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Abstract

The impact of weather on cycling demand was usually investigated from a collective perspective.
However, the impact on individual-level cycling behavioral changes over time was overlooked in
the literature. This study addresses this gap using Bayesian online changepoint detection (BOCD)
for behavioral change identification and discrete choice models for weather effect estimation. The
proposed method was applied to reveal the impact of weather on cycling frequencies measured by
weekly cycling days. We used a GPS dataset from Zurich comprising 520 cyclists with observation
periods from 31 to 47 weeks. Results show relatively stable cycling frequencies in our sample, with
an average of 2.3 changepoints detected per individual. Snow and precipitation are found to be
the most significant attributes for driving a decrease in long-term cycling frequencies, while the
effect of temperature remains inconclusive.
Keywords: Weather impact, Cycling frequencies, Bayesian online changepoint detection.

1 Introduction

Stability and habitual effects in human travel behavior were well recognized in the literature re-
garding mode choice (Cherchi & Cirillo, 2014), car and public transit usage (La Paix et al., 2022).
In contrast, the stability of bike usage was rarely investigated. This may be attributed to the
lack of long-term observational data on individual-level bike use. Understanding the stability of
individual bike use is important to assess the impact of external factors on long-term changes in
bike use and explore the heterogeneous response to those external factors.

Evidence has shown that weather is an external factor significantly influencing cycling demand
(Böcker et al., 2013). In stated preference studies, rain and snow were found consistently to neg-
atively affect cycling demand, while the effect of temperature varies among cyclists (Motoaki &
Daziano, 2015; Meng et al., 2016). Empirical studies using observational data (e.g., travel survey
data, count data) present diverse impacts of weather conditions on cycling demand cross-sectionally,
with no effects in Tyndall (2022), ambiguous effects in Hudde (2023), negative effects of low/high
temperature, precipitation, high windspeed in Miranda-Moreno & Nosal (2011); de Kruijf et al.
(2021). Most of the studies investigated the impacts of weather conditions on cycling demand from
a collective perspective and showed heterogeneous effects across different built environments and
cultural backgrounds. However, there is limited literature that reveals how the weather conditions
influence the change of individual-level bike use. This may also contribute to exploring the sole
impact of weather.

Efforts made in continuously passive data collection may facilitate this research as identification of
any change of behavioral pattern requires long-term observations. There are usually many anoma-
lies in longitudinal data describing an individual’s regular bike use, which unobserved situational
factors may largely cause. Zhao et al. (2018) developed a Bayesian online changepoint detection
(BOCD) method to detect the change of long-term travel behavior patterns to avoid noise in the
longitudinal data. This study aims to use the BOCD method to identify the time point of robust
change in individual-level cycling frequencies using longitudinal GPS tracking data and explore
the impact of weather conditions on cycling frequency changes.
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2 Methodology

Detection of cycling frequency changes

In this study, the cycling frequency is measured as the number of cycling days in a week for
illustration. For each individual, let xt denote the number of weekly cycling days in a week
t = 1, 2, . . . , T . As xt represents the number of days of choosing to cycle in U = 7 independent
days, xt can be assumed to follow a binomial distribution. Its probability mass function is presented
as:

P (xt = b | θ, U) =

(
U

b

)
θb(1− θ)U−b (1)

where b is the possible value of weekly cycling days ranging from 0 to 7. θ is the probability of
choosing to cycle in a day for an individual. Let x1:T denote the vector of a sequence of observa-
tions of xt from t = 1 to t = T .

Our goal is to detect the changepoints of the pattern of weekly cycling days in the time period
T . k change points would divide time period T into k + 1 segments. Each segment would have
a different distribution of the parameter θ. The Bayesian online changepoint detection (BOCD)
method detects changepoints by modeling the length of the segment at t, which is also called run
length and denoted as ct. ct is an integer ranging from 0 to t and it can be presented as:

ct =

{
0, if a changepoint occurs in week t,

ct−1 + 1, otherwise.
(2)

Based on Bayes theorem, the posterior distribution of ct can be calculated using the existing
observations until time point t as:

P (ct | x1:t) ∝ P (ct, xt | x1:t−1)

= P (xt | ct, x1:t−1)P (ct | x1:t−1)

= P (xt | ct, x1:t−1)
∑
ct−1

(
P (ct | ct−1)P (ct−1 | x1:t−1)

