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SHORT SUMMARY 

Despite being a long-standing European ambition and an important step to achieving climate 

goals, there is still no European High-Speed Rail (HSR) network. To gain insights into a profitable 

network design, this study develops a new formulation for the “Transport Network Design & 

Frequency Setting Problem” (TNDFSP), as current literature lacks one that can optimally solve 

the problem for instances of this size while also accounting for demand elasticity. The optimal 

solution is largely insensitive to fare changes and outperforms the current state-of-the-art in sev-

eral aspects. Our model considers the 111 most populous European cities, along with all their 

origin-destination (OD) pairs, and finds the most profitable network design within a reasonable 

solution time frame. The results show HSR can be very profitable in Europe, but only when con-

centrated around a selected group of the largest cities in the western part of the continent.  

 

Keywords: High-speed rail, Network design, Frequency setting, Optimisation, Demand 

forecasting, Profitability. 

 

 

 

1. INTRODUCTION 

In Europe, the long-distance travel market (>700 km) has been dominated by planes, as it is often 

considered the only practical option. The market showed continuous exponential growth in air 

passenger numbers of 6.0% yearly on average (Eurostat, 2019) and is projected to double in pas-

senger numbers by 2040 (Timperley, 2020), tripling its contribution to climate change between 

2020 and 2050 (ICAO, 2019). This is incompatible with the active Climate Agreements (Gössling 

& Humpe, 2020), and therefore, the European Union is forced to look for greener travel alterna-

tives, the most promising candidate being High-Speed Rail (HSR). 

 

High-speed trains emit on average seven times less CO2 per passenger-km (Strauss et al., 2021), 

when compared to air or road alternatives. With commercial speeds reaching up to 350 km/h, 

relatively low waiting times and the ability to directly connect city centres (Martín et al., 2014), 

they have a competitive advantage for travel times up to four hours (UIC, 2018). Japan was the 

first country to develop HSR with the introduction of the Shinkansen in 1964. In recent decades, 

fuelled by HSR-backing governmental policy and subsidies, China has built a network comprising 
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more than two-thirds of the global rail length (Chen, 2020), proving very successful by serving 

2.4 million passengers in 2019 (Zhang, 2024), and decimating local airplane’s market share 

(Bradsher, 2013). Following this example, it comes as no surprise that the EU has been pushing 

governments to develop international high-speed rail connections.  

 

Even though Europe has an extensive conventional rail network, it was developed with national 

focus, complicating interoperability and efficiency when travelling internationally. Despite HSR-

backing policy acting since the 1990s and investments of €23.7 billion into HSR development, 

the total transport-related greenhouse gas emissions have only increased since then (EEA, 2023). 

It can be concluded that the EU is not on track to meet its climate goals. As of today, still no 

European network exists (European Court of Auditors, 2018). 3.  

 

As pointed out by Grolle et al. (2024), no HSR network design methods are currently available – 

a crucial literature gap. The great complexity of the “Transport Network Design & Frequency 

Setting Problem” (TNDFSP), primarily caused by demand elasticity, has led to the problem being 

primarily solved by (meta)heuristic algorithms, providing a good but not optimal solution. Due 

to the complexity of the problem, many assumptions and simplifications are made, putting the 

value of the found solutions under scrutiny. Prominent examples of these are the usage of fixed 

demand (despite its elastic nature) and network simplification (Cascetta & Coppola, 2012). Cur-

rent literature lacks one that can optimally solve the problem for instances of this size while also 

accounting for demand elasticity. 

 

To address the problems mentioned above, this study aims to develop a model that can assess 

European HSR profitability through mathematical optimisation, finding the optimal configuration 

of connections, lines and their frequencies. Therefore, the goal is to answer the main research 

question of which European cities must be connected via High-Speed Rail, and how should these 

connections be served to lead to an (optimally) profitable network. The methodological frame-

work required to answer this question consists of three parts: new and comprehensive demand 

forecasting, profitability estimation and a new network design model. 

2. METHODOLOGY 

The methodological approach builds demand forecasting, profitability analysis, and network de-

sign modelling, as introduced in the subsequent sections.  

