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Short summary

This paper tackles the challenges of designing charging infrastructure for Battery Electric Buses
(BEBs) with limited energy consumption data. Accurate energy consumption estimation is critical
for cost-effective and reliable electrification but often requires costly field experiments, leading to
limited data. To address uncertainty and data sparsity, we propose two models: a robust opti-
mization model with box uncertainty, which relies solely on the data range, and a data-driven
distributionally robust optimization model that uses observed data for more informed solutions.
Our analysis of the Rotterdam bus network reveals three key insights: (1) Ignoring energy con-
sumption variations can lead to unreliable designs. (2) Designing infrastructure based on worst-case
energy consumption increases costs by 67% compared to using average estimates. (3) The data-
driven distributionally robust optimization model is more cost-effective than the box uncertainty
model while maintaining reliability, even when extreme energy consumption values are frequent.
Keywords: Public transport electrification, Energy consumption variability, Operational reliabil-
ity with sparse data, Distributionally robust optimization

1 Introduction

In the paradigm of zero-emission urban mobility, Battery Electric Buses (BEBs) are promising
due to their independence from traditional infrastructure like cables and rails. However, design-
ing effective and reliable BEB networks poses challenges. A key issue is estimating the energy
consumption and strategically placing charging stations to ensure continuous service. Accurately
estimating energy consumption is critical for the cost-efficient and reliable deployment of electrified
transport networks. This estimation is challenging due to a wide range of influential factors, includ-
ing traffic conditions, passenger load, and weather. Inaccurate estimates of energy consumption
impact electrification costs, battery lifetime, and service levels (Azadeh et al., 2022).
Robust optimization, addresses uncertainty by solving problems under the worst-case realization
of random variables. This method has been widely applied to BEB-related challenges, with studies
incorporating diverse sources of uncertainty into their formulations, as shown in Hu et al. (2022);
Bai et al. (2022); Avishan et al. (2023). While robust optimization is computationally efficient and
well-suited to data-scarce environments, its reliance on worst-case scenarios often leads to overly
conservative solutions that fail to capture the probabilistic nature of real-world uncertainty (Birge
& Louveaux, 2011). To address these shortcomings, distributionally robust optimization (DRO)
incorporates distributional information to balance robustness with performance, offering a more
flexible approach to decision-making under uncertainty.
This study first models the CID problem using average energy consumption estimates, recognizing
that ignoring energy consumption uncertainty can lead to infeasible designs. To address this in
data-scarce environments, we propose two robust optimization models for the CID problem. The
first, a box uncertainty model with a budget (BoU-CID), uses a range-based uncertainty framework,
effective when only the range of uncertainty is known but may lead to overly conservative designs.
The second, a data-driven distributionally robust chance constraint approach (DRCC-CID), in-
corporates observed data characteristics, offering more cost-effective and reliable solutions. Both
models are evaluated across various scenarios to assess their performance in terms of cost-efficiency
and reliability.
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2 Methodology

We formulate the CID problem for the electrification of an existing bus network, addressing the
challenges posed by sparse energy consumption data. The problem involves three core decisions:
(1) selecting the type of charging station (e.g., fast-feeding or standard), (2) identifying optimal
charging station locations, and (3) determining onboard battery capacities.

Formulation using average energy consumption estimates

This model utilizes expected values to estimate uncertain energy consumption, serving as a baseline
to gauge operational efficiencies. The objective function of all the models (1) aims to minimize
the total cost, compromising the installation cost of type t ∈ T of charging stations (denoted by
αt) and onboard battery costs per kWh (denoted by β). The BEB fleet size for each line k ∈ K
is given and denoted by γk. The binary variable xst is set to 1 if a charging station type t ∈ T is
installed at stop s. The battery capacity for each bus line is represented by the continuous variable
zk.

min
x,z

∑
s∈S

∑
t∈T

αtxst +
∑
k∈K

βγkzk (1)

Charging station. We assume that at most one type of charging station can be installed at each
stop. This condition is enforced by Constraint 2.∑

t∈T

xst ≤ 1, ∀s ∈ S (2)

xst ∈ {0, 1}, ∀s ∈ S,∀t ∈ T (3)

