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Short summary

This paper investigates how variable speed limits can optimize travel time reliability for commuters.
We focus on a traffic corridor with a bottleneck subject to the capacity drop phenomenon. Traffic
demand during peak hours is modeled as a stochastic variable, with the optimization objective
being a linear combination of the expected value and standard deviation of total travel time. To
solve this problem, we develop a three-stage optimization algorithm based on the kinematic wave
model of traffic flow (Lighthill & Whitham (1955), Richards (1956)). We demonstrate its practical
applicability using a numerical example calibrated with empirical data. In contrast to existing
approaches, our method provides an exact solution within the framework of the kinematic wave
model without requiring prior discretization of space and time. This enables the determination of
actually optimal positions and timing for the implementation of speed limits.
Keywords: Capacity Drop, Kinematic Wave Model, Traffic Control, Travel Time Reliability,
Variable Speed Limit.

1 Introduction

Variable Speed Limit (VSL) systems are dynamic traffic management tools that adjust posted speed
limits in response to real-time traffic conditions through overhead or roadside display signs. The
review paper by Khondaker & Kattan (2015b) summarizes the operational benefits of traditional
VSL applications as follows: improved safety, prevention of traffic breakdown, and increase of
throughput at bottlenecks. The latter two are possible due to the capacity drop phenomenon,
where the maximum flow rate at an active bottleneck can drop below the theoretical capacity once
congestion sets in (Banks (1990), Hall & Agyemang-Duah (1991) - a reduction that VSL systems
can help prevent by strategically slowing down approaching traffic. Modern VSL control strategies
(e.g. Carlson et al. (2010), Carlson et al. (2011), H.-Y. Jin & Jin (2015), Khondaker & Kattan
(2015a)) are based on predictive modeling of traffic behavior. They employ a closed-loop feedback
control mechanism to continuously update its predictions and control actions based on new traffic
data. These predictions typically rely on macroscopic traffic flow models, primarily approximations
of Payne’s model (Payne (1971)) and the kinematic wave model.
Much less attention has been paid to the potential of VSL systems for improving travel time relia-
bility. The reliability of travel time, commonly measured by its standard deviation or variance, is
nearly as crucial to commuters as the expected travel time itself Prato et al. (2014). To our knowl-
edge, the optimization of VSL systems to improve travel time reliability has not been investigated
in existing literature. This paper addresses this research gap and develops methods for specifically
optimizing VSL strategies for this purpose. Our analysis is based on the assumption that traffic
inflow during peak hours follows a known probability distribution, which can be estimated from
historical data. Under this premise, we solve the optimization problem

J = α · E[T ] + (1− α) · Std[T ], (1)

min J. (2)

where α ∈ [0, 1] is a weighting parameter, and T represents the total travel time, defined for a
given peak flow q0p as T (q0p) =

∫ T

0

∫ l

0
k(x, t) dx dt. Here, T denotes the length of the optimization

interval.
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2 Results and discussion

The contemporary formulation of the LWR theory can be summarized as follows. The rate of
change in the total number of vehicles contained in any road segment [x1, x2] where x2 > x1 is
equal to the net flow of vehicles out of the segment, i.e.

d

dt

∫ x2

x1

k(x, t) dx = − [q(x, t)]
x2

x1
, (3)

Since this relation is valid for any arbitrary road segment [x1, x2], by letting x2 → x1 and dividing
by the segment’s length, the expression simplifies to the partial differential equation

∂k

∂t
+

∂q

∂x
= 0. (4)

In addition to 3, the LWR theory assumes the existence of a functional relationship between q and
k under differentiable conditions:

q(x, t) = Q(x, k(x, t)), (5)

where Q is a concave, non-negative function that is equal to zero at k = 0 and at the jam density
k = kj . Flow and density are related to the cumulative flow N(x, t) as follows:

q(x, t) =
∂N

∂t
(x, t), k(x, t) = −∂N

∂x
(x, t) (6)

In cases where k has a discontinuity at (x, t), known as a shockwave, the shockwave’s speed u is
specified as:

u =
[q]

[k]
=

q2 − q1
k2 − k1

. (7)

