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SHORT SUMMARY 

This study examines the potential of large language models (LLMs) to understand joint travel 
decisions related to social activities, using group chat data from messaging platforms like WhatsApp. 
These decisions involve dynamic negotiations, considering the preferences and constraints of each 
participant. To fully understand the decision-making process, it is necessary to infer nuanced and 
implicit information from the social and cultural context of each generation and country. Specifically, 
decision-making factors must be represented in a structured format, requiring extensive human-
labeled annotations. A customized prompt, based on chain-of-thought reasoning, is designed to first 
identify individual/clique characteristics and then trace how travel decisions evolve through iterative 
negotiations, capturing both explicit and implicit factors from Japanese and Korean data. We 
quantitatively evaluate the performance of LLMs in structuring the data, identify optimal prompting 
methods, and recognize situations where LLMs struggle. These findings highlight the potential of 
LLM-based analysis for enhancing context-rich activity-based modeling. 
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1    INTRODUCTION 
 
The growth of social networks and social media has reshaped lifestyles and travel behaviors, 
increasing the complexity of how individuals engage in activities and make destination choices 
across multiple locations (Bifulco et al., 2010). Specifically, joint travel decisions related to social 
activities are made in coordination with clique members (Puhe et al., 2021). This coordination 
involves a dynamic social negotiation process, considering the preferences and constraints of each 
member. The complexity of joint travel decisions necessitates more detailed datasets to capture the 
nuances of activity destination choices. Group chats on messaging platforms such as WhatsApp 
provide empirical data that reflect this complex negotiation process. This study focuses on the joint 
destination choice of dining locations for social activities, collecting and analyzing relevant group 
chat data from Japan and South Korea. 
 
To fully understand the decision-making process in these group chats, it is essential to infer both 
nuanced and implicit information based on the social and cultural context of each country and 
generation (e.g., Generation Z, Baby Boomers). Additionally, to quantify this process, decision-
making factors in the group chat data must be represented in a structured format. This involves 
identifying not only the choice outcome but also the decision-making process itself, such as the 
alternatives within the choice set, the individual and clique characteristics that may influence the 
process, and the discussion behind the choice, including each individual’s preferences and 
constraints related to alternative-specific attributes (e.g., restaurant service quality, accessibility, 
time-space constraints). Previous research has structured these factors through careful examination 
of each chat by someone with a strong understanding of the social and cultural context (Parady et 
al., 2023). However, this process requires extensive human-labeled annotations, leading to 
significant time and cost. 
 
This study explores the potential of large language models (LLMs) to understand group chats in the 
context of joint destination choice. LLMs have shown great potential for extracting both implicit 
and explicit information from unstructured text, considering the social and cultural context (Tao et 
al., 2024). The capability of LLMs highly depends on the prompts (i.e., the input text provided to 
the model to elicit a response). Prompt engineering is the process of designing and optimizing these 
prompts to achieve desired outputs from LLMs. 
 
We design LLM prompts to structure unstructured group chat data using various prompting methods. 
These methods guide the LLM in identifying both explicit and implicit factors from Japanese and 
Korean group chat data. The proposed prompts, based on chain-of-thought reasoning, first identify 
static attributes, such as individual and clique characteristics, and then trace dynamic attributes that 
reveal how joint decisions evolve through iterative negotiations. We quantitatively evaluate the 
performance of LLMs in structuring group chat data, comparing different prompting methods to 
identify optimal designs and recognize situations where LLMs struggle to understand the context. 
These findings highlight the potential of LLM-based analysis for understanding activity-based travel 
decisions, thereby enhancing context-rich activity-based modeling. 
 
