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SHORT SUMMARY 

Road traffic in developing countries is characterized by heterogeneous vehicle types and weak lane 

discipline, with motorized and non-motorized vehicles of varying sizes and maneuverability leading to 

diverse driver behaviors. Identifying leader-follower (LF) pairs and analyzing vehicle-following (VF) 

behavior under such conditions is challenging, as proximity alone may not capture a leader vehicle's (LV) 

influence on a subject vehicle’s (SV) behavior. Non-following episodes, even with similar gaps or time 

headways, highlight the limitations of fixed longitudinal clearance thresholds. This study addresses these 

challenges by combining the k-v fundamental diagram to estimate desirable longitudinal gaps and wavelet 

transforms (WT) to match LV and SV speed profiles. The proposed methodology improves accuracy over 

heuristic methods, increasing the R-squared value from 0.268 to 0.349 and reducing RMSE from 0.764 to 

0.652, offering a robust framework for LF pair identification in heterogeneous traffic conditions. 
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1. INTRODUCTION 

Developed countries typically exhibit homogeneous, lane-based traffic, distinguishing VF and lane-

changing behaviors. In contrast, developing nations like India experience heterogeneous weak lane-based 

(HWLD) traffic, where motorized and non-motorized vehicles with varying characteristics share road 

space. Drivers navigate longitudinally by utilizing gaps, favoring an area-based arrangement to optimize 

space (Madhu et al., 2020).  

Analyzing VF behavior in HWLD traffic requires identifying LF pairs, where an SV’s motion is influenced 

by an LV. However, LF identification in HWLD traffic remains largely underexplored. Studies often rely 

on synthetic or simulated data (Das et al., 2019; Mathew & Ravishankar, 2011) or aggregated macroscopic 

measures (Asaithambi et al., 2018; Mathew & Radhakrishnan, 2010).  

The literature presents various criteria for identifying LF pairs. Longitudinal clearance between the assumed 

leader and follower is a common method used to define the LV and its influence zone on the SV (Anand et 

al., 2019; Madhu et al., 2020, 2022; Nirmale et al., 2021). Lateral clearance or overlap width is another 

important factor for identifying the LV (Anand et al., 2019; Madhu et al., 2020, 2022; Nirmale et al., 2021; 

Papathanasopoulou & Antoniou, 2018; Raju et al., 2021).  

Once the LV is identified, the pair is classified as LF or non-LF. Anand et al. (2019) used a minimum 

threshold for the continuous following duration. Madhu et al. (2020, 2022) identified the most influencing 
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LV based on the closest gap between SV and LV when more than one LV is present.  

In HWLD traffic, the influence of other surrounding vehicles between the leader and follower must be 

considered. Smaller vehicles, such as two-wheelers (TW), often partially occupy the influence region, 

causing intermittent VF behavior. Such dynamics, uncommon in lane-based traffic, frequently occur in non-

lane-based conditions due to vehicle size variations. Raju et al. (2021) used space-time plots to identify 

other influencing vehicles but noted that visual analysis becomes impractical for large datasets. Recently 

Kulkarni et al. (2025) proposed a robust methodology for LF identification, focusing on strong LV-SV 

interaction, significant lateral overlap, and the absence of intervening vehicles. They observed that the 

presence of an intermediate vehicle between SV and LV weakens their interaction, leading to classification 

as non-LF pairs. 

The above literature on the identification of LF pairs reveals several gaps as follows 

i. Fixed thresholds for longitudinal clearance may not capture realistic interactions, as vehicle 

influence depends on speed and type. For example, TW’s generally have shorter look-ahead 

distances than larger vehicles like trucks. 

ii. Kulkarni et al.'s (2025) approach, based on Wiedemann-99 driving regimes, is limited to cars. 

iii. A potential LV influences the SV’s speed leading to similar speed patterns between them. However, 

such relationship for LF pair identification has yet to be explored in the literature. 

iv. Although WTs have been applied to traffic flow analysis, their use for LF identification under 

HWLD traffic remains unexplored. Maiti and Chilukuri (2023) used Mexican Hat WT to analyze 

speed profiles and detect abrupt changes, but its potential for LF identification has yet to be 

examined. 