The third variable, the average speed, is defined as v = q
k . For the homogeneous LWR model

analyzed in this paper, these conditions determine a unique solution for the functions k(x, t) and
q(x, t) when initial and boundary conditions are given. Traffic moves along a road segment of
length l, which ends in a bottleneck with a maximum capacity qbn. When congestion forms at the
bottleneck, its discharge capacity decreases by ∆ percent. We model capacity drop according to
the approach by W.-L. Jin et al. (2015):

q(l, t) =

{
d(l−, t), d(l−, t) ≤ s(0+, t)

min{s(l+, t), q∗bn}, d(l−, t) > s(l+, t)
(8)

where d(l−, t) is the upstream demand at the bottleneck location, s(l+, t) the downstream supply,
and q∗bn = (1−∆) ·qbn the dropped capacity. The travel time τ(t) for a vehicle entering the segment
at time t is described by:

τ(t) = inf{T ≥ 0 : N(l, t+ T ) > N(0, t)}. (9)

To model rush hour traffic, the upstream boundary flow q(0, t) is represented as a trapezoidal
function with a randomly distributed peak qp ∼ ϕ, defined as:

q(0, t) =


qb + a · t, for 0 ≤ t ≤ qp−qb

a ,

qp − b · (te − t), for qp−qb
a ≤ t ≤ qp

qe·b +
qp−qb

a ,

qe, for qp
qe·b +

qp−qb
a ≤ t ≤ ∞.

(10)

for suitably chosen parameters qb (initial flow), qe (end flow), a (flow increase rate at the onset
of congestion), and b (flow reduction rate at the offset of congestion). We further assume that
qe < qbn, so that the expected travel time for very late departure times, as tdep → ∞, approaches
the free flow travel time τfree =

l
v(0) .

In the first optimization step, we find the minimum total travel time for a given peak flow q0p,
regardless of the control strategy. This is equivalent to maximizing the downstream flow q(l, t).
We define N+(l, t) as the number of vehicles that would pass position l by time t without a
bottleneck, and q+(l, t) as the corresponding flow. We calculate q+(l, t) by identification of the
latest emanating kinematic wave from upstream which intersects (l, t) (see Hammerl et al. (2024)
for justification and details), and obtain N+(l, t) through integration:

N+(l, t) =

∫ t

0

q(l, τ) dτ. (11)
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The actual vehicle count Nmin(l, t) is determined using q+(l, t) as arrival rate and q(l, t) as departure
rate in a D/D/1 queue with service rate qbn (c.f. Newell (1993)), as illustrated in figure 1. The
minimum total travel time is then:

Tmin(q
0
p) =

∫ N

0

(
N−1

min(l, t)−N−1
min(0, t)

)
dt. (12)

Figure 1: Graphical determination of N(l, t) for given N+(l, t).

In the second stage, we solve the stochastic variational optimization problem 1 subject to the
additional constraint: T (qp) ≥ Tmin(qp) ∀qp ∈ supp(ϕ). To solve 1, we first discretize the support
of the probability distribution, which is then extended to continuous distributions by considering
the corresponding limit for n → ∞:

supp(ϕ) = {q0p, q1p, . . . , qnp }

For this discrete case, the problem can be formulated as a quadratic optimization problem with
constraints using Lagrange multipliers:

L(T (q1p), . . . , T (qnp ), λ1, . . . , λn) =α ·
n∑

i=1

(
p(qip) · T (qip)

)
+ (1− α) ·

√√√√ n∑
i=1

p(qip) ·
(
E[T ]− T (qip)

)2
+

n∑
i=1

λi ·
(
Tmin(q

i
p)− T (qip)

)
.

Without loss of generality, let the indices be chosen such that the lower bounds are monotonically
increasing, i.e., T min(qip) ≤ T min(qi+1

p ) for all i. Since both the mean and standard deviation are
convex in their components, the unique critical point of the function is a minimum. Therefore,
among the Karush-Kuhn-Tucker (KKT) conditions, it is sufficient to only consider the stationarity
and complementary slackness conditions for the Lagrangian:
1. Stationarity: The partial derivatives of the Lagrangian with respect to T (qip) must vanish:

∂L
∂T (qip)

= α · ∂E[T ]

∂T (qip)
+ (1− α) · ∂Std[T ]

∂T (qip)
− λi = 0, ∀i. (13)

The partial derivative of E[T ] with respect to T (qip) is p(qip). For ∂Std[T ]
∂T (qip)

, we first calculate

∂Var(T )

∂T (qip)
=

∂E[T 2]

∂T (qip)
− ∂(E[T ])2

∂T (qip)

= 2p(qip)
(
T (qip)− E[T ]

)
− 2
(
T (qip)− E[T ]

)
p(qip)

= 2p(qip)
(
T (qip)− E[T ]

)
.
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Then, using the chain rule, we receive

∂Std[T ]

∂T (qip)
=

1

2
√

Var[T ]
· ∂Var[T ]

∂T (qip)
=

p(qip)
(
T (qip)− E[T ]

)
Std[T ]

.

