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SHORT SUMMARY 

 

Understanding commuters’ mode choice is crucial for promoting sustainable mobility and 

reducing car dependency. This study applies Multinomial Logit (MNL) and Neural Network (NN) 

models to survey data from employees in Rome, Italy, ensuring a fair comparison through 

identical preprocessing and evaluation metrics. Results show that while the NN model achieves 

slightly higher accuracy, statistical tests confirm the difference is not significant. Elasticity 

analysis in the MNL model examines key determinants influencing commuters’ decisions and 

provides interpretable insights into travel behavior. These findings demonstrate that the MNL 

model delivers strong predictive performance while maintaining greater interpretability. This 

reinforces the relevance of traditional econometric models in transportation research, particularly 

for policy applications where explainability is essential. 
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1. INTRODUCTION 

 

Commuters play a pivotal role in traffic flow, as they constitute a major share of travelers. Unlike 

non-commuters, whose travel behavior is more flexible, commuters exhibit stable long-term 

travel patterns tied to work or school commitments (Xiong et al. 2024). Understanding commut-

ing patterns is crucial for transportation planning and sustainability policies. Additionally, traffic 

congestion harms transportation efficiency and well-being, increasing stress and reducing job sat-

isfaction (Wener and Evans 2011).  

Mode choice modeling is essential for understanding and predicting travel behavior. Traditional 

Discrete Choice Models (DCMs) are valued for their interpretability and theoretical foundation 

in explaining individual decisions (Hillel et al. 2021). In Machine Learning (ML) terms, a Ran-

dom Utility Model (RUM) functions as a supervised probabilistic classifier, predicting mode 

choice probabilities from a finite dataset with ground-truth labels. ML classification algorithms, 

which excel in transportation tasks like safety assessment and demand prediction (M. Afsari et al. 

2024; Eldafrawi et al. 2024), capture non-linear patterns without predefined utility specifications, 
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offering greater flexibility than RUMs. ML enhances accuracy, while DCMs prioritize interpret-

ability through predefined variables (Martín-Baos et al. 2023). 

Model selection depends on dataset characteristics, as shown by (García-García et al. 2022)). 

Since no single model is universally superior, we apply both Multinomial Logit (MNL) for its 

interpretability and Neural Networks (NN) for its power in capturing complex, non-linear rela-

tionships, to assess their effectiveness in predicting mode choice and supporting sustainable trans-

portation policies of commuters in Rome, Italy. This study makes several key contributions: 

• Comparative Analysis of ML and Econometric Models: Systematically compares MNL  

and NN models for mode choice prediction, addressing existing methodological gaps 

highlighted in prior literature; ensures consistency through a structured preprocessing 

pipeline, cross-validation, and benchmarking for rigorous model comparison. 

• Data Balancing Techniques: Evaluates the impact of balancing strategies on mode choice 

datasets, which are often imbalanced. 

• Enhanced Interpretability: Uses elasticity and marginal effect analysis in MNL to quan-

tify key variables’ influence on commuting choices, bridging the gap between predictive 

power and interpretability. 

• Sustainable Mobility Insights: Identifies factors driving the shift toward sustainable 

transport, offering policy recommendations to reduce car dependency. 

The paper is structured as follows: Section 2 details preprocessing and modeling framework; Sec-

tion 3 presents the dataset, experimental results and model comparisons; Section 4 concludes with 

policy implications and future research directions. 

2. METHODOLOGY 

An MNL and an NN model were developed using a structured pipeline for fair comparison, as 

illustrated in Figure 1. Both models use the same preprocessing steps, train-test splitting, and 
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evaluation metrics. They undergo confusion matrix evaluation and out-of-sample accuracy as-

sessment, ensuring a consistent evaluation framework.   

 

 

Figure 1: MNL and NN modeling workflows for mode choice prediction. 

