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SHORT SUMMARY  

Route choice set generation and route choice modeling have been studied for years, but most focus on 
the trip level and rarely address activity-travel patterns (ATPs) in activity-based scheduling frameworks. 
This study proposes an integrated framework to generate ATP choice sets under space-time constraints 
and model ATP choices while considering overlapping among alternatives. The model framework 
generates ATP choice sets with flexible activity sequences using a link penalty approach and defined 
ATP utility functions of MNL and MNL-modification models to account for the spatial and temporal 
overlapping. Utilizing GPS trajectories, the simulation and estimation results of the ATP choice set 
generation and ATP choice modeling demonstrate the validity of the model framework. The ATP choice 
model comparison reveals the goodness-of-fit of capturing the correlations among the alternatives and 
individual heterogeneity.  
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1. INTRODUCTION 

Route choice behavior modeling is a fundamental issue in transportation research. The simplest route 
choice models assume travelers minimize a single criterion (e.g., travel time) with complete network 
knowledge, referred to as the “shortest path problem”. To address the limitations of deterministic all-
or-nothing assignment, stochastic assignment methods, mostly relying on the multinomial logit (MNL) 
model, were introduced to distribute travelers across a set of feasible routes with choice probabilities. 
Since the parameter estimation depends heavily on the choice set composition, most studies adopted an 
explicit path generation prior to model estimation, compared to the implicit method that simultaneously 
performs a choice-set generation and route choice computation  (e.g., Dial 1971). 

The existing route set generation approaches can be categorized into deterministic and stochastic 
methods based on the generation process and outputs. Deterministic methods use repeated shortest path 
searches for an OD pair, including K-shortest paths, labeled paths (Ben-Akiva et al. 1984), link 
elimination (Azevedo et al. 1993), and link penalty (Barra et al. 1993). Stochastic methods incorporate 
randomness into the generation process using techniques like Monte Carlo simulation that generate 
routes by sampling link attributes from probability distributions. Probabilistic methods further model 
how travelers form choice sets based on the paradigm proposed by Manski (1977), such as the Implicit 
Availability/Perception (IAP) model (Cascetta and Papola 2001). Furthermore, the quality of generated 
choice sets is crucial for model estimation, as large sets often include correlated routes. To address this, 
advanced models like MNL-modifications (e.g., C-Logit, Path-Size Logit, Path-Size Correction Logit) 
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introduce correction terms to account for overlap among alternatives, while GEV models (e.g., Cross-
Nested Logit) explicitly capture correlations through error term assumptions.  

However, all these choice set generation methods and choice models are dominantly used at the trip 
level for routes and rarely applied in activity-based scheduling (ATS) for activity-travel pattern (ATP). 
For ATP choice set generation, Liao and van Wee (2016) used link elimination mechanisms to find K-
shortest paths for activity programs (APs) under constraints. For ATP choice modeling, Västberg et al. 
(2019) proposed a nested-logit-type dynamic discrete choice model. Liao (2016) and MATSim (Feil et 
al. 2009) employ optimization models to identify the ATS for individuals with the lack of error terms, 
making the approach more suitable for recommendation system rather than for travel demand 
forecasting. Nevertheless, these methods have not considered ATP choice set generation under space-
time constraints and ATP choice modeling accounting for correlations among alternatives.  

Therefore, the aim of this study is to propose a model framework of ATP choice set generation 
within STP and ATP choice modeling. A comparison analysis is conducted to examine the goodness-
of-fit of ATP choice models with different correction terms to capture the effects of the overlapping 
among alternatives and individual heterogeneity. The remainder of the paper is organized as follows. 
Section 2 proposes the methods of ATP choice set generation and ATP choice modeling within space–
time constraints. Section 3 validates the proposed framework using GPS trajectory data. The paper is 
completed with conclusions in Section 4. 

2. METHODOLOGY 

The methods involves three steps: (1) construct the activity-based space–time prism (STP) of an AP 
based on multi-state supernetworks (SNK); (2) generate ATP choice set for APs within the STP using 
a link penalty approach; (3) define ATP utility functions for MNL and the MNL-modifications with a 
correction term to account for overlapping in space and time. The framework is shown in Figure 1. 
 