Demand forecasting  

The model must incorporate factors. As the most established and used method in practice, a logit 

model is used to forecast HSR demand. A direct consequence of this choice is that the HSR de-

mand has to be estimated via its market share, by multiplying a total demand flow with the HSR 

market share (Sánchez-Borràs et al., 2010). Table 1introduce parameters used for the demand 

 
 
 

 

 

 

 

 
 

 

 
 



3 

 

 

 Table 1: Nomenclature of Demand Forecasting Model 
 

Parameter Unit Definition 

𝐷𝐴𝐼𝑅,𝑖𝑗 [pax] air demand for city pair 𝑖𝑗 

𝑉𝑘,𝑖𝑗 [-] observed utility of alternative 𝑘 for city pair 

𝑖𝑗 
𝑧𝑘,𝑖𝑗 [-] presence of alternative 𝑘 for city pair 𝑖𝑗 

𝛽𝑇𝑇 [util/h] MNL coefficient for travel time 

𝛽𝑇𝐶 [util/€] MNL coefficient for travel cost 

𝑇𝑇𝑘,𝑖𝑗 [h] travel time of alternative 𝑘 for city pair 𝑖𝑗 

𝑇𝐶𝑘,𝑖𝑗 [€] travel cost of alternative 𝑘 for city pair 𝑖𝑗 

𝑘 [-] intercept gravity coefficient 

𝛼 [-] gravity coefficient for population 

𝛽 [-] gravity coefficient for GDP 

𝛾 [-] gravity coefficient for distance 

𝑃𝑖 [pax] population of city 𝑖 
𝐺𝐷𝑃𝑖 [€] GDP of city 𝑖 
𝑑𝑖𝑗 [km] distance between city pair 𝑖𝑗 

 

This allows to formulate the air demand per city pair – which is key input for the HSR network 

design model – as follows: 
 

𝐷𝐴𝐼𝑅,𝑖𝑗 =
exp⁡(𝑉𝑝𝑙𝑎𝑛𝑒,𝑖𝑗)

∑ 𝑧𝑘,𝑖𝑗 ∙ exp⁡(𝑉𝑘,𝑖𝑗)𝑘∈𝑲
∙ 𝑘

∙
(𝑃𝑖 ∙ 𝑃𝑗)

𝛼
∙ (𝐺𝐷𝑃𝑖 ∙ 𝐺𝐷𝑃𝑗)

𝛽

(𝑑𝑖𝑗)
𝛾  

(1) 

 

where  

𝑉𝑘,𝑖𝑗 = 𝛽𝑇𝑇 ∙ 𝑇𝑇𝑘,𝑖𝑗 + 𝛽𝑇𝐶 ∙ 𝑇𝐶𝑘,𝑖𝑗. (2) 

 

 

 

Profitability estimation  

 

To estimate the profitability of a potential HSR line, the central monetary flows are defined in the 

following paragraphs using the nomenclature in Table 2. 
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Table 2: Nomenclature of Profitability Estimation Model 

 

Pa-

rame-

ter 

Unit Definition 

𝐶𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

 
[€] infrastructure construction costs  

between city 𝑖 and 𝑗 

𝐶𝑖𝑗
𝑋,𝑡𝑟𝑎𝑖𝑛

 
[€] rolling stock acquisition costs  

between city 𝑖 and 𝑗 

𝐶𝑖𝑗
𝑇,𝑖𝑛𝑓𝑟𝑎

 
[€/year] infrastructure operation & mainte-

nance costs between city 𝑖 and 𝑗 

𝐶𝑖𝑗
𝑇,𝑡𝑟𝑎𝑖𝑛

 
[€/year] rolling stock operation & mainte-

nance costs between city 𝑖 and 𝑗 

𝑘𝑋,𝑖𝑛𝑓𝑟𝑎 [€/km] unit infrastructure construction cost 

𝑘𝑋,𝑡𝑟𝑎𝑖𝑛 [€/train] unit rolling stock acquisition cost  

𝑘𝑇,𝑖𝑛𝑓𝑟𝑎 
[€/km/year] unit infrastructure  

operation & maintenance cost 

𝑘𝑇,𝑡𝑟𝑎𝑖𝑛 
[€/seat-km] unit rolling stock  

operation & maintenance cost 

𝑠 [pax] seats per train set 

𝐻 [h/day] operating hours per day 

𝐷 [day/year] operating days per year 

𝑣𝑚𝑎𝑥 [km/h] maximum operating speed 

𝑇𝑙𝑖𝑓𝑒⁡ [year] project lifetime 

𝑙𝑖𝑗 [km] distance between city 𝑖 and 𝑗 

𝑡𝑖𝑗 [h] travel time between city 𝑖 and 𝑗 

𝑛𝑖𝑗 [-] trains to serve demand between city 

𝑖 and 𝑗 
 

 

 

Ticket revenue: The revenue depends on the outcome of the product of the ticket fare and de-

mand. The fare setting is a design choice. Operators generally set a price that maximises their 

passenger revenue (Qin et al., 2019). This study will follow the same approach, aided by Python 

library SciPy. It can be mathematically proven that optimising for maximum revenue will always 

yield exactly one, nonnegative, optimal fare setting.  

