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Short summary

On-demand travel alternatives offer a myriad of advantages for both service users and service oper-
ators. With on-demand trip-sharing, the derived benefits are more accentuated, but little is known
about the macroscopic user performance and efficiency of high-capacity on-demand services as a
replacement for bus services. In this work, we develop a macroscopic comparison scheme between
flexible-route and flexible-schedule micro-transit services, and fixed-route and fixed-schedule public
transportation. To analyze the replaceability potential between the two types of services under
different graph structures and various spatial demand distributions and intensities, we develop
two simulation frameworks to replicate station-based micro-transit and fixed-schedule bus. By
examining the values of detour, waiting time, and occupancy under various graph and demand
configurations, we infer the performance and efficiency of each service. The results show that the
difference in aggregate waiting times is insignificant under relatively low or high demand rates.
Keywords: Bus services, Dynamic matching and dispatching, On-demand micro-transit.

1 Introduction

On-demand micro-transit service structure functions as an intermediate between fixed buses and
flexible ride-hailing: while its relatively high capacity is similar to that of public transportation,
its fully flexible operation and schedule are in line with ride-hailing. Given these characteristics, it
has been recently proposed to use on-demand micro-transit services as a substitute for fixed-line
buses. However, it remains debatable if high-capacity micro-transit can match the efficiency of
more established public transportation options. Efforts in the area aim at providing a classifica-
tion of the different demand-responsive buses based on service flexibility, service functionality as a
feeder or self-standing, and service optimization framework with vehicle-passenger matching and
vehicle dispatching Vansteenwegen et al. (2022). Researchers focused on designing fast and efficient
real-time exact methods Alonso-Mora et al. (2017), heuristics Santos & Xavier (2013); Jung et al.
(2016), or meta-heuristic Ali et al. (2019), to achieve a high-quality matching and routing. Clearly,
the key feature of this service is trip-sharing, where pooling efficiency is trip-dependent Soza-Parra
et al. (2023); Ke et al. (2021), and is influenced by many factors, including network configuration,
demand intensity, and demand distribution. The authors in Molkenthin et al. (2020); Zech et al.
(2022) provided scaling laws that output the efficiency of high-capacity ride-sharing services under
different network topologies and spatiotemporal demand. In Daganzo et al. (2020), the authors
advanced closed-form formulas for performance metrics and detour upper bound guarantees but
their approach was restricted to trips with two passengers only. In this work, we address the
replaceability of fixed buses with on-demand micro-transit services. By replicating each service
independently, we focus on the substitution potential by comparing macroscopic performance met-
rics. To achieve so, we first develop a comparative framework between the two services and then
we run them for various network structures and demand configurations. Finally, we delineate the
difference in performance and level of service. The summary of the comparative framework we
construct in this work is found in Figure 1.
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Figure 1: Summary sketch of the approach we adopt.

2 Methodology

Consider a complete network graph G = (V, E) where V is the set of network station nodes, and E
is the set of edges between the nodes. The boarding and alighting of passengers happen exclusively
at stations V. We denote by T ∈ RV×V

≥0 the matrix defining the travel time on the edge eij , where
eij ∈ E is the edge between two stations i and j, i, j ∈ V. The travel time between any two stations
is strictly positive. As a consequence, together with the completeness assumption of the graph,
for all i, j ∈ V, Tij = 0 if and only if i = j. We also make the natural assumption that the matrix
T satisfies triangular inequality such that Tij ≤ Tik + Tkj for i, j, k ∈ V. The passenger arrival
covers a time period T > 0, and the average hourly passenger demand rate is given by the matrix
Q ∈ RV×V

≥0 , where Qij is the demand rate between any two nodes i, j ∈ V. We will throughout the
work assume that matrix Q is zero on the diagonal, i.e., Qii = 0 for all i ∈ V. The total demand
for all potential origins and destinations is given by λ =

∑
i∈V

∑
j∈V Qij .

