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SHORT SUMMARY 

Safety Tolerance Zone (STZ) is an abstract entity in nature which refers to a real phenomenon, 

i.e. self-regulated control over transportation vehicles by human operators in the context of crash 

avoidance. The aim of this study was to assess driver, road and environment indicators for the 

identification of STZ. Towards that end, data from a simulator experiment, involving 55 drivers, 

were analysed. A feature importance algorithm was used to evaluate the significance of variables 

on forecasting STZ. Additionally, a Neural Network model was implemented for real-time data 

prediction. Furthermore, a comprehensive assessment of the performance of three machine learn-

ing classifiers (i.e. Decision Trees, Random Forests and k-Nearest Neighbors) was made. Neural 

Networks demonstrated that the level of STZ can be predicted with an accuracy of up to 85.1%. 

Results also indicated that RF model outperformed the DT and kNN models across all metrics, 

with accuracy up to 89.1%. 

 

Keywords: Safety Tolerance Zone, speeding, simulator experiment, big data, machine learning 

techniques. 

1. INTRODUCTION 

Speeding significantly affects road safety by increasing the physical and mental demands of driv-

ing (Wang et al., 2013). It reduces the available reaction time, making it harder to respond to 

sudden changes or emergencies on the road, thereby heightening the risk of crashes. Furthermore, 

habitual speeding can lead to poor risk perception, where drivers underestimate the dangers asso-

ciated with high speeds, leading to overconfidence and risky driving behaviours (Gargoum & El-

Basyouny, 2016). 

 

Human operator does not however act in isolation. They are an integral part of the transport sys-

tem which is made up of a complex interaction of drivers, vehicles, infrastructure, other environ-

mental factors and the rules and regulations that govern them. Multiple factors can contribute to 

a crash and are related to any part of the transport system and the interaction among the elements 

in that system (Papadimitriou et al., 2019). 
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The concept of the Safety Tolerance Zone (STZ) attempts to describe the point at which self-

regulated control is considered safe (Michelaraki et al., 2022). Simply described, it is the zone 

where the demands of the driving task are balanced with the ability of the driver to cope with 

them. The STZ comprises three phases: normal driving, danger and avoidable accident phase. The 

normal driving phase represents a low crash risk, where the driver successfully adjusts their be-

haviour to meet task demands. The danger phase is marked by changes suggesting an increased 

crash risk, making a crash more likely but not inevitable. The avoidable accident phase occurs 

when a collision scenario develops, requiring urgent driver intervention to prevent a likely crash. 

Transitions between these phases are triggered by real-time measurements indicating changes in 

crash risk.  

 

A schematic overview of the different driving phases of the STZ is depicted in Figure 1. 

 

 
 

Figure 1: A schematic overview of the different driving phases of the STZ 
 

Based on the above framework, this study aims to assess driver, road and environment indicators 

for the identification of Safety Tolerance Zone using machine learning techniques. Towards that 

end, data from a simulator experiment involving 55 drivers were analyzed. 

 

The paper is organized as follows: First, it outlines the motivation and objectives of the study. 

Next, the data collection processing is described. The research methodology is then presented, 

detailing the data collection techniques and the theoretical foundations of the models used. Fi-

nally, the study's results are discussed, concluding with the key insights and implications. 

2. DATA OVERVIEW 

A simulator driving experiment was carried out involving 55 drivers (with total duration of 2 

months) and a database consisting of 165 trips was created. Participants were asked to complete 

a driving behaviour questionnaire to collect detailed information on various aspects of driving, 

socio-demographics, safety attitude and psychological factors. The simulator trials consisted of 

three scenarios, as shown in Figure 2. 
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Figure 2: Overview of the different scenarios of the simulator experiment 
 

A custom car simulator developed by DriveSimSolutions was designed, as shown in Figure 3. 

The simulator is based on a Peugeot 206 and uses many Original Equipment Manufacturer (OEM) 

parts, such as the complete dashboard, a working instrument cluster and driving seat to recreate 

the cockpit of the actual vehicle. The simulator uses fully customizable STISIM Drive 3 software, 

allowing for creation of custom scenarios and data collection at every simulation update frame. It 

is also visualized on a triple monitor setup consisting of three 49 inch 4K monitors, providing an 

135° field of view. 