 

Construction costs: It was determined that the total costs depend on the line length, and a unit 

cost for each km 𝑘𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

. This unit cost depends on the location and difference in height. Bor-

gogno (2023) quantifies these relationships and produces unit construction cost per km, for sur-

face (𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒) and tunnelling (𝐶𝑡𝑢𝑛𝑛𝑒𝑙) separately for European countries. It is assumed that 

𝑘𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

 is a result of a convex combination of  𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 and 𝐶𝑡𝑢𝑛𝑛𝑒𝑙, dependent on a normalised 

height difference. Thus, the maximum possible height difference between two cities in Europe is 

set to 1 and the minimum is set to 0, with linear interpolation in between. The formula calculating 

the total infrastructure construction cost is displayed as: 
 

𝐶𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

= 𝑘𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

∙ 𝑙𝑖𝑗 (3) 
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Acquisition costs: As mentioned, these depend solely on the number of train sets bought and a 

unit price. The minimum number of trains needed to operate a line is product of the frequency 

and the full round-trip time:  
 

𝐶𝑖𝑗
𝑋,𝑡𝑟𝑎𝑖𝑛 = 𝑘𝑋,𝑡𝑟𝑎𝑖𝑛 ∙ ⌈2 ∙ 𝑓𝑖𝑗 ∙ 𝑡𝑖𝑗⌉ (4) 

 

Infrastructure maintenance & operation costs:  As stated, these are calculated based on yearly 

sum per km 𝑘𝑇,𝑖𝑛𝑓𝑟𝑎. 
 

𝐶𝑖𝑗
𝑇,𝑖𝑛𝑓𝑟𝑎

= 𝑘𝑇,𝑖𝑛𝑓𝑟𝑎 ∙ 𝑙𝑖𝑗 (5) 

 

Rolling stock maintenance & operation costs: These are calculated based on a value per seat-

km 𝑘𝑇,𝑡𝑟𝑎𝑖𝑛, and has to be multiplied with a number of factors in order to acquire the total yearly 

costs:  
 

𝐶𝑖𝑗
𝑇,𝑡𝑟𝑎𝑖𝑛 = 𝑘𝑇,𝑡𝑟𝑎𝑖𝑛 ∙ 𝑠 ∙ 𝐻 ∙ 𝐷 ∙

𝑛𝑖𝑗 ∙ 𝑙𝑖𝑗

𝑡𝑖𝑗
 (6) 

 

Network design model 

We formulate the HSR Transport Network Design & Frequency Setting Problem as a mixed in-

teger program that generalises the Network Design & Frequency Setting Problem (TNDFSP).  

The TNDFSP extends the Multi-Commodity Flow Problem (MCFP), which is often used as an 

efficient formulation to handle city-scale transit networks (Ng et al., 2024). The objective function 

of the formulation maximises the profit of the network according to Equation (7).  

 

∑(𝑥𝑟 ∙ 𝑓𝑟
𝑟𝑒𝑣)

𝑟∈𝑹

  

−∑(𝑦𝑎 ∙ 𝑓𝑎
𝑐𝑜𝑠𝑡)

𝑎∈𝑨

  

−[𝑘𝑋 ∙∑(𝑛𝑟
𝑡𝑟𝑎𝑖𝑛)

𝑟∈𝑹

] − [𝑇𝑙𝑖𝑓𝑒 ∙ 𝑘𝑇 ∙ 𝑠 ∙ 𝐻 ∙ 𝐷 ∙∑(
𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 ∙ 𝑑𝑟
𝑡𝑟

)

𝑟∈𝑹

]  

−[𝑇𝑙𝑖𝑓𝑒 ∙ 𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∙ ∑ [(𝑢𝑝 − 𝑣𝑝) ∙∑(𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

∙ 𝑞𝑟
𝑦𝑒𝑎𝑟

)

𝑟∈𝑹

]

𝑝∈𝑷

] (7) 

 

 

Here, 𝑥𝑟 models the decision of whether OD flow route 𝑟 ∈ 𝑹 is selected, with 𝑓𝑟
𝑟𝑒𝑣 ⁡   as lifetime 

revenue for OD flow route. 𝑦𝑎 models the decision of whether arc 𝑎⁡ ∈ 𝑨 is selected, with  𝑓𝑎
𝑐𝑜𝑠𝑡 

as lifetime cost for the arc. Next to these costs, the acquisition costs (based on Equation (4)) and 

the rolling stock maintenance and operation costs (based on Equation (6)) are deducted. Further-

more, the lifetime (𝑇𝑙𝑖𝑓𝑒) transfer costs are subtracted for each 𝑝 ∈ 𝑷 of OD pairs that require a 

transfer, where 𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is the respective transfer penalty.  
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3. RESULTS AND DISCUSSION 

The data set by Florczyk et al. (2019) provides data on 160 metrics for 13,135 urban centres 

(hereafter referred to as cities). After pre-processing, it was found that 726 cities, originating from 

35 countries, comply with all scope requirements. Together, they form the set of potential nodes 

N, sharing 263,175 possible connections among them. These 726 cities encompass a wide range 

of values in all characteristics. With all settlements of population over 50,000 represented, there 

is confidence that the set encompasses all potential HSR stations. The required data was success-

fully gathered regarding all cities. Optimising for a network of 111 cities (effectively: 109, as 

explained earlier), 589 arcs, 2,269 OD pairs and 77,067 routes resulted in construction of a model 

with 243,671 integer decision variables (of which 89,537 are binary) and 1,035,732 constraints. 