) (3)

It shows that the probability of ct given x1:t−1 can be expressed recursively. As shown in Equation
2, the change of segment length ct between two sequential segments only has two possible outcomes.
One is to increase by one based on the segment length ct−1; the other possibility is to drop to 0,
which implies a changepoint occurs. The changepoint prior P (ct | ct−1) can be modeled based on
a hazard function:

P (ct | ct−1) =


H(ct−1 + 1), if ct = 0,

1−H(ct−1 + 1), if ct = ct−1 + 1,

0, otherwise.
(4)

where H is a hazard function representing the probability that an event is expected to occur.
Assuming that the prior probability distribution of the segment length follows an exponential
distribution with timescale λ, the hazard function is actually a constant 1/λ. Then, the posterior
probability of xt conditional on existing observations and current segment length can be expressed
as:

P (xt | ct, x1:t−1) =

∫
θt−ct:t

P (xt | θt−ct:t)P (θt−ct:t | ct, x1:t−1) dθt−ct:t (5)

As xt follows a binomial distribution, a member of the exponential family distribution, P (xt |
ct, x1:t−1) can be estimated based on the beta-binomial distribution as:

P (xt | U,α, β) =
Γ(U + 1)Γ(xt + α)Γ(U − xt + β)Γ(α+ β)

Γ(xt + 1)Γ(U − xt + 1)Γ(U + α+ β)Γ(α)Γ(β)
. (6)

where Γ is the Gamma distribution. α and β are hyperparameters of the beta distribution whose
probability density function is calculated as:

P (θ | α, β) = θα−1(1− θ)β−1 Γ(α+ β)

Γ(α)Γ(β)
, (7)

α and β at time t within each segment can be updated based on the run length ct:

α
(c)
t = α0 +

∑
t′∈ct

xt′ , (8)
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β
(c)
t = β0 +

∑
t′∈ct

xt′ , (9)

where α0 and β0 are predefined prior of the hyperparameters. The above algorithm will be applied
to detect the changepoints for each individual.

Model evaluation

The last section shows that there are three predefined parameters of the BOCD method: constant
hazard function 1/λ, hyperparameters of the beta distribution α, and β. To select a proper
constant hazard function and test the model’s sensitivity to the prior hyperparameters, we need
some criteria to evaluate the model performance. Assuming that in x1:T , we detect k changepoints.
The original dataset will then be divided into k + 1 segments (X0, X1, ..., XK). The likelihood L
of the model for each individual can be calculated as:

L = P (X | Ω, α, β) =
K∏

k=0

P (Xk | α, β)

=

K∏
k=0

∫
P (Xk | θk)P (θk | α, β)dθk

=

K∏
k=0

uk+1−1∏
t=uk

∫
P (xt | θk)P (θk | α, β)dθk

(10)

where Ω represents the model we used for changepoint detection. AIC and BIC values can then
be calculated as follows:

AIC = 2M(k + 1)− 2 ln(L) (11)

BIC = ln(T )M(k + 1)− 2 ln(L) (12)

where M is the number of the distribution parameter for each segment. T is the number of observed
weeks of each individual. The model evaluation is based on the average value of AIC and BIC
across all individuals. The lower the AIC and BIC values, the better the model’s performance.

Impact of weather on cycling frequency changes

After obtaining the changepoints, the multinomial logit model (MNL) is used to explore the impact
of weather conditions on the probability of the three possible choices regarding the change of cycling
frequency (measured as number of weekly cycling days) pattern for each user week: choosing to
increase, decrease or make no changes in the cycling frequency. The utility U of three alternatives
(increase = i, decrease = d, no changes = n) where "no changes" is served as the base alternative
is denoted as:

Ui = αi +Xβi + ϵ (13)

Ud = αd +Xβd + ϵ (14)

Un = ϵ (15)

where α is the alternative specific constant term, X is the vector of weather condition attributes and
other control attributes in each week, β is the vector of associated alternative specific parameters,
ϵ ∼ Gumbel(0, 1) is the random error term. Let y ∈ {i, d, n} denote the chosen alternative, then
the probability of choosing y can be expressed as:

Py =
exp(Uy)

exp(Ui) + exp(Ud) + exp(Un)
(16)

The MNL model is estimated in Biogeme (Bierlaire, 2023).

