formulated as a classical multi-player non-cooperative game, with the actions of
each agent (RH company) expected to reach a generalized Nash equilibrium. This equilibrium is
established based on an aggregated flow conservation equation, which partitions the total vehicle
flow into idling, deadheading, and traveling states. The conservation equation introduces a com-
plicated coupling constraint, contributing to the non-convex nature of the optimization problem.
Due to this non-convexity, there is no guarantee of a unique Nash equilibrium. Nevertheless, we
propose an iterative algorithm to compute the equilibrium and test its uniqueness by initializing
the algorithm with different conditions.
A numerical study using various simulations across different scenarios demonstrates the dynamics
of a simple duopoly ride-hailing market, consisting of two regions with varying demand levels
and average travel times. We empirically verify the convergence, discuss the uniqueness of the
equilibria, and explore how the dispatch strategy of each company is affected by its fleet fraction
in the market. The result show that the larger company typically dominates the high-demand
region. while the smaller company tends to operate in the low-demand region, unless its fleet
fraction surpasses a certain threshold. This threshold is found to increase as the overall fleet size
in the market decreases. Eventually, we observe that unnecessary competition arises when the
two companies have similar fleet sizes, as the total demand served in this case is lower than in a
monopoly market.
For future work, We suggest first conducting a complete theoretical analysis of the generalized
Nash equilibrium, proving its existence and (conditional) uniqueness. Furthermore, while the
algorithm proposed here works decently for a simple two-company, two-region system, it becomes
impractical for high-dimensional problems due to the non-convex optimization involved. Therefore,
it is essential to explore more efficient methods tailored to this problem, avoiding direct solutions
to the non-convex optimization. Additionally, further studies could consider dynamic or uncertain
demand patterns and extend the static equilibrium analysis into a control problem, incorporating
vehicle repositioning in markets with asymmetric demand distributions across time and space.

References

Bernstein, F., DeCroix, G. A., & Keskin, N. B. (2021). Competition between two-sided platforms
under demand and supply congestion effects. Manufacturing & Service Operations Management ,

8



23 (5), 1043–1061.

Cai, Z., Chen, Y., Mo, D., Liu, C., & Chen, X. M. (2024). Competition and evolution in ride-
hailing market: A dynamic duopoly game model. Transportation Research Part C: Emerging
Technologies, 164 , 104665. doi: https://doi.org/10.1016/j.trc.2024.104665

Clarke, F. H., Stern, R. J., & Wolenski, P. R. (1995). Proximal smoothness and the lower-c2
property. J. Convex Anal , 2 (1-2), 117–144.

Maljkovic, M., Nilsson, G., & Geroliminis, N. (2022). A pricing mechanism for balancing the
charging of ride-hailing electric vehicle fleets. In 2022 european control conference (ecc) (pp.
1976–1981).

Maljkovic, M., Nilsson, G., & Geroliminis, N. (2023). Hierarchical pricing game for balancing the
charging of ride-hailing electric fleets. IEEE Transactions on Control Systems Technology .

Scarabaggio, P., Carli, R., Grammatico, S., & Dotoli, M. (2024). Local generalized nash equilibria
with nonconvex coupling constraints. IEEE Transactions on Automatic Control .

Tirachini, A. (2020). Ride-hailing, travel behaviour and sustainable mobility: an international
review. Transportation, 47 (4), 2011–2047.

Vial, J.-P. (1983). Strong and weak convexity of sets and functions. Mathematics of Operations
Research, 8 (2), 231–259.

Xu, Z., Yin, Y., & Ye, J. (2019). On the supply curve of ride-hailing systems. Transportation
Research Procedia, 38 , 37-55. (Journal of Transportation and Traffic Theory) doi: https://
doi.org/10.1016/j.trpro.2019.05.004

Zha, L., Yin, Y., & Yang, H. (2016). Economic analysis of ride-sourcing markets. Transportation
Research Part C: Emerging Technologies, 71 , 249-266. doi: https://doi.org/10.1016/j.trc.2016
.07.010

Zhang, K., & Nie, Y. M. (2021). Inter-platform competition in a regulated ride-hail market with
pooling. Transportation Research Part E: Logistics and Transportation Review , 151 , 102327.

9


	Introduction
	Methodology
	Formulation of the game
	Iterative algorithm

	Results and discussion
	Convergence test
	Uniqueness test
	Impact of fleet fraction on dispatch strategy and demand

	Conclusions