 
Figure 1. The framework of this study. 
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2.1 Multi-state supernetwork (SNK) and activity-based STP 

Multi-state supernetworks are capable of representing the ATP space for conducting an individual’s AP. 
A copy of the transportation network 𝐺𝐺  is assigned to each possible activity state specifies which 
activities have been conducted. The link that interconnects the same activity location at two different 
reachable activity states is considered an “activity link”, representing the participation of an activity at 
a location. Denote the multi-state supernetwork as 𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆,𝐸𝐸) , where node set 𝑆𝑆  includes road 
intersections, activity locations, and parking locations, and link set 𝐸𝐸  includes travel links of road 
segments and transaction links, a daily AP’s implementation is a path choice through 𝑆𝑆𝑆𝑆𝑆𝑆. For example, 
the ATP in Figure 2 expressed by the interconnected bold links indicating that an individual leaves 
home (H0) to conduct activity 𝐴𝐴1 and then 𝐴𝐴2 before returning home (H1).  
 
 

 
Figure 2. SNK representation with a single mode (travel links are bi-directed). 
 
Suppose H0 and H1 are two anchors with the a time budget window [𝑡𝑡H0 , 𝑡𝑡H1]. An individual conducts 
activity 𝛼𝛼 from an activity set 𝐴𝐴 at one location with a minimum duration 𝑑𝑑𝛼𝛼. The temporal feasibility 
for a  node in SNK in the STP and PPA is formulated as  
 

min{𝑔𝑔(H0,𝑛𝑛|𝑠𝑠) + 𝑔𝑔(𝑛𝑛|𝑠𝑠, H1)} ≤ 𝑡𝑡H1 − 𝑡𝑡H0                                                                               (1) 
 
where 𝑛𝑛|𝑠𝑠  denote node 𝑛𝑛  at activity state 𝑠𝑠  in SNK, 𝑔𝑔(H0,𝑛𝑛|𝑠𝑠)  and 𝑔𝑔(𝑛𝑛|𝑠𝑠, H1)  represent the actual 
activity-travel times of two sub-paths from H0 to 𝑛𝑛|𝑠𝑠  and 𝑛𝑛|𝑠𝑠  to H1, respectively. the exact STP all 
𝑛𝑛|𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 that satisfy Eq. (1) at time range �𝑡𝑡H0 + min𝑔𝑔(H0,𝑛𝑛|𝑠𝑠) , 𝑡𝑡H1 − min𝑔𝑔(𝑛𝑛|𝑠𝑠, H1)�. 

2.2 ATP choice set generation within STP 

Since travelers consider only attractive ATPs based on their preferences, a well-sampled consideration 
set should be priorly generated as a subset of the universal set. We apply the link penalty approach to 
generate a choice set of exact ATPs as the master (or consideration) set 𝐶𝐶𝑛𝑛 of an AP based on the SNK 
within the STP, due to its advantages in efficiently generating diverse and attractive ATPs by applying 
constraints and adjustable penalty factors. The framework for generating an ATP choice set for a single 
AP is shown in Figure 3. 
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Figure 3. Framework of ATP choice set generation using link penalty method.  
 

 
 
Specifically, we re-define the “link” from node 𝑖𝑖|𝑠𝑠 to node 𝑗𝑗|𝑠𝑠′ as 𝑙𝑙𝑖𝑖𝑖𝑖|𝑠𝑠𝑠𝑠′ = (𝑖𝑖|𝑠𝑠, 𝑗𝑗|𝑠𝑠′) for ∀𝑠𝑠, 𝑠𝑠′ in 