Next, we introduce the set of potential passengers P, in which each element is the tuple (po, pd, tp)
consisting of the passenger’s origin po ∈ V, destination pd ∈ V and arrival at the pick-up location
tp ∈ [0, T ]. We model the set P as a set generated by a Poisson process with rates Q. For ever
origin o ∈ V and every destination d ∈ V, let Nod(ta, tb) be the number of passenger arrivals during
the time-interval (ta, tb], i.e.,

Nod(ta, tb) = |{(po, pd, tp) ∈ P | po = o ∧ pd = d ∧ ta < tp ≤ tb}| , (1)

then
P{Nod(ta, tb) = n} =

[Qod(tb − ta)]
n

n!
e−Qod(tb−ta) , ∀o, d ∈ V , 0 ≤ ta < tb ≤ T . (2)

Each served passenger p ∈ P incurs a waiting time before pick-up that we refer to as wp, and a
detour time that we refer to as ∆tp defined as the additional time traveled by passenger p compared
to the direct trip between po and pd.
Irrespective of the type of operating service, the network under consideration has a set of N
in-service vehicles with fleet size N = |N |, each with a capacity C ∈ Z>0. To every vehicle
n ∈ N we associate a route Rn = {r1, r2, ..., rm} consisting of an ordered sequence of station
nodes r1, r2, ..., rm ∈ V to be visited by vehicle n, with m ∈ Z+ being the length of the route
Rn. Additionally, we relate to every route Rn an ordered sequence of station arrival time An =
{a1, a2, ..., am}, where ai ∈ R≥0 represents the arrival time of vehicle n at station ri, i ∈ [1,m].
For a given passenger p ∈ P, we let ν(p), where ν : P → N , denote the assignment of the passenger
to a vehicle n ∈ N . Moreover, once a vehicle is assigned, let σn(p), where σn : P → An denote the
pick-up time of the passenger. Similarly, we let τn(p), τn : P → An, denote the drop-off time of the
passenger. If the passenger has not been assigned to a vehicle, and subsequently has no pick-up or
drop-off time, the functions will take the value +∞.
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The occupancy of vehicle n ∈ N at any point in time is given by the function on : [0, T ] → Z where

on(t) =
∑

p∈P:ν(p)=n

1σn(p)≤t − 1τn(p)≤t . (3)

Here 1 denotes the indicator function. Once the vehicle routing and passenger assignment are
done, the waiting time to be picked up for a passenger p ∈ P is given by

wp = σν(p)(p)− tp . (4)

Similarly, the detour time is given by

∆tp = τν(p)(p)− σν(p)(p)− Tpo,pd , (5)

where, with slight abuse of notation, we let ∆tp = +∞ if either τν(p)(p) or σν(p)(p) is infinity. Next,
we elaborate on how the route of every operating vehicle Rn and its respective schedule An are
built and updated, their construction being dependent on the type of service under consideration.

On-demand micro-transit services

On-demand micro-transit services are characterized by a flexible route Rn and flexible schedule An

that are updated dynamically with the arrival of new potential passengers. A station-based service
structure requires a newly arriving request z ∈ P to input into the micro-transit platform their
origin station zo, their destination station zd, and their time of arrival at station tz. The vehicle-
passenger assignment, ν, is based on a first come first served. As soon as the request arrives on
the platform, we compute the operational incremental cost of assigning passenger z ∈ P to vehicle
n ∈ N , C(z, n) as the solution to the following optimization problem:

minimize
Rn

∑
p∈Ptz

n ∪{z}⊆P

wp +∆tp

subject to ν(z) = n

wp ≤ wmax p ∈ Ptz

n ∪ {z} ⊆ P
∆tp ≤ ∆tmax p ∈ Ptz

n ∪ {z} ⊆ P
on(t) ≤ C t ∈ [σn(z), τn(z)]