MNL Model 

Unordered choice models are based on utility maximization theory, where individuals select the 

alternative that provides the highest utility. Since utility is not directly observable, the random 

utility theory is applied (Ben-Akiva and Lerman 1985), decomposing utility into a deterministic 

component and a random error term. The deterministic component 𝑉𝑛,𝑖  captures observable at-

tributes of the alternative 𝑖 and individual characteristics 𝑛 and is expressed as 𝑉𝑛,𝑖 = 𝑓(𝐵, 𝑥𝑛,𝑖), 

where 𝐵 represents the estimated parameters and 𝑥𝑛,𝑖 the explanatory variables. When error terms 

follow an independently and identically distributed (IID) Type 1 Extreme Value distribution, the 

probability 𝑃𝑛,𝑖 of individual 𝑛 selecting alternative 𝑖 is given by the MNL model: 
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𝑃𝑛,𝑖 =
ⅇ𝑉𝑛,𝑖

∑ ⅇ𝑉𝑛,𝑗
𝐽

𝑗=1

. 
(1) 

 

The 𝐵 parameters are determined by maximizing the following log-likelihood (LL) function, 

where 𝑦(𝑛,𝑖) is 1 if the decision-maker 𝑛 chooses the alternative 𝑖:  

 

𝐿𝐿(𝐵) = ∑ ∑ 𝑦𝑛,𝑖 ln(𝑃𝑛, 𝑖)

𝑖

.

𝑁

𝑛=1

 (2) 

 

In this study, mode choice probability is modeled as a function of 46 independent variables, as-

suming a linear utility function within the random utility maximization framework. The model 

applies 5-fold cross-validation to fine-tune L2 regularization. Model estimation is performed us-

ing the Newton algorithm with trust region for simple bound constraints to ensure efficient con-

vergence. The analysis is conducted in Python using the Biogeme library (Bierlaire 2025), a 

widely used tool for discrete choice modeling. As mode choice distribution is imbalanced, as 

shown in Figure 2, a balancing technique was applied to mitigate bias toward majority classes 

and improve model performance. Rezaei et al. (2021) demonstrated in their study that calibrating 

models on balanced data preserves the interpretability of logit models, making it a valid approach 

for improving model robustness.  

 

Figure 2: Distribution of commuting modes. 

 

NN Model 

NN operates as a system of linear equations where weights (X) and biases (b) connect neurons, 

with each neuron undergoing a nonlinear transformation as described in Equation (3). Here, 𝑍𝑖 

represents the logit score of class i. The network parameters are optimized using the maximum 

likelihood principle, minimizing cross-entropy or maximizing LL. In multi-class classification, 

the final layer typically uses a softmax activation function (Equation (4)), which normalizes out-

puts between 0 and 1, ensuring that the predicted probabilities sum to 1 across all choices. 

 

𝑧𝑖 = 𝑓(𝑊 ∗ 𝑥 + 𝑏) (3) 
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𝑃(𝑖|𝑥) =
ⅇ𝑧𝑖

𝛴𝑖ⅇ𝑧𝑖
 (4) 

 

Figure 3 illustrates the NN architecture for mode choice prediction processes various travel-re-

lated attributes, including work-related factors, travel behavior, mode-specific attributes, and 

opinions. The network includes input and two hidden layers using ReLU activation. Dropout rates 

of 24% and 10% are applied to reduce overfitting. The output layer uses a softmax activation 

function to classify commuting modes, predicting probabilities for car, motorcycle, walking, bi-

cycle, and public transport. The model is trained with sparse categorical cross-entropy loss and 

optimized using Adam, ensuring efficient learning and stable convergence through forward and 

backward propagation. The model uses Bayesian optimization to determine the optimal architec-

ture, and a 5-fold cross-validation enhances generalization. 