Substituting back into (13), we obtain

∂L
∂T (qip)

= α · p(qip) + (1− α) · p(qip) ·
T (qip)− E[T ]

Std[T ]
− λi = 0, ∀i.

2. Complementary slackness: The Lagrange multipliers must satisfy:

λi ·
(
Tmin(q

i
p)− T (qip)

)
= 0, ∀i. (14)

Combining 13 with 14 yields

αpi
(
Tmin(q

i
p)− T (qip)

)
+ (1− α)

pi
(
T (qip)− E[T ]

)
Std[T ]

(
Tmin(q

i
p)− T (qip)

)
= 0

=⇒ α
(
Tmin(q

i
p)− T (qip)

)
+ (1− α)

(
T (qip)− E[T ]

)
Std[T ]

(
Tmin(q

i
p)− T (qip)

)
= 0.

Let i∗ be an index for which T (qi
∗

p ) = Tmin(q
i∗

p ) holds, i.e., constraint i∗ is binding. From the dual
feasibility conditions, it follows that

λi∗ = α+ (1− α)
T (qi

∗

p )− E[T ]

Std[T ]
≥ 0.

Since

λi∗+1 ≥ α+ (1− α)
Tmin(q

i∗+1
p )− E[T ]

Std[T ]
≥ α+ (1− α)

Tmin(q
i∗

p )− E[T ]

Std[T ]
≥ 0

holds, T (qi
∗+1
p ) = Tmin(q

i∗+1
p ) must necessarily be satisfied.

This implies that the optimal solution exhibits the following structure: When ordering the indices
by ascending values of Tmin(q

i
p), there exists a critical index up to which the values T (qip) may

deviate from the lower bound Tmin(q
i
p), while for all larger indices the respective constraint is

binding, i.e., T (qip) = Tmin(q
i
p) holds. Of course, this property remains valid when taking the limit

n → ∞.
Let j∗ be the maximal index such that T (qj

∗

p ) > Tmin(q
j∗

p ). Then

T (q1p) = T (q2p) = · · · = T (qnp ) = T ∗.

We prove this statement for the case of two decision variables T (q1p) and T (q2p); the generalization
to n variables is straightforward. It suffices to show: For T (q1p) < T (q2p),

∂J

∂T (q1p)
> 0 (objective function increases in T (q1p))

always implies

∂J

∂T (q2p)
> 0 (objective function decreases in direction −T (q2p)).

The partial derivative is given by

∂J

∂T (q1p)
= (1− p2)

[
α+ (1− α)

T (q1p)− µ

σ

]
.

Since 0 ≤ (1− p2), its sign is determined by the term

B1 = α+ (1− α)
T (q1p)− µ

σ
.
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Similarly, the sign of ∂J
∂T (q2p)

is determined by

B2 = α+ (1− α)
T (q2p)− µ

σ
.

We have

B2 −B1 = (1− α)

(
T (q2p)− µ

σ
−

T (q1p)− µ

σ

)
= (1− α)

T (q2p)− T (q1p)

σ
≥ 0,

which implies B2 ≥ B1. This completes the proof.
This analysis effectively reduces the functional optimization problem to a two-dimensional problem.
For a given distribution ϕ of lower bounds on total travel time Tmin(qp), the optimization problem
can be formulated as:

min
T ∗,T ∗

min

J [ϕ′] (15)

where ϕ′(Tmin) is defined as:

ϕ′(Tmin) =

{
T ∗ if Tmin ≤ T ∗

min,

ϕ(Tmin) otherwise.