SNK. The time expense on the travel link (𝑖𝑖 ≠ 𝑗𝑗, 𝑠𝑠 = 𝑠𝑠′) and the activity link (𝑖𝑖 = 𝑗𝑗, 𝑠𝑠 ≠ 𝑠𝑠′) is travel 
time and activity duration 𝑑𝑑𝛼𝛼, respectively. When penalizing links on the current ATP, the disutility 
(i.e., time expense) on 𝑙𝑙𝑖𝑖𝑖𝑖|𝑠𝑠𝑠𝑠′   is increased by multiplying the link penalty factor. To incorporate duration 
choice, multiple duration choices are considered and only the activity link with the chosen duration is 
penalized. For 𝑆𝑆 individuals’ APs, an overall ATP choice set is generated as 𝒞𝒞 = {𝐶𝐶𝑛𝑛,𝑛𝑛 = 1, … ,𝑆𝑆}, 
following the pseudo-code described in Algorithm 1. Each 𝐶𝐶𝑛𝑛 has the size of 𝑆𝑆 + 1 if the observed 
chosen ATP is not replicated by generated ATPs, otherwise the size is 𝑆𝑆.  
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2.3 ATP choice modeling 

MNL-modification models  
 
The MNL can be applied to ATP choice due to its simplicity. ATP choice is sensitive not only to route 
travel time but also to activity duration and activity locations’ attractiveness. Therefore, the 
deterministic utility functions can be formulated as 
 
 

𝑉𝑉𝑘𝑘𝑛𝑛 = 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛽𝛽𝑇𝑇𝑇𝑇 ∙ 𝑇𝑇𝑇𝑇𝑘𝑘 + 𝛽𝛽∆𝐷𝐷𝛼𝛼𝛼𝛼 ∙ ∆𝐷𝐷𝛼𝛼𝑘𝑘 + 𝛽𝛽𝐿𝐿𝐴𝐴𝛼𝛼𝑚𝑚 ∙ 𝐿𝐿𝐴𝐴𝛼𝛼𝑚𝑚,𝑘𝑘                                                    (2) 
 
 
where 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴 is the constant, 𝑇𝑇𝑇𝑇𝑘𝑘 is the total travel time on ATP 𝑘𝑘, ∆𝐷𝐷𝛼𝛼𝑘𝑘 is the deviation of the chosen 
duration 𝐷𝐷𝛼𝛼𝑘𝑘 for conducting activity 𝛼𝛼 on ATP 𝑘𝑘 from the individual’s “ideal” duration 𝐷𝐷𝛼𝛼𝑘𝑘∗  to capture 
the disutility caused by deviations from the preferred duration: 
 

∆𝐷𝐷𝛼𝛼𝑘𝑘 = |𝐷𝐷𝛼𝛼𝑘𝑘 − 𝐷𝐷𝛼𝛼𝑘𝑘∗ | + 𝜉𝜉                                                                                                               (3) 
 
where 𝜉𝜉 is a random term to capture unobserved heterogeneity. 𝐿𝐿𝐴𝐴𝛼𝛼𝑚𝑚,𝑘𝑘 is the attractiveness of location 
𝑚𝑚 for conducting 𝛼𝛼 on ATP 𝑘𝑘. To incorporate the heterogeneity effects, individuals’ socio-demographic 
variables can be added to Eq. (2).  
 
To consider the correlations among alternatives, several MNL-modifications have been proposed to 
account for route overlap by adding a deterministic correction as follows 
 

𝑉𝑉𝑘𝑘𝑛𝑛 = 𝑓𝑓(𝛽𝛽,𝑋𝑋𝑘𝑘𝑛𝑛) + 𝛽𝛽∆ ∙ 𝑔𝑔(∆𝑘𝑘𝑛𝑛)                                                                                                       (4) 
 
where 𝑓𝑓(𝛽𝛽,𝑋𝑋𝑘𝑘𝑛𝑛) is system utility part representing alternative attributes and travelers’ background; 
𝑔𝑔(∆𝑘𝑘𝑛𝑛)  is a transformation of the overlapping correction term ∆𝑘𝑘𝑛𝑛  and 𝛽𝛽∆  is the corresponding 
parameter to be estimated.  
 