3 Case study

Longitudinal data description

For the case study, we used a Switerland-wide GPS tracking dataset from EBIS (E-Biking) project
(Heinonen et al., 2024). Participants in EBIS project consist of cyclists and e-bikers. This project
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starts in September 2022, and four to eight weeks of GPS tracking is required to receive the in-
centive. It also includes a randomized control trial (RCT) to investigate the effect of transport
pricing on the mode shift from car to e-bike. After the official experiment period, many partic-
ipants keep tracking their trajectories, which gives this dataset the potential to investigate the
behavior pattern change of cyclists within a long-term period. The post-study participation rate
was found to be influenced mainly by the recruitment channel and the mobile operating system
but not sociodemographic (Heinonen et al., 2024).

We first select stage records starting and ending in Zurich to reduce the uncontrolled disturbances
for investigating the weather effects on cycling frequencies. To ensure the observation period of
the users is long enough to detect robust behavioral change, we only selected users with active
observation days longer than 210 days. As we are interested in the change in the number of weekly
cycling days, we aggregated the data into week-level data based on the number of days with at
least one cycling stage in a week. We also removed the records before the first complete calendar
week and calendar weeks without any records for each user. Therefore, we ended up with 520 users
and, in total, 21446 user weeks from September 2022 to August 2023 for further analysis. The
number of observed weeks of users ranges from 31 to 47 (on average 41.2) weeks. The number of
valid users in each week during othe bservation period is shown in Figure 1(a). Figure 1(b) shows
the overall share of weekly cycling days during the observation period. There is an increasing share
of higher weekly cycling days. This may be motivated by the official experiment of the first four
to eight weeks. Participants reduced their weekly cycling days in the winter, especially during the
Christmas break. After that, the weekly cycling days grew gradually, followed by a decreasing
trend since late June. The following section will apply the BOCD method to detect the pattern
change in individual-level weekly cycling days.

Figure 1: Distributions of number of observed weeks per person

Changepoints detection

Among 520 users, the average number of detected changepoints is 2.3 (14% of users with zero
changepoint, 25% of users with one changepoint, 19% of users with two changepoints, 18% of users
with three changepoints, and 24% of users with four and more changepoints. Figure 2 shows the
trajectory of every two adjacent changepoints for all users during the observation period. The
red curve bridges two changepoints where the first changepoint is an increasing changepoint, and
it represents the period with increasing cycling frequencies compared to the previous period. In
contrast, the blue curve represents the period with decreasing cycling frequencies compared to
the previous period. The size of the point along the timeline indicates the ratio of changepoints
to the number of valid users for each week. Red points for the ratio of increasing changepoints
and blue points for the decreasing changepoints. Although the trajectory pattern of changepoints
seems quite diverse, we could still observe that many users started to increase their regular cycling
frequencies during the official experiment period and then decrease their cycling frequencies dur-
ing December and January. Cycling frequencies were relatively stable from January to April, and
the observed changes were mixed across all users. Since April, both the ratio of increasing and
decreasing changepoints have increased. The ratio of increasing changepoints peaks at the end of
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May, while the ratio of decreasing changepoints peaks in mid-July.

In our BOCD algorithm, the constant hazard value λ is set to 25, and the initial parameters α0 and
β0 of beta distribution are set to 1.0. The selection of constant hazard value is based on multiple
model performance indicators. We tested our model with constant hazard values from 5 to 55
with an interval of 5. The average Log-likelihood, average AIC, and average BIC across all users
were calculated as shown in Figure 3. We selected 25 because the average AIC and average BIC
values are almost leveled after 25, and there is not much loss in average Log-likelihood compared to
the best value. In our case, the intuition of the constant hazard value equals 25 is that a person’s
regular cycling frequency is expected to change after 25 weeks. We also tested the sensitivity of the
initial distribution parameters as shown in Figure 4. The Discrepancy of the ratio of changepoints
with different initial values of β only occurs at the beginning of two months. Changepoints detected
within the group of lower value of β0 are not captured anymore within the group of higher value
of β0, as the beta distribution with higher value of β indicates the distribution of the probability
parameter in Bernoulli distribution is more skewed to 0. This may imply the disturbances or
uncertainties in the model brought by the official experiment period.