(6)

where Ptz

n = {p ∈ P | tp < tz ∧ ν(p) = n} is a subset of P including all the requests that arrived
before request z and are matched by the platform to vehicle n. The optimization problem in (6)
aims at assigning the newly arriving request with the decision variables being the updated vehicle
route Rn and the updated arrival times An, n ∈ N . The objective is to minimize the total passenger
delays that is composed of a combination of the waiting time and detour. Furthermore, the first
constraint in (6) guarantees that request z is assigned to vehicle n, and the second constraint
ensures the waiting time of all the received requests assigned to vehicle n does not exceed the
threshold wmax. Likewise, the third constraint ensures that the detour time of all passengers
assigned to vehicle n does not exceed the threshold ∆tmax. Finally, the fourth constraint checks if
the request assignment does not violate vehicle capacity limits.
Once the cost is computed for every vehicle, the passenger is assigned to the vehicle with the lowest
cost, i.e.,

ν(z) = argmin
n∈N

C(z, n) . (7)

Fixed-schedule bus services

In this part, we elaborate on the approach that we adopt to construct the bus routes Rn, and the
bus schedules An. Different from the previous on-demand approach, Rn and An will be predefined
and hence computed offline. The objective is to establish a general approach to design fixed-
schedule bus lines for different graph structures G to eventually compare the two types of flexible
and fixed services. For this reason, the design of both services must aim to achieve the same
objective, i.e., minimizing the total passenger delays.
Given a set of station nodes V, we follow a two-step approach to illustrate the design of bus services
on the strategic level. First, we start by grouping the different station nodes into various clusters
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or lines, and then we utilize the travel time between nodes to determine which station nodes belong
to which line.

Bus station clustering: Let K be the set of bus lines grouping all the stations V of the network G.
We will in this work limit our comparison to a setting where the passengers will not have to perform
any bus transfers to reach their destinations. To formulate this problem, we let X ∈ {0, 1}V×K

be a binary matrix with element Xik, i ∈ V, k ∈ K, equal to 1 if station node i belongs to bus
line (cluster) k, and 0 otherwise. Additionally, it will turn out to be useful to define ykij , i, j ∈ V,
k ∈ K to be another binary variable equal to the product XikXjk, i.e., ykij = 1 if both nodes i and
j belongs to bus line k. Given the objective of constructing bus lines while minimizing the overlap
between clusters, we formulate the bus line station clustering problem as follows

minimize
X∈{0,1}V×K, s∈≥0

s

subject to X1 > 0

XT1 ≤ s1∑
k∈K

ykij ≥ 1 ∀i, j ∈ V

ykij = XikXjk ∀k ∈ K, i, j ∈ V

(8)

where s is a decision variable referring to the maximum number of stations per cluster. The first
constraint in (8) makes sure that each station node in V belongs to at least one line. The second
constraint ensures that the number of stations per line or cluster is no more than s. The third
constraint makes sure that each origin and destination station is covered by at least one cluster.
Finally, the fourth constraint ensures that an origin-destination pair is covered by cluster k ∈ K
only when both the origin and destination belong to k.

Bus line design: Next, we expound on the approach we follow to construct the fixed routes
for buses. The objective of constructing bus lines is to eventually determine the set of routes R,
where each route will be an ordered set of the nodes in a cluster k ∈ K, corresponding to each
bus line k, with Rk ∈ R being the route that buses operating on line k follows. Note that any
vehicle n has a route Rn ∈ R, and all the vehicles operating on the same bus line have the same
route. Therefore, we start by selecting one permutation matrix P , P ∈ {0, 1}V×V that we use to
permute the rows of the matrix X∗, X∗ being the solution of the optimization problem defined
in the previous part. Therefore, by multiplying the two matrices, the output PX∗ is one possible
permutation of the stations V over the clusters K while still abiding by the constraints that we
set in the problem formulation in (8). Once the belonging of each node is defined according to
the output of the permuted matrix PX∗, we proceed next in determining the sequence of nodes in
each cluster to eventually obtain the route Rn for the subset of vehicles n ∈ N operating in cluster
k. To do so, we resort to a simulated annealing approach to solve the Traveling Salesman Problem
(TSP) for each cluster k independently. Therefore, we define Vk = {v ∈ V | (PX∗ek)v = 1} to be
the set of nodes belonging to cluster k after the permutation of nodes over the different clusters,
with ek being a 1× |K| column vector with entry 1 on the kth element, and 0 otherwise. Once all
the sequence of routes for all the clusters are found, the arrival times for the nodes among a route
Rk = {v1, v2, . . . , vℓ} ∈ R, is given by