C-Logit Model  
 
C-logit model is proposed as the modification of the MNL, in which a commonality factor 𝐶𝐶𝐶𝐶𝑘𝑘𝑛𝑛 
measures the degree or percentage of the route length that route 𝑘𝑘 shares with other routes in the choice 
set 𝐶𝐶𝑛𝑛. We select the following formulation (Ramming 2001) to be examined:   
 

𝐶𝐶𝐶𝐶𝑘𝑘𝑛𝑛 = ln � �
𝐿𝐿𝑎𝑎
𝐿𝐿𝑘𝑘

� 𝛿𝛿𝑎𝑎𝑎𝑎
𝑎𝑎∈𝐴𝐴𝑛𝑛

� 
𝑎𝑎∈Γ𝛼𝛼

 

 
where 𝐿𝐿𝑘𝑘, 𝐿𝐿𝑎𝑎, 𝐿𝐿𝑎𝑎 are the length of route 𝑘𝑘 and 𝑙𝑙, and link 𝑎𝑎, respectively. Γ𝑘𝑘 is the set of links belonging 
to route 𝑘𝑘. 𝛿𝛿𝑎𝑎𝑎𝑎 is the link-path incidence variable, equal to 1 if route 𝑙𝑙 uses links 𝑎𝑎 and 0 otherwise. 
Since the “activity link” in SNK does not have spatial length, 𝐿𝐿𝑘𝑘, 𝐿𝐿𝑎𝑎, 𝐿𝐿𝑎𝑎 are replaced with their link time 
expense 𝑇𝑇. The re-defined 𝐶𝐶𝐶𝐶𝑘𝑘𝑛𝑛 is 
  

𝐶𝐶𝐶𝐶𝑘𝑘𝑛𝑛 = ln � �
𝑇𝑇𝑎𝑎
𝑇𝑇𝑘𝑘

� 𝛿𝛿𝑎𝑎𝑎𝑎
𝑎𝑎∈𝐴𝐴𝑛𝑛

� 
𝑎𝑎∈Γ𝛼𝛼

                                                                                                    (5) 

 
The coefficient 𝛽𝛽𝐶𝐶𝐶𝐶 is typically negative because larger overlap makes a path less attractive.  
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Path Size Logit Model (PSL) 
 
Ben-Akiva and Bierlaire (1999) presented the PSL model, in which the path size 𝑃𝑃𝑆𝑆𝑘𝑘𝑛𝑛 accounts for the 
proportion of the path that does not overlap with others. This study applies the 𝑃𝑃𝑆𝑆𝑘𝑘𝑛𝑛 formulation and 
similarly re-defined 𝑃𝑃𝑆𝑆𝑘𝑘𝑛𝑛 using “link time length” as 
 

𝑃𝑃𝑆𝑆𝑘𝑘𝑛𝑛 = �
𝑇𝑇𝑎𝑎
𝑇𝑇𝑘𝑘𝑎𝑎∈Γ𝛼𝛼

�
1

∑ 𝛿𝛿𝑎𝑎𝑎𝑎𝑎𝑎∈𝐴𝐴𝑛𝑛
�                                                                                                          (6) 

 
The coefficient 𝛽𝛽𝑃𝑃𝐴𝐴 is typically positive as greater uniqueness increases the attractiveness of the ATP. 
 
Path Size Correction Logit (PSCL) 
 
The path size correction 𝑃𝑃𝑆𝑆𝐶𝐶𝑘𝑘𝑛𝑛 weighs the length of the common links by the logarithm of the number 
of routes using these common links (Bovy et al. 2008). The re-defined 𝑃𝑃𝑆𝑆𝐶𝐶𝑘𝑘𝑛𝑛 is as follows 
 

𝑃𝑃𝑆𝑆𝐶𝐶𝑘𝑘𝑛𝑛 = − � �
𝑇𝑇𝑎𝑎
𝑇𝑇𝑘𝑘

ln � 𝛿𝛿𝑎𝑎𝑎𝑎
𝑎𝑎∈𝐴𝐴𝑛𝑛

�
𝑎𝑎∈Γ𝛼𝛼

                                                                                                 (7) 

 
Similar to PSL, the coefficient 𝛽𝛽𝑃𝑃𝐴𝐴𝐴𝐴  is typically positive. 
 