 

 

 

Figure 3: Neural network architecture for mode choice prediction. 
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3. RESULTS AND DISCUSSION 

Data Preprocessing 

The study uses survey data from 2023, collected across 31 companies in the Rome metropolitan 

area as shown in Figure 4. Initially, 2,887 employees participated, but 477 respondents living or 

working outside urban Rome were excluded to focus on sustainable commuting policies within 

the city. Missing values were managed by removing questions with less than 10% response rates 

and applying mode and mean imputation where necessary. After data cleaning, the final dataset 

included 1,688 valid responses from 30 companies, with 46 variables available for analysis. 

 

 

Figure 4: The location of companies. 

The dataset includes five primary commuting modes (Figure 2), with travel times calculated us-

ing the Google Maps API based on employees' recorded departure times. These calculations ac-

count for real-time traffic congestion during morning peak hours. To ensure consistency, Wednes-

days (20th Nov 2024) were chosen as the reference day for analysis. Flexible workers avoid peak 

congestion, so travel time was the main measure. Motorcycle travel time, not in Google Maps, 

was estimated at 80% of car travel, reflecting a 20% faster commute in urban areas. 

The distribution of transportation mode usage varies by gender and age (Figure 5). Both men and 

women primarily use cars and motorcycles for commuting, with a notable portion relying on pub-

lic transport, while walking and cycling remain minimal. Younger individuals, especially those 

under 30, are more likely to use public transport, whereas those over 40 show a stronger prefer-

ence for cars. This trend corresponds with family unit sizes (Figure 6), as younger individuals 

tend to belong to smaller households, while older individuals, particularly those over 40, are more 

likely to have larger families, which may influence their commuting choices. 
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Figure 5: Mode choice distribution by sex (left) and age groups (right). 

 

 

 

 

Figure 6: Family unit distribution across different age groups. 

Data balancing impact 

 
To prevent overfitting in the MNL model, a 5-fold cross-validation was performed, and the results 

are shown in Table 1, with the best performance achieved at L2 = 0.001. To address data imbal-

ance, oversampling, under-sampling, and a hybrid approach were tested. Table 2 shows that 

oversampling provided the highest performance, enhancing model robustness by generating syn-

thetic samples for minority classes. The hybrid approach also performed well but with slightly 

lower accuracy and F1-score. Based on these results, oversampling was chosen as the preferred 

balancing method for model training 

 

Table 1: Hyperparameter tuning results for L2 regularization. 

L2 Avg. Accuracy Avg. Precision Avg. Recall Avg. F1 score 

0.0001 0.8566 0.8567 0.8566 0.8551 

0.0005 0.8578 0.8577 0.8578 0.8558 

0.001 0.8614 0.8619 0.8614 0.8583 

0.01 0.8436 0.8442 0.8436 0.8334 
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Table 2: Comparison of different balancing methods.  

Method Avg. Accuracy Avg. Precision Avg. Recall Avg. F1-score 

Random over-sampling 0.9158 0.9158 0.9158 0.9144 

Random under-sampling 0.7907 0.8043 0.7907 0.7863 

Hybrid sampling 0.9000 0.9037 0.9000 0.8948 

 

 

To assess the impact of data balancing on the MNL model, predictions were compared using 

imbalanced and balanced test datasets. The model trained on imbalanced data achieved the highest 

overall performance as shown in Table 3 and Figure 7, particularly excelling in predicting the 

majority class (car) with minimal misclassification. However, minority classes like walking and 

bicycling had higher misclassification rates, reflecting the model’s bias toward the dominant 

mode. After applying data balancing techniques, overall accuracy declined slightly, but the model 

improved in predicting minority classes, reducing class bias. This highlights a trade-off: balancing 

enhances predictions for underrepresented modes but slightly reduces accuracy for the dominant 

class. The findings suggest that while imbalanced data yields higher overall accuracy, it intro-

duces bias by favoring the majority class.  

 

Table 3: Comparison of MNL performance on balanced and imbalanced test datasets. 

Dataset Accuracy Precision Recall F1-score 

Balanced 0.7928 0.8184 0.7928 0.7991 

Imbalanced 0.8372 0.8339 0.8372 0.8333 

 

 

 

Figure 7: Confusion matrices for MNL on balanced (left) and imbalanced (right) test data. 