Energy flow. The variable eks represents the energy level of the BEB on line k as it departs stop
s. Constraint (4) governs the energy flow between stops s − 1 and s. It ensures that the energy
level at departure from stop s is the energy level at departure from stop s− 1 minus the expected
energy consumption between these stops, denoted by µ̄k

s , plus any energy gained at stop s. The
power of the charging station type t is denoted by Pt, and ∆ks indicates the dwelling time at stop
s for bus line k. For fast-feeding charging stations, the BEB departs with a fully charged battery
regardless of the dwelling time, which is modeled as PFF = b̄zk . BEBs must depart the terminal
with maximum energy levels, given by ekok = b̄zk, ∀k ∈ K.
Using the energy flow Constraint (4), eks is computed cumulatively from the terminal, as defined
in Constraint (5).

eks ≤ eks−1 − µ̄k
s +

∑
t∈T

Pt∆ksxst, ∀k ∈ K, s ∈ Sk (4)

eks = b̄zk −
s∑

i=ok

µ̄k
i +

∑
t∈T

s∑
i=ok

Pt∆kixit, ∀k ∈ K, s ∈ Sk (5)

Battery energy level. The BEB energy level at all stops must not exceed the maximum allowed,
expressed as eks ≤ b̄zk, ∀k ∈ K, s ∈ Sk \ ok. When applied to Constraint 5, the term b̄zk
cancels out, simplifying the constraint. This ensures that the cumulative energy gained through
charging up to stop s does not exceed the cumulative average energy consumption up to stop s,
thereby preventing overcharging and adhering to the maximum allowed battery capacity, as shown
in Constraint (6). Constraint (7) ensures that the energy level upon arrival at any stop s remains
above the minimum required.

∑
t∈T

s∑
i=ok

Pt∆kixit ≤
s∑

i=ok

µ̄k
i ∀k ∈ K, s ∈ Sk (6)

b̄zk −
s∑

i=ok

µ̄k
i +

∑
t∈T

s−1∑
i=ok

Pt∆kixit ≥ b zk ∀k ∈ K, s ∈ Sk (7)

zk ∈ R+, ∀k ∈ K (8)

The (deterministic) CID is to minimize 1 subject to (2, 3) and (6-8) set of constraints.
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Formulation based on uncertainty range

This strategy is applicable when the range of energy consumption data is known to decision-
makers. For two subsequent stops s − 1 and s, the uncertainty box is defined by the expected
energy consumption (µ̄k

s) and its maximum deviation (µ̂k
s). To limit the deviation, we impose Γk

s

as a budget to set an upper limit for energy consumption deviations up to stop s on bus line k.
We define the box uncertainty set for φk

n as C(φk
n):

C(φk
n) = {φk

i ∈ [0, 1]|
s∑

i=ok

φk
i ≤ Γk

s , ∀k ∈ K}

The parameter Γk
s belongs to the interval [0, |s|]. This parameter indicates the cumulative allowed

energy consumption deviation up to stop s. The value of Γk
s depends on decision-maker opinion

and indicates the robustness and level of conservatism of the solution. The range of the energy
consumption random parameter needs to be considered in (6) and (7) using the defined box un-
certainty set C(φk

n). The final BoU-CID formulation is as follows, where uk and vki are the dual
variables.

BoU − CID =1

subject to: (2, 3, 8)∑
t∈T

s∑
i=ok

Pt∆kixit ≤
s∑

i=ok

µ̄k
i + Γk

su
k +

s∑
i=ok

vki , ∀k ∈ K, s ∈ Sk (9)

(b̄− b)zk +
∑
t∈T

s−1∑
i=ok

Pt∆kixit ≥
s∑

i=ok

µ̄k
i + Γk

su
k +

s∑
i=ok

vki , ∀k ∈ K, s ∈ Sk (10)

uk + vks ≥ µ̂k
s , ∀k ∈ K, s ∈ Sk (11)

uk, vks ≥ 0, ∀s ∈ Sk (12)

Empirical data-driven uncertainty modeling

In the previous formulation, we demonstrated the importance of accounting for values above the
average consumption to ensure robustness of the design and developed a tractable formulation
based on this concept. However, this model may be vulnerable to inaccuracies in estimating
the worst-case scenarios. Unlike stochastic programming, which relies on predefined probability
distributions, and robust optimization, which assumes worst-case parameter realizations, DRO
reduces conservatism while maintaining computational tractability. This makes it particularly
effective for problems with limited or uncertain data (Delage & Ye, 2010)
We consider N samples, each representing observations of energy consumption between consecutive
bus stops on a specific bus line. The j-th energy consumption sample between stop s− 1 and s on
bus line k is noted by µkj

s , where {j = 1, ..., N}. It ensures that the cumulative energy consumption
up to stop s on line k falls within a decision-dependent safety set with high probability (1 − ϵ)
across all potential distribution (P ), as shown in Constraints (13) and (14). In these constraints,
the average energy consumption in CID is replaced by the observed values of energy consumption.
The related risk parameter is shown by ϵ.