Spatial-temporal correction term extensions  
 
Previous correction terms focus only on the spatial level, we extend them to include temporal overlap, 
to account for the discounting effect when the spatially overlapped links are temporally distant in two 
ATPs. When link 𝑎𝑎 is spatially overlapped by ATP 𝑘𝑘 and 𝑙𝑙 (𝛿𝛿𝑎𝑎𝑘𝑘 = 𝛿𝛿𝑎𝑎𝑎𝑎 = 1), a temporal overlap ratio 
𝑟𝑟𝑎𝑎𝑘𝑘𝑎𝑎  and a temporal correction value 𝜌𝜌𝑎𝑎𝑘𝑘𝑎𝑎  are modeled. The spatial-temporal correction terms are 
obtained by multiplying 𝜌𝜌𝑎𝑎𝑘𝑘𝑎𝑎  as a temporal discount to the link-path incidence dummy, changing 𝛿𝛿𝑎𝑎𝑎𝑎 to 
𝛿𝛿𝑎𝑎𝑎𝑎 ∙ 𝜌𝜌𝑎𝑎𝑘𝑘𝑎𝑎 in Eqs. (5-7), obtaining 𝐶𝐶𝐶𝐶𝑘𝑘𝑛𝑛,𝑇𝑇, 𝑃𝑃𝑆𝑆𝑘𝑘𝑛𝑛,𝑇𝑇 and 𝑃𝑃𝑆𝑆𝐶𝐶𝑘𝑘𝑛𝑛,𝑇𝑇:  
 

𝐶𝐶𝐶𝐶𝑘𝑘𝑛𝑛,𝑇𝑇 = 𝑙𝑙𝑛𝑛 � �
𝑇𝑇𝑎𝑎
𝑇𝑇𝑘𝑘

� 𝛿𝛿𝑎𝑎𝑎𝑎 ∙ 𝜌𝜌𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑛𝑛

� 
𝑎𝑎∈𝛤𝛤𝛼𝛼

                                                                                            (8) 

 

        𝑃𝑃𝑆𝑆𝑘𝑘𝑛𝑛,𝑇𝑇 = �
𝑇𝑇𝑎𝑎
𝑇𝑇𝑘𝑘𝑎𝑎∈Γ𝛼𝛼

�
1

∑ 𝛿𝛿𝑎𝑎𝑎𝑎 ∙ 𝜌𝜌𝑎𝑎𝑎𝑎𝑘𝑘𝑎𝑎∈𝐴𝐴𝑛𝑛
�                                                                                                  (9) 

 

        𝑃𝑃𝑆𝑆𝐶𝐶𝑘𝑘𝑛𝑛,𝑇𝑇 = − � �
𝑇𝑇𝑎𝑎
𝑇𝑇𝑘𝑘

ln � 𝛿𝛿𝑎𝑎𝑎𝑎 ∙ 𝜌𝜌𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑛𝑛

�
𝑎𝑎∈Γ𝛼𝛼

                                                                                       (10) 

 
Given no correction term and six correction terms of Eqs. (5-7) and Eqs. (8-10), seven ATP choice 
models are estimated: 
 
1) MNL(no 𝑔𝑔(∆𝑘𝑘𝑛𝑛))  
2) C-logit (𝑔𝑔(∆𝑘𝑘𝑛𝑛) = 𝐶𝐶𝐶𝐶𝑘𝑘𝑛𝑛) 
3) C-logit-T (𝑔𝑔(∆𝑘𝑘𝑛𝑛) = 𝐶𝐶𝐶𝐶𝑘𝑘𝑛𝑛,𝑇𝑇) 
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4) PSL (PSL) (𝑔𝑔(∆𝑘𝑘𝑛𝑛) = 𝑃𝑃𝑆𝑆𝑘𝑘𝑛𝑛) 
5) PSL-T (𝑔𝑔(∆𝑘𝑘𝑛𝑛) = 𝑃𝑃𝑆𝑆𝑘𝑘𝑛𝑛,𝑇𝑇) 
6) PSCL (𝑔𝑔(∆𝑘𝑘𝑛𝑛) = 𝑃𝑃𝑆𝑆𝐶𝐶𝑘𝑘𝑛𝑛) 
7) PSCL-T (𝑔𝑔(∆𝑘𝑘𝑛𝑛) = 𝑃𝑃𝑆𝑆𝐶𝐶𝑘𝑘𝑛𝑛,𝑇𝑇) 