This study addresses these gaps by proposing an enhanced LF identification method, incorporating 

desirable longitudinal gaps and speed profile correlations. By leveraging these criteria, the methodology 

demonstrates improved accuracy over existing heuristic approaches, with broader applicability to diverse 

vehicle types in HWLD traffic. 

2. LEADER FOLLOWER IDENTIFICATION 

This section presents an overview of the proposed LF pair identification method.  

Data 

This study utilizes open-source HWLD trajectory data from Saidapet, Chennai, as provided by Kanagaraj 

et al. (2015). The processed data include individual trajectories of 3005 vehicles with each vehicle’s 

trajectory including the spatial position, speed, and acceleration/deceleration values in both the longitudinal 

and lateral directions at a 0.5 s resolution. 

Base model 

This study aims to predict the longitudinal response (acceleration or deceleration) of the SV using multiple 

linear regression model. Three fundamental stimuli are considered for modelling: the relative velocity 

between the SV and the LV, the longitudinal gap between the SV and the LV, and the SV speed. Nirmale 

et al. (2021) reported optimal acceleration response prediction using a 0.5-second update time with the same 
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open-source Chennai data. Consequently, this study also adopts a 0.5-second update time. The model 

structure is represented in Equation 1.  

𝑦(𝑡 + 𝜏) = 𝛽0 + 𝛽1𝑥1(𝑡) + 𝛽2𝑥2(𝑡) + 𝛽3𝑥3(𝑡) + 𝜀           (1) 

 

Where 𝑦(𝑡 + 𝜏) is the acceleration or deceleration response of the SV at time (𝑡 + 𝜏), 𝑥1 is the relative 

speed between LV and SV, 𝑥2 is the bumper-to-bumper gap between LV and SV in the longitudinal 

direction, 𝑥3 is the SV speed, 𝛽𝑥 is the parameter associated with variable 𝑥 and 𝜀 is the error term.  

Identify leader-follower pairs based on the literature 

The development of a longitudinal response model begins with identifying LF pairs, a challenging task in 

HWLD traffic conditions due to varying vehicle dimensions, intermittent following, and multiple potential 

leaders. The following four criteria, based on existing literature, were employed to identify LF pairs: 

i. Longitudinal threshold: the leader is expected to be present within 30 m from the front bumper of 

the SV (Madhu et al., 2020, 2022; Nirmale et al., 2021) 

ii. Lateral overlap: LV’s lateral dimensions should be fully or partially overlapping with SV  (Anand 

et al., 2019; Madhu et al., 2020, 2022; Nirmale et al., 2021; Papathanasopoulou & Antoniou, 2018; 

Raju et al., 2021). 

iii. Duplicate leader: when more than one LV is present, the most influencing LV is identified based 

on the closest gap with the SV (Madhu et al., 2020, 2022) 

iv. A minimum of 5 s continuous following duration (Anand et al., 2019). 

Based on these four criteria from the literature, 2125 LF pairs were identified from the trajectory data. The 

class-wise distribution is presented in Table 1. This study specifically focuses on 707 potential pairs where 

a Car follows LVs of any type. 

Table 1: LF pairs identified based on the literature 

SV type LF pairs 

TW 942 

CAR 707 

HV 90 

LCV 34 

AUTO 352 

Total 2125 

Propose LF identification methodology 

This study introduces an enhanced methodology for identifying LF pairs in HWLD traffic. The following 

modifications were incorporated to refine the LF pair selection process: 

i. Modification 1: Exclusion of multiple SVs for a single LV 
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When multiple SVs follow a single LV, their overlap with the LV is minimal, often indicating tailgating 

behavior with overtaking intent rather than genuine following. Such pairs were excluded to ensure accurate 

LF identification. 

ii. Modification 2: Removal of lateral clearance for overlap calculations 

Initially, a lateral clearance of 0.2 m (Papathanasopoulou & Antoniou, 2018) was included for calculating 

vehicle boundaries. However, this approach overestimated lateral overlaps. Eliminating lateral clearance 

refined LF pair selection.  

A revised LF pair list is identified based on these two modifications. Table 2 compares the number of LF 

pairs and the correlation values of the independent variables (longitudinal gap, relative velocity, and SV 

velocity) with the dependent variable (acceleration) for the base model and after applying the modifications. 