The optimal solution was found after a little under six hours, an optimal lifetime profitability of 

€222.8 bn was reported.  

 

The optimal configuration consists out of 15 cities, connected by 15 arcs and is displayed in Fig-

ure 1. The yellow dots not connected by lines, are cities that the model considered, but did not 

add to the network. Most of the arcs will be newly built, as only two are currently in high-speed 

operation: Brussels-Paris (average speed: 229 km/h) and London-Paris (200 km/h). Another re-

markable finding is that for a maximally profitable network, not all individual arcs have to be 

profitable on their own: 5 out of 15 arcs are not, which are all situated at an end point of the 

network. Table 3 shows the profitability for each selected arc, only considering ticket revenue 

and infrastructural costs, as rolling stock-related costs depend on the design of lines, which will 

be addressed in the next section. 
 

 

 

 
 

Figure 2: Optimal Network Topology Figure 1: Optimal Network Topology 
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Table 3: Profitability of Connections 

 
Connection name Length 

[km] 

Flow 

[pax/ 

day] 

Reve-

nue 

[B€] 

Costs 

[B€] 

Profit 

[B€] 

Brussels-London 364 131,680 199.943 17.513 182.430 

London-Paris 464 42,105 106.965 13.023 93.941 

Brussels-Dusseldorf 201 67,474 54.182 9.890 44.292 

Amsterdam-Brussels 211 56,345 45.245 9.563 35.683 

Brussels-Paris 317 45,726 40.057 6.934 33.122 

Brussels-Frankfurt 397 46,779 46.443 21.436 25.007 

London-Nottingham 206 42,771 33.721 12.233 21.488 

Dusseldorf-Hanover 280 33,654 26.042 17.371 8.671 

London-Southampton 123 13,021 9.125 7.323 1.803 

Edinburgh-Nottingham 449 17,155 26.800 26.017 0.783 

Leeds-Nottingham 120 11,931 7.490 7.646 -0.155 

Frankfurt -Nuremberg 223 22,566 16.473 18.474 -2.000 

Munich-Nuremberg 172 16,618 12.131 14.557 -2.426 

Berlin-Hanover 290 20,093 14.375 17.865 -3.490 

Hamburg-Hanover 152 8,249 5.420 9.840 -4.420 

TOTAL 3,969 576,167 644,413 209,685 434,728 
 

 

 

The line design ensures direct connections for 52 out of 60 (87%) of OD pairs and 95% of pas-

sengers. All OD pairs are served with at most one transfer. Brussels can be considered a main 

hub, being associated with nine out of eleven lines, while having a direct connection with all but 

one of the other cities. Serving 95% of passengers directly, the inclusion of transfer penalties 

resulted in a well-balanced line design, which appears to “care” about the number of transfers 

passengers make, but does not overdo it in the sense that every OD pair is served by a separate 

line. Together, the lines serve all arcs, most often with the minimum required frequency. Figure 

2 shows the optimal line map. 

 

Figure 3: Line Design Map (the numbers denote the joint frequency per arc) 
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4. CONCLUSIONS 

This study addresses the limitations in demand forecasting, profitability estimation, and network 

design for high-speed rail (HSR) in Europe, contributing new insights into the Transport Network 

Design Problem (TNDP) under elastic demand. The presented network design model performs 

strongly, efficiently solving for larger networks while taking demand elasticity into account.   

 

However, the model’s reliance on ‘smart restrictions’ to reduce the number of OD flow routes 

and the inherent assumptions about fare sensitivity reveal areas where further work, particularly 

online design robustness, could enhance its applicability to real-world scenarios. Similarly to the 

profitability estimation model, the network design model's focus on profitability leaves untouched 

potential for considering non-monetary benefits such as sustainability gains. 

 

While the demand forecasting model used was functional, its simplifications—such as the exclu-

sion of certain travel modes (e.g. bus) and impact factors—indicate room for further accuracy 

improvements, particularly through incorporating mixed logit or dynamic gravity models. The 

inability to fully capture inter-modal competition limits the precision of the demand forecasts, 

primarily when working with trips with a touristic character, but these were not the primary focus 

of the research. 

 

The profitability estimation model, though simplified, provides reasonable insights into HSR vi-

ability under current assumptions. However, it overlooks critical factors such as fare competition 

and inflation, which could significantly change the results over a 40-year project span. Additional 

research could explore greener policies for optimising HSR demand, looking beyond only the 

maximisation of revenue. 
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