 

 
 

Figure 3: Car simulator developed by DriveSimSolutions, using OEM Peugeot 206 

parts 
 

Figure 4 depicts an overview of an intersection in STISIM Drive 3 for an example of a road 

environment. 

 

https://drivesimsolutions.com/
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Figure 4: Example of an intersection in STISIM Drive 3 
 

This comprehensive dataset was developed to identify the most significant indicators of driving 

behaviour. Key variables included time indicators, wiper usage, fuel type, vehicle age and gear-

box type. Performance measures encompassed speeding, headway, overtaking, duration, distance, 

harsh events, as well as demographic factors like gender and age. 

3. METHODOLOGY 

The structure methodology along with the proposed characteristics to estimate the STZ for speed-

ing is depicted in Figure 5. 

 

 
 

Figure 5: Proposed methodology for the definition of the STZ for speeding 
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Feature Importance 

A feature importance algorithm derived from Extreme Gradient Boosting (XGBoost) was imple-

mented to evaluate the significance of various variables in forecasting STZ. This approach al-

lowed for the selection of the most appropriate independent variables, ensuring that the most in-

fluential factors were identified and prioritized in the analysis. 

Neural Networks (NNs) 

Neural Networks (NNs) are powerful computational models designed to capture complex non-

linear patterns in data, emulating the parallel processing of human neurons (Ahad et al., 2016). 

The multi-layer perceptron architecture used here includes three layers: an input layer, hidden 

layers and an output layer. The input layer receives driving data such as speed, acceleration and 

headway. Hidden layers, with variable neuron counts, process these inputs using weighted com-

putations and activation functions to capture intricate relationships between attributes and the 

target variable; levels of risky driving behaviour. The number of neurons and layers is determined 

experimentally, balancing learning capacity and generalization. The output layer consolidates in-

formation to classify risk levels, with each neuron representing a distinct class. 

Decision Trees (DTs) 

A Decision Tree (DT) is a supervised learning algorithm used primarily for classification, though 

it can handle regression tasks. Structured like a tree, it consists of decision nodes, i.e. features 

with branching rules and leaf nodes i.e. outcomes (Song & Ying, 2015). According to Suthaharan 

& Suthaharan (2016), the tree begins at the root node, representing the entire dataset and splits 

into sub-nodes through a series of questions, with each answer determining the next branch. Split-

ting continues until a stopping criterion is met, such as homogeneous classification within a node 

or reaching a pre-defined depth. The resulting tree-like structure visually represents decision paths 

and outcomes, providing a straightforward way to explore solutions based on given conditions. 

Random Forests (RFs) 

Random Forest (RF) is a robust machine learning technique that combines the outputs of multiple 

decision trees to deliver a single, accurate result, making it effective for both classification and 

regression tasks (Breiman & Cutler, 2016). As an ensemble learning method, RF aggregates pre-

dictions from individual trees through voting (classification) or averaging (regression). Each tree 

is built using random subsets of the dataset and features, introducing variability that reduces over-

fitting and enhances predictive performance. Breiman (1996) introduced the bagging method, a 

key aspect of RF, which involves sampling data with replacement to create multiple training sets, 

training models independently and aggregating their predictions to improve accuracy and reduce 

variance. 

K-Nearest Neighbors (kNNs) 

The k-Nearest Neighbors (kNN) algorithm is a simple and popular method for classification and 

regression, based on the principle that similar data points share similar labels or values. It stores 

the training dataset and predicts outcomes by calculating distances between input data and train-

ing points. For classification, it assigns the most common label among the K nearest neighbors, 

while for regression, it uses the average or weighted average of their values (Nigsch et al., 2006). 

Performance depends on the choice of K and the distance metric and it can be affected by noisy 

features or inconsistent scaling. 
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Model evaluation metrics 

In order to compare the classification performance of the several configurations, well-established 

model evaluation metrics were calculated. The following metrics were utilized, based on the con-

fusion matrix, which provides True Positive (TP), True Negative (TN), False Positive (FP) and 

False Negative (FN) metrics. The classification algorithms were evaluated using the accuracy, 

precision, recall, f1-score and false alarm rate as defined below.  