2    BACKGROUND 

LLMs and prompt engineering 

Despite their remarkable capabilities, LLMs have an inherent limitation: by design, they generate 
responses based on learned statistical patterns over massive textual corpora, often aligning with fast 
thinking (Kahneman, 2011), which is intuitive and relies on quick heuristic judgments. These fast 
thinking outputs may sound plausible but lack careful, iterative reasoning. 
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Prompt engineering techniques, such as chain-of-thought reasoning, aims to explicitly guide an LLM 
to emulate slow thinking, which is deliberate and relies on logical and analytical judgments. By 
carefully structuring the prompts, we can encourage the LLM to produce more thoughtful responses 
and extract deeper insights from group chat data. This approach is especially important for capturing 
social and emotional contexts embedded in joint decision with social networks. 

Analysis framework for joint travel decisions 

In joint travel decisions, individuals negotiate preferences and constraints based on individual and 
clique characteristics. Cultural and social contexts (e.g., within-clique hierarchy defined as age or 
grade in Japan and South Korea) add complexity through indirect suggestions, honorific nuances, 
and implicit relational signals. This study proposes a two-stage prompts: first, to identify individual 
and clique characteristics, and second, to capture the decision-making process, including each 
participant’s alternatives, preferences, and constraints related to those alternatives. 
 
The proposed prompting method is a deliberate process of designing how an LLM “thinks” to elicit 
deeper insights into joint decision-making processes, which were previously only identifiable 
through human-labeled annotation. 
 
3    DATA AND METHOD 

 Data Description 

We use group chat data in Japanese and Korean to evaluate whether an LLM can effectively process 
culturally specific conversations. The x-GDP dataset from Parady et al. (2023) comprises 217 LINE 
messenger group chats documenting real-time restaurant selection negotiations near the University 
of Tokyo campuses. This dataset was collected under IRB-approved protocols, with groups of 3-5 
university students coordinating restaurant choices in controlled experimental settings. Each 
conversation captures the complete decision-making sequence, from initial proposals to preference 
negotiations and final restaurant selection, verified with photographic evidence and transaction 
records. From the x-GDP dataset, we randomly sampled 20 Japanese group chats to construct the 
Japanese dataset. The Korean dataset follows a similar approach, comprising 10 KakaoTalk 
messenger group chats documenting joint restaurant selection near Ajou University campuses. For 
more detailed information about the data, please refer to Parady et al. (2023). 

Overview and Rationale 

Our methodology transforms unstructured raw group chat data into structured tabular data using 
GPT-4o. To ensure reproducible results, we set the LLM's temperature parameter, which controls 
the randomness of the model's output, to 0 and apply two prompt engineering techniques, as detailed 
in Figure 4: 

 Role Prompting: Directs the LLM to analyze conversations as a domain expert familiar with 
the cultural and linguistic contexts of Korean and Japanese group chats. 

 Prompt Chaining: Decomposes the analysis into sequential steps to reduce error propagation. 
 
As shown in Figure 1, this approach converts free-flowing chat conversations into structured tabular 
data that captures decision-making factors, including individual and clique characteristics, choice 
sets and outcomes, as well as each participant’s preferences and constraints for the alternatives. The 
structured format enables systematic analysis of how group decisions emerge from conversations 
while preserving both explicit statements and implicit contextual factors. The bolded red text in 
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Figure 1 represents the structured outputs defined in the prompts, enabling systematic structuring of 
the data. 
 

   
Figure 1: From Unstructured Group Chat to Structured Tabular Data 

Two-stage Prompts 

Figure 2 illustrates the proposed two-stage prompts. The static analysis (Step 1) captures static 
attributes, including individual and clique characteristics, choice sets, and outcomes. The dynamic 
analysis (Steps 2–4) captures dynamic attributes, such as the mentioned alternatives (Mention 
Analysis), each participant’s perceptions of those alternatives (Perception Analysis), and each 
participant’s preferences and constraints for alternative-specific factors (Factor Analysis). 
 

 
 

Figure 2: The proposed two-stage prompts summarizing Steps 1-4 and their outputs. 
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Static Analysis (Step 1) 
The Step 1 in the static analysis establishes key information about the conversation, including: 
  Participants (e.g., names or identifiers), 
  Restaurant List and Chosen Restaurant (any options mentioned), 
  Individual and Clique Characteristics (e.g., individual attributes or group dynamics). 