Figure 2: Trajectory of adjacent changepoints for users and ratio of changepoints

Weather effect

Weather data used in this study is from a public website (https://www.visualcrossing.com/
weather-history/Zurich,Switzerland). We aggregate the value of daily weather attributes
across the week into the weekly average. Table 1 summarizes the statistics of six main weather
attributes we considered in our model.

Table 1: Summary statistics of weekly average value of weather attributes

Variable Min Q1 Q2 Q3 Max Mean Std
Temperature (°C) -1.8 7.8 12.8 19.1 24.3 12.7 7.1
Precipitation (mm) 0.0 0.6 2.0 3.9 12.9 2.7 2.7
Snow (mm) 0.0 0.0 0.0 0.0 0.7 0.0 0.1
Windspeed (km/h) 6.8 12.1 13.9 16.5 28.3 14.8 4.1
Humidity (%) 42.3 64.3 72.9 77.7 92.1 71.3 11.2
Cloudcover (%) 3.0 40.6 53.6 71.0 89.6 53.9 19.5

The advantage of using the BOCD method for behavior change detection is to eliminate the impact
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of behavior anomalies and to identify robust pattern change. However, the effect of the official
experiment period and long holidays also seems to be captured from the changepoint detection
results. To control the impact of these two major external factors on all users, we introduce two
binary control variables in our model. The first variable, ’holiday,’ is set to 1 for three weeks during
Christmas and New Year break and two weeks during Easter. The second variable, ’experiment,’
is set to 1 for the official experiment period of each user (first 4 to 8 weeks, depending on the user
group). For average weekly weather attributes, we considered the current week’s value and the
difference between the current week and the previous week. Weather attributes with correlation
coefficients greater than 0.5 are excluded in our model to avoid multicollinearity. Two models,
one with constant and control variables only and the other with additional weather attributes are
estimated as shown in Table 2. As the share of having an increasing changepoint (3.81%) and
a decreasing changepoint (3.88%) across observations is low, the utility of having a changepoint
is mainly contributed by the negative constant term. This indicates that the regular cycling fre-
quency is stable in our sample. Two control variables are significant, with the negative effect of the
holiday period and the positive effect of the official experiment period on the utility of having an
increasing changepoint, and their effects on the utility of having an increasing changepoint being
adverse. Increasing snow has a significant negative effect on increasing changepoints and a posi-
tive effect on decreasing changepoints. Higher precipitation only impacts decreasing changepoints
positively. The temperature has a positive effect on both types of changepoints, which may imply
heterogeneous preferences for the temperature consistent with Miranda-Moreno & Nosal (2011)
and de Kruijf et al. (2021). Unintuitively, a larger windspeed would reduce the probability of
decreasing changepoints. Increasing temperature and humidity compared to the previous week
would increase the probability of decreasing changepoints.

Table 2: Model estimation results

Control variables Control & weather variables
Alternative Variable Coef. Std. Err. p-value Coef. Std. Err. p-value
Increasing changepoint Constant -3.725 0.052 0.000 -3.899 0.197 0.000

Control variables
Holiday period (binary) -0.596 0.174 0.001 -0.497 0.197 0.012
Experiment period (binary) 1.117 0.091 0.000 1.122 0.093 0.000
Average
Temperature (°C) 0.037 0.008 0.000
Precipitation (mm) 0.001 0.023 0.950
Snow (mm) -2.158 0.575 0.000
Windspeed (km/h) -0.012 0.013 0.330
Difference compared to previous week
Temperature (°C) 0.004 0.017 0.805
Humidity (%) -0.014 0.008 0.093
Cloudcover (%) 0.000 0.003 0.992

Decreasing changepoint Constant -3.504 0.047 0.000 -4.415 0.226 0.000
Control variables
Holiday period (binary) 0.358 0.112 0.001 0.872 0.131 0.000
Experiment period (binary) -1.328 0.224 0.000 -1.360 0.229 0.000
Average
Temperature (°C) 0.077 0.009 0.000
Precipitation (mm) 0.116 0.020 0.000
Snow (mm) 1.928 0.397 0.000
Windspeed (km/h) -0.028 0.011 0.011
Difference compared to previous week
Temperature (°C) -0.111 0.019 0.000
Humidity (%) -0.027 0.008 0.001
Cloudcover (%) 0.002 0.004 0.638

Number of observations 21446 21446
Log-likelihood -5240 -5121
Adjusted 0.777 0.782
BIC 10541 10441
Note: estimates highlighted in bold have a p-value no greater than 0.05.