3. EXPERIMENTAL RESULTS  

To illustrate the proposed framework, we consider the North-Brabant Province, the Netherlands as the 
experimental study area (Figure 4). 312 individuals’ trajectories with working at a fixed workplace, 
shopping at a flexible location, and car as the transportation mode are extracted from a GPS dataset. 
Detailed settings are as follows. 
 

 
Figure 4. Study area and the transportation network. 
 
1. The road network has 47,901 nodes and 100,581 directed links categorized into <motorways, 
provincial roads, local roads>. The maximum car speeds for peak hours ([7:00, 9:00] and [16:30, 19:00]) 
and non-peak hours are set to <70, 50, 30>  and  <100, 80, 50> km/h, respectively.  

2. For constructing STP, the start time uses the AP’s recorded departure time, and the time budget is set 
with a 20% extra over the out-of-home time expense in the GPS trajectory.  

3. Alternative flexible activity locations consist of 518 locations selected from the OpenStreetMap for 
each 4-digit postcode area (PC4) and 312 locations recorded in the GPS trajectories.  

4. For ATP utility functions, 𝐷𝐷𝛼𝛼𝑘𝑘∗  are extracted from GPS trajectories and 𝐿𝐿𝐴𝐴𝛼𝛼𝑚𝑚,𝑘𝑘 is represented by the 
floor space of the PC4 (4-digit postcode area) where the location is situated. To account for the 
heterogeneity, individual 𝑛𝑛’s gender and age are incorporated to Eq.(2) as the second utility function, 
where 𝐺𝐺𝑛𝑛 and 𝐴𝐴𝑛𝑛 represent the gender and age dummy variables, respectively. 𝐺𝐺𝑛𝑛 = 1 if 𝑛𝑛 is female 
given base level is male, 𝐴𝐴𝑛𝑛 = 1 if 𝑛𝑛’s age is ≤50 as young given base level is >50. Considering the 
interactive effects on travel time and location attractiveness, 𝛽𝛽𝑇𝑇𝑇𝑇

𝐺𝐺𝑛𝑛  and 𝛽𝛽𝑇𝑇𝑇𝑇
𝐴𝐴𝑛𝑛 , 𝛽𝛽𝐿𝐿𝐴𝐴

𝐺𝐺𝑛𝑛  and 𝛽𝛽𝐿𝐿𝐴𝐴
𝐴𝐴𝑛𝑛  are the 

coefficients for the interactive effects of 𝑛𝑛 being female and young on 𝑇𝑇𝑇𝑇𝑘𝑘 and 𝐿𝐿𝐴𝐴𝛼𝛼𝑚𝑚,𝑘𝑘. 