Defining these elements prevents confusion in subsequent stages and ensures that references to 
participants or restaurants remain consistent throughout the analysis. 

Dynamic Analysis (Steps 2–4) 
Once the static attributes are in place, the dynamic analysis examines how the group’s decision 
evolves over time. Specifically: 
  Step 2 tracks the emergence of new restaurants (i.e., alternatives) mentioned, identifying which 

participant introduces each idea. 
  Step 3 observes shifts in each participant’s perceptions or emotional views on each restaurant, 

capturing changes in attitudes as the conversation progresses. 
  Step 4 identifies each participant’s preferences and constraints for each restaurant’s attributes 

(e.g., budget, time availability, personal tastes) that influence each participant’s final position. 
By structuring the analysis into distinct steps, the model can more accurately parse the conversation, 
following the logical flow of proposals, responses, and eventual consensus. 

Ground truth labels 

Ground truth labels for the data were created by researchers with a strong understanding of the 
cultural and social context of university students in Japan and South Korea. We carefully reviewed 
each conversation to ensure accurate labeling, following a structured framework. Figure 3 provides 
an overview of all variables used in labeling: 
 Static Analysis variables: participant lists, restaurant lists, the chosen restaurant, individual 

suggestion and response lists, and clique lists with composition, relationships, and decision-
making methods. 

 Dynamic Analysis variables: the Mentioned Table for tracking newly introduced alternatives, the 
Perception Table for emotional views on those alternatives, and the Preference Table and 
Constraint Table for alternative-specific factors such as budget, time constraints, or group 
dynamics. 
 

  
Figure 3: Labels for Static and Dynamic Analysis 
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Prompt Engineering Techniques 

We employ multiple prompt engineering techniques tailored to the complexity of each step in our 
group chat data analysis. As shown in Figure 4, Static Analysis (Step 1) utilizes three prompting 
methods, while Dynamic Analysis (Steps 2–4) incorporates four methods. The optimal prompting 
methods for each analysis are identified through quantitative evaluation, as discussed in a later 
section. 
 

 
 

Figure 4: Overview of prompt engineering techniques at each step: ND, ZS, and CoT for 
Static Analysis, and CoT, SR, PD, and MoRE for Dynamic Analysis. 

 

Static Analysis (Step 1) 
No-Delimiter (ND) is a baseline approach that provides raw conversation text to the LLM with 
minimal guidance. Zero-Shot (ZS) directly extracts specific entities (e.g., participants, restaurants) 
without examples or reasoning steps. Chain-of-Thought (CoT) guides the LLM through a systematic 
reasoning process to identify key elements in the conversation. The output of Step 1 is structured as 
JSON data and then used as input for Step 2. A performance evaluation identifies which technique 
provides the most reliable foundation for subsequent analysis. 

Dynamic Analysis (Steps 2–4) 
Chain-of-Thought (CoT) (Wei et al., 2022) maintains structured reasoning through complex 
conversational dynamics. Self-Refinement (SR) (Madaan et al., 2024) enables iterative review and 
correction of initial interpretations. Prompt Decomposition (PD) (Khot et al., 2022) breaks analysis 
into discrete subtasks for improved accuracy. Mixture of Reasoning Experts (MoRE) (Si et al., 2023) 
analyzes conversation from multiple participant perspectives. 
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Performance Evaluation 

Figure 5 presents the step-by-step evaluation procedure for each stage, using ground truth labels 
defined in Figure 4. In Step 1, we compare the ND, ZS, and CoT techniques (each repeated five 
times) to identify participants (P*) and restaurants (R*). We use F1 scores as our metric to balance 
both precision and recall, since LLMs can either produce extra items or miss valid ones. The method 
with the highest average F1 score in Step 1 determines the (P*, R*) sets for subsequent steps. 
 