P

[∑
t∈T

s∑
i=ok

Pt∆kixit ≤
s∑

i=ok

µkj
i , ∀k ∈ K, s ∈ Sk, j ∈ {1, ..., N}

]
≥ 1− ϵ,

∀P ∈ F(θks ) (13)

P

[
(b̄− b)zk +

∑
t∈T

s−1∑
i=ok

Pt∆kixit ≥
s∑

i=ok

µkj
i ,∀k ∈ K, s ∈ Sk, j ∈ {1, ..., N}

]
≥ 1− ϵ,

∀P ∈ F(θks ) (14)

Given the N observations of energy consumption data, accurately estimating their true distribution,
which is influenced by multiple factors, is complex. To address this, we define a distributional
uncertainty set, or ambiguity set (denoted by F(θks )), that includes all possible distributions for
energy consumption (P ) within a specified distance (θks ) from a reference distribution, denoted by
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P̂ . The reference distribution is modeled as a discrete uniform distribution calculated from the
energy consumption observations, expressed as P̂ = 1

N

∑N
j=1 δµkj

s
, where δ represents the Dirac

delta function for each energy consumption observation µkj
s . The ambiguity set is defined by

F(θks ) = {P : dW (P̂ , P ) ≤ θks}, with dW being the Wasserstein metric measuring distributional
distance. This metric effectively forms a ball of radius θks ≥ 0 centered on the empirical distribution
P̂ .
The decision-dependent safety set ensures that constraints (13) and (14) are met. This allows
the model to probe the boundary of the safety set and identify the worst probable distribution
of energy consumption influenced by the parameter θks . The parameter θks serves as a budget for
displacement, dictating the extent to which observed energy data up to stop s on bus line k can
shift toward the boundary of its safety set. The decision maker determines the value of θks , which
sets the size of the ambiguity set. A larger θks value provides more budget to transport an energy
consumption sample to its worst value, leading to more conservative solutions. We present the
final formulations in the following:

ϵNqk −
s∑

i=ok

∑
j∈{1,...,N}

rkji ≥ θksN ∀k ∈ K, s ∈ Sk (15)

M(1−
s∑

i=ok

ykji ) ≥ qk −
s∑

i=ok

rkji ∀k ∈ K, s ∈ Sk, j ∈ {1, ..., N} (16)

−
∑
t∈T

s∑
i=ok

Pt∆ki xit +

s∑
i=ok

µkj
i +M

s∑
i=ok

ykji ≥ qk −
s∑

i=ok

rkji

∀k ∈ K, s ∈ Sk, j ∈ {1, ..., N} (17)

(b̄− b)zk +
∑
t∈T

s−1∑
i=ok

Pt∆kixit −
s∑

i=ok

µkj
i +M

s∑
i=ok

ykji ≥ qk −
s∑

i=ok

rkji

∀k ∈ K, s ∈ Sk, j ∈ {1, ..., N} (18)

ykjs ∈ {0, 1}N , rkjs , qk ≥ 0, ∀k ∈ K, s ∈ Sk (19)

where qk ≥ 0 and rkjs ≥ 0 are the dual variables for the reformulation of the distance to the unsafe
set. Following Chen et al. (2022), we introduce a binary variable ykjs , where ykjs = 1 indicates that
the sample µkj

s does not satisfy the chance constraint, and vice versa. Constraints (15) and (16–19)
limit the distance of observations to the unsafe set, ensuring that the probability of not satisfying
the chance constraint is smaller than ϵ. Constraints (16–18) include a sufficiently large constant
M ∈ R+. The DRCC − CID model, is ultimately reformulated as an MILP and presented below:

DRCC − CID =1

subject to: (2, 3, 8),

(15− 19)