5. ATPs are generated with three duration choices: 𝐷𝐷𝛼𝛼𝑘𝑘∗ , a 50% increase, and a 50% decrease.  



8 
 

3.1 ATP choice set generation results  

Following the methods in Figure 2 and Algorithm 1, we generate the overall ATP choice set 𝒞𝒞 =
{𝐶𝐶𝑛𝑛,𝑛𝑛 = 1, …𝑆𝑆}  for 𝑆𝑆 = 312  individual APs, with pre-defined choice set size 𝑆𝑆  and link penalty 
factor 𝜅𝜅. The experiment tests 𝑆𝑆 = 5, 7, 10, 15 with 𝜅𝜅 = 1, using a specific AP in Eindhoven area to 
illustrate the results in Figure 5. Sub-figure (0) is the GPS-recorded ATP (shop after work). Sub-figures 
(1–5) show the ATPs belonging to choice set 𝐶𝐶𝑛𝑛 for 𝑆𝑆 = 5. As 𝑆𝑆 increases, more ATPs are generated 
by repeatly penalizing the links of previous-identified ATPs and are subsequently added to 𝐶𝐶𝑛𝑛. Sub-
figures (1–7), (1–10), (1–15) illustrate the ATP choice sets for 𝑆𝑆 = 7, 10, 15 respectively. Each ATP 
consists of 3 trips, illustrated by color gradients from light to dark. 
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Figure 5. ATP choice set generation results of an AP with 𝑆𝑆 = 5, 7, 10, 15. 
 
Unlike k-different route generation, the dissimilarity in ATP can be reflected in the variations of activity 
sequences and location choice, even with similar routes (i.e., (2–5) for 𝑆𝑆 = 5). Table 1 shows the link 
penalty approach’s effectiveness via overlapping percentages among alternatives. For travel links only, 
the percentage across different 𝑆𝑆 ranges from 20%-25%. If activity links overlap (same locations and 
sequence) is also considered, the percentage ranges from 42%-43%. At 𝑆𝑆 = 10 , the whole ATP 
overlapping percentage reaches the minimum. 
 
Table.1. ATP choice set overlapping percentages 

 

3.2 ATP choice model estimation results 

Given the results of 𝒞𝒞 , parameter estimation is conducted using Biogeme 3.2.13 (Python). Pre-
estimation shows individual’s gender has no significant effect on ATP choice, leading to modified 
utility functions 𝑉𝑉𝑘𝑘𝑛𝑛1  and 𝑉𝑉𝑘𝑘𝑛𝑛2  by removing the 𝐺𝐺𝑛𝑛-related terms. 𝑉𝑉𝑘𝑘𝑛𝑛1  follows Eq.(2) and 𝑉𝑉𝑘𝑘𝑛𝑛2  considers 
the interactive effect of age given �𝛽𝛽𝑇𝑇𝑇𝑇 + 𝛽𝛽𝑇𝑇𝑇𝑇

𝐴𝐴𝑛𝑛 ∙ 𝐴𝐴𝑛𝑛�  and �𝛽𝛽𝐿𝐿𝐴𝐴 + 𝛽𝛽𝐿𝐿𝐴𝐴
𝐴𝐴𝑛𝑛 ∙ 𝐴𝐴𝑛𝑛�  as the parameters of 𝑇𝑇𝑇𝑇𝑘𝑘 

and 𝐿𝐿𝐴𝐴𝛼𝛼𝑚𝑚,𝑘𝑘, respectively. Parameter 𝜆𝜆 = 0.5 in 𝜌𝜌𝑎𝑎𝑘𝑘𝑎𝑎  is set for 𝐶𝐶𝐶𝐶𝑘𝑘𝑛𝑛,𝑇𝑇, 𝑃𝑃𝑆𝑆𝑘𝑘𝑛𝑛,𝑇𝑇, and 𝑃𝑃𝑆𝑆𝐶𝐶𝑘𝑘𝑛𝑛,𝑇𝑇. Figures 6 
and 7 present a comparison of the choice models’ performance for different 𝑆𝑆 based on statistics. 
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                                (a) BIC                                                               (b) AIC 

 
             (c) 𝜌𝜌2                                                               (d) -log-likelihood  

Figure 6. Models estimates – statistics (𝑉𝑉𝑘𝑘𝑛𝑛1 ) 
 

 
       (a) BIC                                                                    (b) AIC                               

 
          (c) 𝜌𝜌2                                                          (d) -log-likelihood  