 

Accuracy, which represents the proportion of correctly classified observations, is defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
   (1) 

 

Precision, which quantifies the number of positive class predictions that actually belong to the 

positive class, is defined as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2) 

 

Recall, also known as True Positive Rate, is defined as follows: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3) 

 

F1-score, which combines precision and recall into a single measure, is defined as follows: 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)𝑥 (𝑅𝑒𝑐𝑎𝑙𝑙) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+(𝑅𝑒𝑐𝑎𝑙𝑙)
  (4) 

 

False alarm rate is defined as follows: 

 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
   (5) 

4. RESULTS AND DISCUSSION 

According to the feature importance analysis, distance travelled, headway, harsh accelerations, 

harsh brakings and time indicator emerged as the most important factors among all examined 

indicators. Conversely, car wipers found to be less significant. Lastly, variables related to forward 

collision warning and pedestrian collision warning had a negligible impact on STZ speeding. 

Figure 6 provides an overview of the feature importance of independent variables for speeding 

based on XGBoost algorithm. 
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Figure 6: XGBoost feature importance of independent variables for speeding 
 

A dataset of 745,251 rows from the simulator experiment was used and a feed-forward multilayer 

perceptron NN model was implemented. Based on the feature importance and the significance of 

the relevant indicators, there were seven neurons in the input layer (i.e. distance travelled, head-

way, harsh accelerations, harsh brakings, time indicator, wipers and FCW) and three neurons in 

the output layer (i.e. STZ1, STZ2, STZ3). It should be noted that STZ1 speeding refers to normal 

phase, STZ2 speeding refers to danger phase, while STZ3 speeding refers to avoidable accident 

phase.  

 

Figure 7 illustrates the NN model used to predict STZ speeding based on various input features. 

 

 
 

Figure 7: The multi-layer Neural Network model layout for STZ speeding 
 

Then, a confusion matrix which contains three rows and three columns and reports the number of 

false positives, false negatives, true positives and true negatives was created. More specifically, 

the confusion matrix illustrates the performance of the classification model for three classes: class 

0 (normal level), class 1 (dangerous level) and class 2 (avoidable accident level), as shown in 

Figure 8. 
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The model correctly classified 49.12% of the normal phase, 22.09% of the dangerous phase and 

14.89% of the avoidable accident phase. Misclassifications include 4.9% of normal misclassified 

as dangerous and 1.45% as avoidable accidents. For the dangerous phase, 0.35% were misclassi-

fied as normal and 0.47% as avoidable accidents. In the avoidable accident phase, 0.7% were 

misclassified as normal and 6.04% as dangerous. 

 

 
Figure 8: Confusion matrix for the test dataset for Neural Networks – speeding 

 

Table 1 presents the assessment of the classification model for speeding. The model performs best 

in predicting the normal phase, achieving 92.1% accuracy, 97.9% precision, 88.6% recall and a 

false alarm rate of 2.8%. For the dangerous phase, it shows 87.4% accuracy, 66.9% precision, 

96.4% recall and a false alarm rate of 15.5%. In the avoidable accident phase, the model achieves 

90.7% accuracy, 81.0% precision, 54.7% recall and a false alarm rate of 2.4%. Overall, the model 

has 85.1% accuracy, 83.9% precision, 80.4% recall and a false alarm rate of 6.9%. 