3 Results and discussion

To demonstrate the practical effectiveness of the formulations, they are applied to Rotterdam bus
network. We select three distinct bus lines (33, 38, and 40) within the Rotterdam bus network
to investigate the deployment of charging infrastructure for BEBs. All lines begin at the common
terminal, Rotterdam Centraal Station, and may share stops with one another. Each line is serviced
by a fleet of 10 buses.
Various methods have been proposed for estimating energy consumption in BEBs. By treating en-
ergy consumption as an exogenous input to the model, we reduce dependency on detailed parameter
estimation. The average energy consumption (µ̄) is simulated based on the distance between two
consecutive stops, with a consumption rate of 1.3 kWh per km (Bai et al., 2022). In the DRCC-CID
the base scenario involves generating 100 energy consumption samples from a uniform distribution
within the range [µ̄, µ̂] for each pair of stops. The risk tolerance ϵ is set to 0.1 to satisfy the chance
constraints, and M is fixed at 25 after systematic evaluation.
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Electrification cost analysis

The total electrification costs of the three models for different budget parameters are shown in
Table 1. The first row of the table presents the deterministic CID model results, serving as a
benchmark. Column 3 lists the total costs for each model. Column 4 shows the cost difference of
solutions compared to the benchmark. Columns 5 and 6 present the percentage of the total elec-
trification cost attributed to charging station installation and BEB battery capacity, respectively.
The results show that BoU-CID leads to designs that are 67% more expensive than the CID model
under high conservatism, with increases observed in both charging station installation and battery
capacity costs. In contrast, even under the more conservative setting, DRCC-CID incurs substan-
tially lower costs compared to BoU-CID. The cost breakdown shows that DRCC-CID primarily
addresses uncertainty by optimizing BEB battery capacity, reducing the need for costly charging
station installations, and minimizing overall system costs.

Table 1: Electrification costs breakdown of models

Model Uncertainty level Total costs
(e)

Relative
difference
(%)

Cost type percentage

CS installment BEB battery

CID - 8.413 × 105 benchmark 41% 59%

BoU-CID
low: (Γ = 0.2) 1.18 × 106 24% 43% 57%

high: (Γ = 0.8) 1.40 × 106 67% 48% 52%

DRCC-CID
low: (θ = 0.2) 9.81 × 105 17% 27% 73%

high: (θ = 0.8) 9.98 × 105 19% 26% 74%

Feasibility analysis of the design

This section explores the performance of the models under unobserved conditions by altering the
probability distributions used for sampling. In this modified simulation experiment, the sampling
distributions for testing differ from the distribution utilized in designing the models, differing in
their supports and distributional characteristics. Table 2 summarizes the findings, with the second
column indicating the distribution used to achieve the design decisions of the model and the third
column is the sampling distribution used for testing the performance of the model in previously
unconsidered scenarios. The sixth column shows the relative difference in total electrification costs
for robust models compared to the CID solution. The average feasibility performance across entire
bus network is indicated in the last column. The first simulation examine the case where the test
energy consumption values can exceed the design data by 20% in the range. The second simulation
explores scenario where the test and design distribution differ in their characteristics: a symmetric
triangular distribution with a shifted mode.

Table 2: Out-of-sample simulation results for CID, BoU-CID, and DRCC-CID

nr. Design
distribu-
tion

Out-of-
sampling
distribution

Uncertainty level of solved problem Total
cost

Average
feasibility
of the bus
network

model Relative
differ-
ence

1 U[0, µ̂] U[0, 1.2µ̂] CID - bench. 14%

BoU-CID low: (Γ = 0.2) +8% 56%

high: (Γ = 0.8) +62% Fully feasible

DRCC-CID low: (θ = 0.2) +0.2% 37%

high: (θ = 0.8) +3% 56%

2 T [0, µ̂, µ̂
2
] T [0, µ̂, 0.8µ̂] CID - bench. 17%

BoU-CID low: (Γ = 0.2) +27% 89%

high: (Γ = 0.8) +75% Fully feasible

DRCC-CID low: (θ = 0.2) +15% 40%

high: (θ = 0.8) +16% 71%
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The DRCC-CID model consistently outperforms the deterministic CID model in all simulations,
demonstrating improved feasibility under uncertainty. When test data differ only in range but
retain similar distributional properties (simulation number 1), DRCC-CID maintains a reasonable
level of feasibility while avoiding the excessive costs associated with BoU-CID.

4 Conclusions

This study highlights the substantial influence of uncertainty modeling approaches on BEB infras-
tructure design and electrification costs. Future research should explore additional dimensions of
uncertainty, such as supply-side factors, and extend to tactical and operational decision-making,
including the integration of bus schedules with BEB fleet sizing. While this study assumes a com-
plete transition to BEBs, future work could examine the implications of partial electrification and
the associated infrastructure adjustments.
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