Figure 7. Models estimates – statistics (𝑉𝑉𝑘𝑘𝑛𝑛2 ) 
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The choice set size 𝑆𝑆 should be pre-defined to own a better fit for explaining the ATP choice 
behavior. In Figure 6 (𝑉𝑉𝑘𝑘𝑛𝑛1 ), BIC, AIC, rho-square-bar (𝜌𝜌2), and loglikelihood (negative log-likelihood) 
are presented as histograms. Following that lower BIC/AIC and higher the log-likelihood / 𝜌𝜌2 indicate 
a better goodness-of-fit, considering all 𝑆𝑆 as a whole, the results follow an order of MNL < C-logit < 
PSCL < PSL, which is consistent with Figure 7 (𝑉𝑉𝑘𝑘𝑛𝑛2 ). Models with 𝐶𝐶𝐶𝐶𝑘𝑘𝑛𝑛,𝑇𝑇, 𝑃𝑃𝑆𝑆𝑘𝑘𝑛𝑛,𝑇𝑇, 𝑃𝑃𝑆𝑆𝐶𝐶𝑘𝑘𝑛𝑛,𝑇𝑇 (𝜆𝜆 = 0.5) 
do not show a significant improvement, except PSL-T outperforms PSL at 𝑆𝑆 = 15. 

Given the PSL as the best fitting model, a comparison between 𝑆𝑆 shows that 𝑆𝑆 = 5 has better 
statistics but yields unrealistic estimates (e.g., positive 𝛽𝛽𝑇𝑇𝑇𝑇 ), similarly, 𝑆𝑆 = 7  yields negative but 
insignificant 𝛽𝛽𝑇𝑇𝑇𝑇 for PSL, both indicate an inappropriate choice set or overfitting, possibly due to the 
small size failing to capture sufficient heterogeneity and realistic alternatives, resulting in unstable 
parameter estimates. Although 𝑆𝑆 = 15  has a higher 𝜌𝜌2 , 𝑆𝑆 = 10  achieves lower BIC, which is 
considered more robust for model selection. Moreover, 𝑆𝑆 = 10 provides smaller ATP overlapping 
(Table 1) and individuals are unlikely to consider large ATP sets, making 𝑆𝑆 = 10 the most suitable for 
model estimation. 

Based on 𝑆𝑆 = 10, Tables 2 and 3 present parameter estimates for the utility functions. For 𝑉𝑉𝑘𝑘𝑛𝑛1 , 
results show the individual prefers ATPs with less travel time and shopping at attractive locations with 
ideal duration. Coefficient estimates of all the correction terms are reasonable, demonstrating the 
importance of addressing overlapping among the alternative ATPs. For 𝑉𝑉𝑘𝑘𝑛𝑛2 , results suggest that 
individuals exhibit an aversion to travel time and consistently prefer attractive locations. The estimated 
𝛽𝛽𝑇𝑇𝑇𝑇
𝐴𝐴𝑛𝑛 in Table 3 indicate that younger individuals may exhibit slightly stronger travel time aversion in 

PSL compared to those aged over 50, while 𝛽𝛽𝐿𝐿𝐴𝐴
𝐴𝐴𝑛𝑛 shows no significant differences in preferences for 

attractiveness between the two age groups.   
 

Table 2. Models estimation results – parameters (𝑉𝑉𝑘𝑘𝑛𝑛1 , 𝑆𝑆 = 10) 
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Table 3. Models estimation results – parameters (𝑉𝑉𝑘𝑘𝑛𝑛2 , 𝑆𝑆 = 10) 

 
 
 

4. CONCLUSIONS  

This study proposes a model framework for ATP choice set generation within STP and ATP choice 
modeling. The link penalty approach effectively generates appropriate ATP choice sets with less 
similarity. Comparing the goodness-of-fit among seven ATP choice models, results indicate that 
including correction terms can better address interdependence among alternatives, with the statistics 
consistently following the order of PSL > PSCL > C-logit > MNL. Parameter estimation reflects 
individuals’ ATP choice behavior within constraints and the impact of socio-demographic factors on 
ATP choice. 

The following limitations should be addressed in future works. First, the evaluation of the generated 
ATP choice set requires further testing of different combinations of choice set size and link penalty 
factor. Second, the spatio-temporal correction term modeling needs deeper exploration to examine the 
temporal. Third, enriching the GPS dataset with more socio-demographic information to enhance ATP 
choice behavior analysis. 
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