The correlation values highlight Modification 2 was more effective in improving LF pair selection, forming 

the basis for further analysis. 

Table 2: LF pairs and correlations with the modification 1 and 2 

Model Variables Base model Modification 1 Modification 2 

No: 

Pairs Correlation 

No: 

Pairs Correlation 

No: 

Pairs Correlation 

CAR 

Long gap 

702 

-0.002 

461 

0.018 

503 

0.007 

Relative velocity 0.442 0.43 0.456 

SV velocity -0.428 -0.431 -0.447 

iii. Modification 3: Vehicle-type-specific longitudinal gap thresholds 

The commonly used fixed threshold of 30 meters for identifying LVs may not accurately capture real-world 

interactions. For instance, slower-moving vehicles are less influenced by distant LVs, and the look-ahead 

distance for TWs is typically shorter than that of heavy vehicles such as trucks. To address this, the study 

proposes estimating a desirable longitudinal gap for different vehicle types at varying speeds.  

Desirable Longitudinal Gap 

The desirable gap (s) is calculated for each SV type based on speed, using density (k) derived from the 

fundamental k-v diagram (Figure 1) and calculated through Equations (2) and (3) for each vehicle type. LF 

pairs are then selected based on whether the observed longitudinal gap falls within the estimated desirable 

gap range. 
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Figure 1: Fundamental diagram 

𝑘 =
𝑤∗𝑘𝑗

(𝑤+𝑣)
         (2) 

𝑔𝑎𝑝 (𝑠) =
1

𝑘
=

𝑤∗𝑘𝑗

(𝑤+𝑣)
∗ 1000      (3) 

The fundamental diagram parameters such as maximum flow, jam density, critical density, and free flow 

speed are taken from Ashok and Chilukuri (2024). Figure 2 represents the vehicle type-specific fundamental 

diagram based on the values from the literature.  

 

Figure 2: Fundamental diagram of heterogeneous traffic 

To accommodate the variability in heterogeneous traffic, a gap allowance ranging from 20% to 100% (in 

20% increments) was applied. LF pairs were selected based on thresholds where 50%, 60%, or 70% of the 

data points of each pair satisfied the gap allowance conditions. Error! Reference source not found. lists 

the LF pairs identified under different spacing allowance thresholds. 
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Table 3: LF pairs across different gap allowance thresholds 

Percentage data points of 

each pair satisfy threshold 
LF pairs with gap allowance 

20% 40% 60% 80% 100% 

50% 317 376 434 469 492 

60% 291 356 414 457 484 

70% 263 324 389 440 474 

iv. Modification 4: Speed profile correlation between LV and SV  

Existing methods primarily identify LVs based on relative position without confirming their influence on 

the SV. This study addresses this by evaluating the correlation between the speed profiles of LV and SV 

using the Mexican Hat continuous WT. 

Speed Profile Correlation: 

Wavelet energy trends were analyzed to identify LVs that influence SV behavior. LF pairs were validated 

if the SV's wavelet energy profile exhibited a lagged similarity to the LV’s profile. For LF pairs identified 

through the prior modification, the LV's influence was assessed by comparing wavelet energy plots of LV 

and SV speeds. LF pairs with at least four matching peak points (arbitrarily selected) in their wavelet energy 

plots were shortlisted. 

Figure 3 illustrates the wavelet energy profiles of LF pair 408-410, and Table 4 provides a breakdown of 

LF pairs meeting these criteria based on LV type. 

 

Figure 3: Sample LF pair (a) speed profile (b) wavelet energy 

Table 4: LF pairs satisfying speed correlation criteria 

  

Original 

pairs 

Pairs with matching 

energy plots 

Pairs with min four 

matching peaks 

TW-Car 114 100 35 

Car-Car 217 168 63 

LCV-Car 10 10 6 

AUTO-Car 55 51 24 
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HV-Car 18 17 2 

Total 414 346 130 

The proposed framework improves LF identification under HWLD traffic conditions by incorporating 

vehicle-type-specific longitudinal gaps and speed profile correlations. Traditional methods are 

supplemented with these modifications to enhance accuracy. The methodology's performance is compared 

with existing approaches in the following results section. 

3. RESULTS AND DISCUSSION 

This section evaluates the performance of existing LF identification methods against the proposed 

approaches using a base model predicting the SV's longitudinal acceleration or deceleration. 