akvi
=

{
0 if i = 1 ,

Tvi−1,vi + akvi−1
if i > 1 .

(9)

The total detour δ for all the possible OD pairs, weighted by the demand intensity between these
pairs, can then be computed by

δ =
∑
i∈V

∑
j∈V

Qij

λ
minRk∈R|{i,j}∈Rk

((akj − aki )− Ti,j) (10)

where aki and akj indicate the arrival time at stations i and j respectively in route Rk ∈ R.
Moreover, even if more than one bus line serves the same origin and destination, we assume under
this scope that passengers utilize the line with the lowest delay. We repeat this procedure for a
fixed number of permutations and we retain the best solution found.
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(a) Line graph (b) Symmetric graph (c) Dumbbell graph

(d) Line bus lanes (e) symmetric bus lanes (f) Dumbbell bus lanes

Figure 2: Graph structure and bus lines.

(a) (b)

Figure 3: Graph structure and bus lines for Glyfada.

3 Results and discussion

We start by describing the network configurations that we adopt for comparison. Both simulation
frameworks run over a period T = 3 hr. Moving to the network graph structure G, we choose
to run the two services on a line graph, a symmetric graph, and a dumbbell graph as shown in
Figures 2(a), 2(b), and 2(c) respectively. We additionally envision the two services running in
a real network graph representing the city of Glyfada in Athens with the station locations shown
in Figure 3(a). We also define the different bus lines assuming |K| = 3 except for the line graph
where we set |K| = 1, such that only one line serves all the stations. The different bus lines for the
various graph structures are presented in Figures 2(d), 2(e), and 2(f) for the line graph, symmetric
graph, and dumbbell graph, respectively, and for the Glyfada network in Figure 3(b).
In all simulations, we display the results under uniform demand for intensities ranging from 50
to 1500 pax/hr, where for each simulation, we extract the measured values after the occupancy
has reached stationarity. The total overall service capacity is always kept at 150 seats. The
results for the line graph in Figure 4 show identical waiting and detour time performance for
both services. When closely examining the detour times in Figure 4(a), their values are equal
to 0 for bus services and fairly non-negligible for micro-transit services. The non-zero values are
an artifact of the matching algorithm we use, and therefore the vehicle-request assignment might
imply picking up the request at the expense of an inevitable detour. With respect to the waiting
time in Figure 4(b), the performance of flexible services with N = 30 vehicles always yields the
lowest waiting time, yet the gap between all other scenarios remains insignificant. For the same
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fleet and capacity configuration of N = 15 and C = 10, the average user waiting time is slightly
better for bus services, but this changes when the average occupancy gets nearly equal to 10 as
observed in Figure 4(e). After this point, the micro-transit level of service exceeds that of buses
for medium-level demand, and this is justified by a better operational efficiency for micro-transit
where vehicles move with higher flexibility in the line graph network, except for high demand rates
where fixed-schedule bus services result in lower waiting times.
Regarding the symmetric graph results in Figure 5, we first note the micro-transit configuration
with N = 30 vehicles and a capacity of C = 5 seats continues to perform best. Looking at the
detour values in Figure 5(a), bus user detour remains constant while for micro-transit, it increases
first with the demand rate before stagnating when vehicles reach their capacities as displayed in
Figure 5(e). As for the waiting time, micro-transit produces a better service quality with lower
waiting times with both the configurations of N = 15, C = 10, and N = 30, C = 5 despite some
comparability observed with the bus scenario under N = 15 and C = 10. This justifies the long
queue length and the low service rate for bus scenarios in Figure 5(c) and 5(d) respectively.
Moving to the dumbbell graph in Figure 6, we note here that we are comparing on-demand and bus
services with similar fleet and capacity configurations, i.e., N = 15, C = 10, but the only difference