In the third optimization phase, we determine the optimal control of the variable speed limits. We
start with a given realization of the peak flow q0p and take into account the optimal total travel
time T (q0p) calculated in phase 2. The optimal speed limit vctrl is implemented as a closed-loop
control system that depends on the current system state: vctrl = vctrl(x, t, k(·)). This feedback
control enables more precise traffic flow control compared to an open-loop system. We define two
additional parameters: a minimum speed vmin that serves as a lower bound for the variable speed
limit and the number n of speed limits to be installed along the route.
For an optimal distribution of total travel times, we employ the following control strategy: First,
we determine the maximum optimal throughput q∗bn ≤ qbn using:

T (q0p)− Tmin(q
0
p) =

∫ T

0

[
N(l, t)−N∗(l, t)

]
dt

This equation is derived through the following transformation:∫ N

0

[
N∗−1(l, n)−N∗−1(0, n)

]
dn−

∫ N

0

[
N−1(l, n)−N−1(0, n)

]
dn

=

∫ N∗−1(l,n)

0

dn−
∫ N−1(l,n)

0

dn

=
[
T ·N −

∫ T

0

N∗(l, t) dt
]
−
[
T ·N −

∫ T

0

N(l, t) dt
]

=

∫ T

0

N(l, t) dt−
∫ T

0

N∗(l, t) dt

A graphical representation of the solution method is shown in Figure 2.
To calculate the optimal speed limit v∗ for a given peak flow q∗bn, we use the fundamental diagram.
There, we determine the larger of the two k+ values for which the condition q(k+) = q∗bn is satisfied.
The desired speed limit is then obtained from the quotient

v∗ =
q∗bn
k+

.

The actual implementation of the speed limit depends on the current traffic flow:
If the flow q(x, t) near l exceeds the value qbn, the limit is calculated according to the formula

v

(
l

i+ 1
, t

)
= vf − (vf − v∗)

i

n
.

If the traffic flow q(x, t) is below qbn, no speed limit is activated.
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Figure 2: q∗bn is chosen such that the blue area has the size T (q0p)− Tmin(q
0
p)

At the upstream boundary, the traffic flow q(0, t) was modeled using a piecewise linear function.
This is defined as:

q(0, t) =

{
r1 · t+ 5571.84, for 0 ≤ t ≤ 2,

−r2 · t+ 7708.81, for 2 ≤ t ≤ 4,

where t represents the time in hours starting from 6:00 PM. The peak flow is modeled as a normally
distributed random variable qp with mean 6470 and standard deviation 150. This results in the
slopes r1 =

qp−5571.84
2 , r2 =

7708.81−qp
2 . The fundamental diagram is approximated by a triangular

model. The free-flow speed was set to 112 km/h in accordance with the local speed limit. The jam
density was estimated at 608 vehicles per kilometer, and the critical density at 121 vehicles per
kilometer. The bottleneck has an estimated capacity of 6240 vehicles per hour. During congestion,
this capacity drops by 7 percent, resulting in qbn = 6240 and q−bn = 5803 vehicles per hour. The
considered road segment was set to a length of approximately 9.34 kilometers—a distance that can
be covered in 5 minutes when traveling at free-flow speed. The results are presented in Table ??.

α Opt. Value T ∗ v∗

1 99869.54 N/A 27 km/h
0.75 99869.54 N/A 27 km/h
0.5 68948.63 125944.99 24.2 km/h
0.25 36866.05 140935.71 21.9 km/h

3 Conclusions

The investigation of variable speed limits (VSL) for improving travel time reliability presents
several significant findings. Our three-stage optimization algorithm successfully demonstrates that
VSL systems can be effectively deployed to manage travel time variability during peak hours. The
results show that different weightings between expected travel time and reliability (represented by
) significantly affect control stragies, with optimal speed limits ranging from 21.9 km/h to 27 km/h.
Notably, for values of 0 and 0.25, which place greater emphasis on expected travel time, no effect
of the reliability parameter could be measured.. The study’s novel contribution lies in its exact
solution approach within the kinematic wave model framework, eliminating the need for spatial
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and temporal discretization. This advancement enables more precise determination of optimal
VSL positions and timing. Incorporation of the capacity drop phenomenon and stochastic peak-
hour demand provides a realistic framework for practical applications. The findings suggest that
VSL systems can be effectively implemented to balance the competing objectives of minimizing
expected travel time and improving reliability, offering valuable insights for highway operations
optimization.
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