 

Table 1: Evaluation metrics for NN for speeding 

 
Model Fit measures 0 1 2 Total 

Accuracy 0.921 0.874 0.907 0.851 

Precision 0.979 0.669 0.810 0.839 

Recall 0.886 0.964 0.547 0.804 

F1 Score 0.930 0.790 0.653 0.816 

False alarm rate 0.128 0.255 0.224 0.169 

   *0 refers to normal phase, 1 refers to dangerous phase, 2 refers to avoidable accident phase 

 

Table 2 summarizes the performance of three machine learning classifiers across four metrics: 

accuracy, precision, recall and F1-score. Overall, RF demonstrates the best performance with an 

accuracy of 89.1%, precision of 90.8% and recall of 87.5%. DT shows moderate performance 

with an accuracy of 85.2%, precision of 85.3% and recall of 83.1%. kNN performs the lowest 

among the three, with an accuracy of 81.5%, precision of 78.3% and recall of 79.6%. These results 

highlight RF as the most effective classifier, followed by DT and then kNN. 
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Table 2: Evaluation metrics for classification models for speeding 

 
Model Fit measures 0 1 2 Total 

Accuracy 

DT 0.887 0.853 0.816 0.852 

RF 0.930 0.878 0.865 0.891 

kNN 0.825 0.803 0.818 0.815 

Precision 

DT 0.873 0.866 0.821 0.853 

RF 0.952 0.815 0.888 0.908 

kNN 0.833 0.789 0.771 0.783 

Recall 

DT 0.860 0.834 0.801 0.831 

RF 0.891 0.872 0.863 0.875 

kNN 0.843 0.788 0.759 0.796 

F1 Score 

DT 0.815 0.792 0.733 0.804 

RF 0.878 0.741 0.713 0.849 

kNN 0.803 0.687 0.652 0.791 
*0 refers to normal phase, 1 refers to dangerous phase, 2 refers to avoidable accident phase 

 

Figure 9 depicts the bar chart, comparing the performance of three classifiers for speeding. It can 

be observed that RF consistently outperforms the other two classifiers in all metrics, showing the 

highest scores. DT and kNN show relatively close performance, with kNN generally having the 

lowest scores among the three. 

 

 
Figure 9: Comparison of classifier metrics of machine learning techniques for 

speeding 
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5. CONCLUSIONS 

The current study aimed to assess driver, road and environment indicators for the identification 

of STZ using machine learning techniques. For this purpose, data were collected and analyzed 

from a simulator experiment with 55 drivers. 

 

To achieve these objectives, a feature importance analysis (e.g. XGBoost) was performed to eval-

uate the relevance of various variables in predicting STZ levels. Subsequently, machine learning 

models, such as NNs, were employed to make accurate data-driven predictions. Additionally, a 

detailed evaluation of three machine learning classifiers (DT, RF and kNN) was conducted to 

predict STZ levels for speeding. 

 

The analysis identified distance travelled, headway, harsh accelerations, harsh brakings and time 

indicator as the most influential factors. NNs achieved exceptional predictive accuracy, with an 

accuracy rate of up to 85.1%, demonstrating the model's robustness in identifying positive cases 

and its effectiveness in detecting safety-critical scenarios, as evidenced by its high recall. This 

indicates a well-rounded and reliable predictive capability for speeding in the simulator context. 

 

The results revealed that RF models outperformed DT and kNN models across all metrics, achiev-

ing an accuracy of up to 89.1%. While DT models showed satisfactory performance, kNN models 

consistently delivered the lowest but moderate scores, making them the least effective among the 

classifiers for this task. These performance differences highlighted the importance of selecting 

the appropriate model based on data characteristics and the precision-recall trade-offs required 

for practical applications. 

 

Despite the robust methodologies employed, certain limitations of the study should be acknowl-

edged. Firstly, the limited sample size for the simulator experiment may affect the generalizability 

of the findings. While the data provided valuable insights, a larger sample would improve the 

reliability and applicability of the results. Secondly, although the models demonstrated strong 

performance, the integration of advanced deep learning approaches, such as Recurrent or Convo-

lutional Neural Networks, might enhance predictive capabilities. The comparatively lower per-

formance of the kNN model suggests that further optimization and tuning are needed to improve 

its outcomes. 

 

Future research could explore additional methods of analysis, such as imbalanced learning, factor 

analysis and models that account for unobserved heterogeneity. Econometric techniques could 

also be applied. Advanced deep learning models, like Long Short-Term Memory (LSTM) net-

works, which have shown superior performance in related studies, warrant exploration. Lastly, 

integrating contextual information, such as road infrastructure and traffic patterns, could enhance 

model accuracy and applicability. 
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