Initially, LF pairs identified from the literature were used for modeling. These were subsequently refined 

through the proposed modifications. Among the first two modifications, Modification 2 was most effective 

in refining LF pair selection. Thus, the revised LF pairs identified using Modification 2 were used as the 

input for Modification 3. 

Figure 4, illustrates the performance matrix after applying the Modification 3. Among the various threshold 

and allowance combinations, an allowance of 60% with 60% of data points satisfying the condition strikes 

a balance between model performance improvement and the number of LF pairs retained. This combination 

was selected as the input for Modification 4. 

 

Figure 4: Performance metric with modification 3 
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Table 5 summarizes model performance across modifications. Incorporating vehicle-type-specific 

longitudinal gaps and speed profile correlations through wavelet energy analysis significantly improved LF 

pair identification and model accuracy. 

Table 5: Model performance across different LF pair identification modifications 

LF pairs  Data set R-

squared 

Mean 

Absolute 

Error 

Mean 

Squared 

Error 

Root Mean 

Squared 

Error 

From Literature 
Training 0.245 0.539 0.578 0.76 

Test 0.268 0.552 0.584 0.764 

With 

Modification 1 

Training 0.247 0.524 0.530 0.728 

Test 0.261 0.523 0.506 0.712 

With 

Modification 2 

Training 0.275 0.533 0.533 0.730 

Test 0.286 0.536 0.535 0.731 

With 

Modification 3 

Training 0.284 0.530 0.526 0.725 

Test 0.259 0.536 0.559 0.748 

With 

Modification 4 

Training 0.352 0.496 0.436 0.660 

Test 0.349 0.483 0.425 0.652 

The type of LV significantly impacts the SV's longitudinal behavior. Larger LVs, such as buses or trucks, 

exert greater influence on the SV's longitudinal gap and acceleration compared to smaller vehicles like 

TWs. Table 6 details the performance metrics for the refined model across different LV types. 

Table 6: Model performance metrics with Modification 4 across different LV type 

Model Sample 

size 

 Data 

set 

R-

squared 

Mean 

Absolute 

Error 

Mean 

Squared 

Error 

Root 

Mean 

Squared 

Error 

Car 
2128 Training 0.3518 0.4964 0.4358 0.6602 

912 Test 0.3485 0.4827 0.4248 0.6518 

TW-Car 
566 Training 0.3348 0.4824 0.4316 0.6569 

243 Test 0.293 0.5201 0.4799 0.6927 

Car-Car 
1026 Training 0.3683 0.4901 0.4242 0.6513 

440 Test 0.3829 0.5081 0.4658 0.6825 

LCV-Car 
1026 Training 0.397 0.4126 0.273 0.5225 

440 Test 0.5413 0.4888 0.359 0.5992 

AUTO-Car 
405 Training 0.3209 0.4605 0.3934 0.6273 

174 Test 0.4658 0.4552 0.3597 0.5998 

HV-Car 
39 Training 0.4915 0.5077 0.391 0.6253 

16 Test 0.2867 0.6641 0.5619 0.7496 
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Notably, Car-Car and LCV-Car pairs demonstrated higher R-squared values, reflecting improved predictive 

accuracy. However, the limited sample size for HV-Car pairs reduced the reliability of their results. 

4. CONCLUSIONS 

This study presents a novel approach to identifying LF pairs in HWLD traffic conditions. Using empirical 

trajectory data from Chennai, India, the proposed methodology was compared with existing LF 

identification techniques. By incorporating the k-v fundamental diagram, the approach estimates 

appropriate longitudinal gaps for various vehicle types across different speeds. Furthermore, WT was 

applied to identify similar speed patterns between LV and SV, facilitating the identification of influential 

LVs. The methodology's performance is compared by predicting the SV's longitudinal response in terms of 

acceleration or deceleration.  

The results provide valuable insights into identifying LF pairs with influencing LVs and their role in 

understanding VF behaviour. This method provides a robust framework for extracting LF pairs from 

trajectory data in complex traffic settings, with significant implications for traffic engineering. While the 

study focuses on cars as SVs, future work could expand the methodology to include two-wheelers and other 

vehicle types, which play a major role in the traffic in the study area. 
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