between the scenarios is the travel time between the two agglomerations in the dumbbell graph,
where the term large is added in the legend of Figure 6 to represent instances where the span
between the clusters is larger than the default one. When looking at Figure 6(a), we note that for
every network graph, the detour is higher for fixed bus service under low demand rates, but when
the demand rate increases, the bus trip becomes shorter than micro-transit trips. This observation
also applies to the average waiting time graph in Figure 6(b) where micro-transit users incur a
larger wait than fixed bus users, despite the service quality of the two being fairly similar for very
low demand rates. This means that under saturation when the vehicle occupancy is at capacity as
per Figure 6(e), the micro-transit users wait longer for an available vehicle with empty capacity
compared to bus users, and their detour is higher where micro-transit trips become less and less
efficient under a dumbbell graph structure. To further understand these results, we provide in Fig-
ure 6(f) an insight into the ratio of time that vehicles spend moving in between agglomerations for
both types of services and different network graphs. For low demand rates, micro-transit vehicles
spend shorter times commuting between agglomerations due to the low number of requests, which
implies that vehicles are stopped or serving requests within agglomerations for the majority of the
time. On the other hand, fixed-schedule buses spend an equal amount of time between agglomer-
ations irrespective of the demand rate, and this amount is dependent on the line configurations.
However, when the demand rises, micro-transit vehicles go back and forth between agglomerations
more frequently, which justifies the relatively lower waiting time compared to bus services in 6(f).
Finally, the last set of results we provide under uniform demand distribution is for the city of
Glyfada displayed in Figure 7. With respect to the level of the service, the average detour is the
lowest for the micro-transit services with N = 30 due to the low vehicle capacity which causes
the trip length to be relatively low despite pooling, as shown in Figure 7(a). Regardless of the
relatively significant differences in detour under a low demand rate, the detour values become
almost identical for flexible and fixed services under a high demand rate and a fleet-capacity
configuration of N = 15, C = 10. This is because of the relatively low occupancy of micro-transit
for low demand rate observed in Figure 7(e), which mostly implies direct origin-destination trip
types whereas for high demand rate, and subsequently high-occupancy, the detour of micro-transit
users increases. For the waiting time values in Figure 7(b), the higher availabilities of micro-transit
vehicles cause the lowest values of waiting times, despite their low vehicle capacity.

4 Conclusions

In this work, we set forth a comparative scheme between on-demand micro-transit and public
transit services. We design two simulation-based frameworks to evaluate the performance and
efficiency of each service under a line, symmetric, dumbbell, and real case graph. We additionally
generate the assessment metric for different demand intensities and non-uniform spatial demand
distribution. The results show that user waiting time and detour are the lowest for low capacity
large fleet size micro-transit and the highest for high capacity low fleet size public transit. Never-
theless, under the same fleet-capacity configurations, the service performance and user quality of
service are fairly identical.
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Figure 4: Waiting time, detour time, queue length, service rate, and average occupancy
for the line graph network.
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Figure 5: Waiting time, detour time, queue length, service rate, and average occupancy
for the symmetric graph network.
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Figure 6: Waiting time, detour time, queue length, service rate, and average occupancy
for the dumbbell graph network.
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Figure 7: Waiting time, detour time, queue length, service rate, and average occupancy
for the Glyfada network
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