In Steps 2 and 3, we also use F1 scores but expand the methods to CoT, SR, PD, and MoRE (again 
each repeated five times). Step 2 identifies which participant (from P*) first mentions each restaurant 
(in R*), and Step 3 tracks how perceptions of those restaurants evolve. We adopt the best-performing 
approach at each step to reduce error propagation. 
 
Because Step 4 involves multi-valued preferences and constraints for each restaurant per participant, 
we introduce Jaccard similarity to measure how closely the extracted factors match the ground truth. 
While F1 scores remain useful, Jaccard similarity better captures partial overlaps in multi-label 
settings, providing a more nuanced assessment of correctness. 
 
 

 
 

Figure 5: Evaluation metrics for static analysis (Step 1) 
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Figure 5: Evaluation metrics for static analysis (Step 2&3) 
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Figure 5: Evaluation metrics for static analysis (Step 4) 
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4    RESULTS AND DISCUSSIONS 

Performance of Prompt Engineering Techniques 

This section presents the performance of each prompting method at each step, evaluated using 
ground truth labels created by researchers with expertise in Japanese and Korean social contexts. All 
reported values are averaged over five runs, with standard deviations consistently below 0.02, 
reflecting stable performance achieved by the low temperature parameter setting. 

Static Analysis Performance  

Table 1 summarizes the performance of ND, ZS, and CoT in extracting static information, including 
participant lists, restaurant lists, the chosen restaurant, suggestion lists, and response lists, from 
Japanese and Korean group chat data. 
 
In Step 1.1, all three techniques achieve perfect accuracy in identifying participants, with an F1 score 
of 1.00. They also demonstrate high accuracy in recognizing mentioned restaurants, with F1 scores 
reaching up to 0.97 for Japanese chats and 0.85–0.89 for Korean chats. For identifying the chosen 
restaurant (binary matching), Korean chats achieve perfect accuracy (1.00), whereas Japanese chats 
yield slightly lower scores (0.78–0.85). 
 
While all three methods perform well in Step 1.1, capturing implicit elements in Step 1.2, such as 
individual egocentrism represented by suggestions and response lists, was more challenging. This 
resulted in lower scores, ranging from 0.66–0.68 for Korean data and 0.48–0.56 for Japanese data. 
 
In Step 1.3, the three techniques achieved F1 scores ranging from 0.83 to 0.87 across the datasets 
from both countries. The errors in this step primarily arose from difficulties in identifying decision-
making methods. 
 
Overall, the performance of the three prompting methods in Step 1 was similar. However, significant 
differences were observed between the Korean and Japanese datasets, likely due to the more indirect 
expressions typically found in Japanese conversations compared to the explicit confirmations 
commonly used in Korean conversations. 
 

Table 1. Performance in Static Analysis (Step1) 
  

 Japanese Korean 
 ND ZS CoT ND ZS CoT 

F1 (Participant lists) 1.00 1.00 1.00 1.00 1.00 1.00 
F1 (Restaurant lists) 0.97 0.97 0.97 0.85 0.86 0.89 

Binary matching 
(Chosen restaurant) 

0.78 0.85 0.85 1.00 1.00 1.00 

Step1.1_Score 0.92 0.94 0.94 0.95 0.95 0.96 
 

F1_Suggestion 0.60 0.75 0.73 0.78 0.70 0.73 
F1_Response 0.35 0.36 0.31 0.58 0.63 0.60 

Step1.2_Score 0.48 0.56 0.52 0.68 0.67 0.66 
 

Step1.3_Score 0.83 0.84 0.84 0.87 0.83 0.85 
 

Step1 Final Score 0.74 0.78 0.76 0.83 0.82 0.83 
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Dynamic Analysis Performance 

Step2: Mentioned Table 
All four prompting methods (CoT, SR, PD, MoRE) show robust performance in identifying the 
participant who first mentions each restaurant (F1 ≈ 0.85–0.93). The performance is slightly higher 
for Korean chats (Precision: 0.91–0.92; Recall: 0.93–0.96) than for Japanese (Precision: 0.86–0.89; 
Recall: 0.84–0.85).  