To reveal the impact of different weekly average weather attributes on the probabilities of hav-
ing changepoints more straightforwardly, we calculated the predictive probability for each type of
changepoint under several weather conditions as shown in Table 3. The medium value of each
weather attribute was used in the base scenario, and we tested scenarios where one of the at-
tributes was changed to its minimum or maximum value. In the base scenario, the probability
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of increasing and decreasing changepoints are 3.06% and 2.61%, respectively. Overall, the change
in weather conditions has a larger impact on the probability of increasing change points. For in-
creasing changepoints, its probability is the lowest during ’extreme’ snowy and rainy weather and
highest during high temperatures, and other attributes have marginal effects within the range of
their observed values. For decreasing changepoints, its probability is the highest, with four times
the base scenario during ’extreme’ snowy weather, followed by ’extreme’ rainy weather and high
temperatures. Its probability is the lowest during the ’extreme’ cold weather.

Table 3: Predictive probability under different weather conditions

Temperature Precipitation Snow Windspeed Temperature Probability of Probability of
(°C) (mm) (mm) (km/h) difference(°C) increase (%) decrease (%)
12.8 2.0 0.0 13.9 0.0 3.06 2.61
-1.8 2.0 0.0 13.9 0.0 1.84 0.87
24.3 2.0 0.0 13.9 0.0 4.43 6.00
12.8 0.0 0.0 13.9 0.0 3.08 2.09
12.8 12.9 0.0 13.9 0.0 2.87 8.69
12.8 2.0 0.7 13.9 0.0 0.60 10.06
12.8 2.0 0.0 6.8 0.0 3.04 3.16
12.8 2.0 0.0 28.3 0.0 3.09 1.76
12.8 2.0 0.0 13.9 -5.0 3.00 4.46
12.8 2.0 0.0 13.9 6.3 3.10 1.31
Note: values in bold are different from the medium value of the attributes in the base scenario.

4 Conclusions and future work

This study explored the impact of weather conditions on the change in individual-level regular
cycling frequencies (measured as weekly cycling days) by 1) identifying the robust changepoints
of cycling frequencies using the Bayesian online changepoint detection (BOCD) method and 2)
statistically estimating the effect of different weather attributes on the probability of having an
increasing or decreasing changepoint using multinomial logit (MNL) models.

We tested our methods on a Swiss GPS tracking dataset targeting bike or e-bike owners. A sub-
dataset for records in Zurich consisting of 520 users and 21446 user weeks was used for our case
study. Cycling frequencies were found to be relatively stable in our sample. The robustness of
the algorithm was proved by testing different initial distribution parameters. On average, 2.3
changepints were detected during 31 to 47 weeks. Estimation results of MNL models show signif-
icant impacts of weather conditions on changepoint probabilities after controlling the influence of
long-term holidays and experiment periods. The probability of decreasing changepoints is more
affected than increasing changepoints by weather conditions. Snow and precipitation have the most
significant positive effect on decreasing regular cycling frequencies and the most significant nega-
tive effect on increasing regular cycling frequencies. The temperature has a similar impact on both
types of changepoints, with the cycling frequency changes more likely to occur in higher tempera-
tures and less likely in lower temperatures. Cyclists also have a lower probability of decreasing their
cycling frequencies when the temperature is increasing than the previous week. Windspeed has an
unexpected negative effect on decreasing changepoints, which may be related to the difference be-
tween windspeed measurement and the perception of cyclists due to the hilly topography of Zurich.

There also exist several limitations. The proposed framework was only tested in a single city,
and the sample is biased toward the male, highly educated, and high-income urban populations
(Heinonen et al., 2024). The observation period was less than one year. Although major external
factors that may cause long-term behavioral change were controlled in the model, factors such as
home location change were not considered. For future work, it would be interesting to extend the
MNL model to 1) consider the nonlinear-in-parameter effect or threshold effect of the continuous
weather attributes, 2) explore the time lag effect of the weather change, and 3) capture the het-
erogeneity of weather impacts on people with different sociodemographics and travel and time use
habits.
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Appendix

Figure 3: Model evaluation for different prior hazard constant (λ)

Figure 4: Ratio of changepoints with different initial hyperparameters
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