Step3: Perception Table  
Perception analysis (positive, negative, neutral) demonstrates moderate performance, with F1 scores 
ranging from approximately 0.59 to 0.75. Korean data generally perform better (F1 up to 0.75) 
compared to Japanese data (F1 up to 0.65). PD achieves the highest precision and recall in Korean 
chats (0.75, 0.76), while Japanese conversations yield similar results across all prompting methods. 
The greater nuance of emotional expressions in Japanese conversations likely account for the lower 
scores. 

Step4: Preference Table and Constraint Table 
Preference analysis shows moderate performance, with Jaccard Similarity (JS) scores ranging from 
0.59 to 0.67, while constraint analysis achieves notably higher scores (JS: 0.75–0.80). MoRE 
demonstrates the strongest performance in constraint analysis (JS: 0.80), whereas CoT shows the 
lowest performance across both datasets. The performance gap between preference and constraint 
analysis is likely due to constraints being more concrete (e.g., budget, time), making them easier to 
extract explicitly, whereas preferences are often expressed more implicitly. 
 

Table 2. Performance in Dynamic Analysis (Step2-4) 
 

 Japanese Korean  

 CoT SR PD MoRE CoT SR PD MoRE  
Precision 0.89 0.86 0.88 0.87 0.92 0.91 0.92 0.91 

Mentioned 
Table 

Recall 0.84 0.84 0.85 0.85 0.96 0.95 0.96 0.93 
Step2_Score 0.86 0.85 0.86 0.86 0.93 0.93 0.93 0.92 

Precision 0.66 0.66 0.66 0.66 0.74 0.75 0.75 0.70 
Perception 

Table 
Recall 0.64 0.65 0.65 0.57 0.75 0.76 0.76 0.71 

Step3_Score 0.65 0.65 0.65 0.59 0.74 0.75 0.75 0.70 
JS_Score 0.61 0.60 0.61 0.59 0.65 0.67 0.65 0.66 Preference 

Table Factor_F1 0.63 0.62 0.63 0.62 0.66 0.68 0.66 0.67 
JS_Score 0.77 0.80 0.78 0.80 0.75 0.78 0.78 0.80 Constraint 

Table Factor_F1 0.77 0.80 0.78 0.80 0.75 0.78 0.78 0.80 
 
5    CONCLUSION 
 
This study demonstrates how joint decision-making can be systematically analyzed using LLMs 
guided by optimal prompts. We quantitatively evaluate the effectiveness of LLMs against large-
scale ground truth data across various subtasks, ranging from simple tasks like detecting participants 
to more complex tasks like identifying each participant's preferences and constraints for restaurant 
attributes, such as accessibility and quality. Through this approach, we explore whether LLMs can 
effectively transform unstructured group chat data into structured tabular data by capturing the 
dynamic negotiations involved in joint travel decisions. 
 
Our results provide three noteworthy findings. First, LLMs can reliably capture explicit decision 
elements (e.g., chosen alternatives) but often struggle with more implicit, context-dependent content, 
underscoring the complexity of understanding dynamic social negotiation processes. Second, GPT-
4o performs well with Japanese and Korean group chats when guided by carefully designed prompts, 
with slightly higher performance observed for Korean conversations, likely due to more direct 
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communication patterns compared to Japanese conversations. Third, the state-of-the-art prompting 
methods used in the dynamic analysis (Table 2) demonstrated consistent performance, suggesting 
that LLMs exhibit robust capabilities in handling dynamic negotiations, regardless of the specific 
prompting method employed. 
 
Our findings suggest that GPT-4o, one of the most widely used LLMs, demonstrates some capability 
in structuring group chat data, showing potential to reduce the high costs associated with human-
labeled annotations for interpreting group decisions. This capability could accelerate the use of large-
scale chat data to better understand activity and travel behavior. However, significant room for 
improvement remains in capturing implicit, context-dependent content, which can be addressed 
through advancements in prompt engineering and further development of LLM models. 
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