To assess the impact of data balancing, the Cosine Similarity Metric was used to compare results 

from balanced and imbalanced datasets, following the approach of (Rezaei et al. 2021). Cosine 

similarity measures the orientation of vectors rather than their magnitude, making it useful for 

comparing feature importance distributions. Defined mathematically in Equation 5, its values 

range from -1 to 1, where 1 indicates identical vectors, 0 signifies no similarity, and -1 means 

they are completely opposite. This metric helps evaluate how balancing affects the consistency 

of feature importance in mode choice modeling. 
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𝑆𝑖𝑚(𝑥, 𝑦) =
𝑥 ⋅ 𝑦

‖𝑥‖ ⋅ ‖𝑦‖
 (5) 

 

The computed cosine similarity of 0.925 indicates a strong similarity between the balanced and 

imbalanced models. However, key issues arise in mode choice analysis (Figure 8), particularly 

for public transport and car modes, where the alternative-specific constant (ASC) is dispropor-

tionately high in the balanced dataset, suggesting the model compensates for an inability to cap-

ture actual choice behavior. While variable relationships remain consistent across models, bal-

ancing the dataset distorts feature importance by overestimating the influence of some statistically 

insignificant variables. This can lead to misleading conclusions about factors affecting mode 

choice. To maintain accuracy and preserve the true significance of explanatory variables, the 

analysis continues with the imbalanced dataset, which better reflects real-world commuting be-

havior. 
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Figure 8: Comparison of feature importance in MNL for each mode under imbalanced and bal-

anced data assumptions. 

Comparing the MNL and NN Performance  
 

Table 4 compares the performance of the NN and MNL models, showing that the NN model 

outperforms the MNL model by approximately 3% across all evaluation metrics. To assess 

whether this difference is statistically significant or due to randomness, a paired t-test was con-

ducted on precision values from five cross-validation folds. The test resulted in a t-statistic of -

2.40 and a p-value of 0.074, indicating that the difference is not statistically significant at the 0.05 

threshold. While the NN model achieves higher precision, the improvement cannot be conclu-

sively attributed to a fundamental difference in performance. This suggests that for medium-sized 

datasets, a well-implemented MNL model remains a viable alternative despite the NN model’s 

slight advantage. 

 

 

 

 



12 

 

Table 4: Comparison of the results of NN and MNL. 

Method Accuracy Precision Recall F1-score 

NN 0.8663 0.8715 0.8668 0.8659 

MNL 0.8372 0.8339 0.8372 0.8333 

  

 

Sustainable Mobility Insights 

 

To encourage a shift from car and motorcycle use to more sustainable transport modes, it is es-

sential to understand how individuals respond to changes in travel-related attributes. The elasticity 

and marginal effect analysis (Figure 9) of the model highlights key factors influencing mode 

choice. Direct elasticities measure how each mode responds to changes in its attributes. Marginal 

effects provide absolute probability changes when a variable is modified. Combined with feature 

importance analysis (Figure 8), these findings offer critical insights for policy interventions. 

Reducing car use requires economic, infrastructure, and behavioral interventions. The results 

show that increasing parking fees is highly effective in discouraging car use, especially when 

coupled with dynamic pricing during peak hours or in high-demand areas. Reducing the conven-

ience of car use, such as repurposing parking spaces for bicycle lanes or pedestrian zones, car-

free zones, and high-occupancy vehicle (HOV) lanes, further motivates shifts toward alternative 

modes. Paired with an efficient public transport system, these policies can significantly decrease 

car dependency. 

Environmental and health concerns also influence mode choices but to a lesser extent than eco-

nomic factors. Awareness campaigns, employer incentives, and eco-friendly mobility programs 

can enhance these effects, fostering long-term behavior change. Motorcycle use, though sensitive 

to travel time and parking challenges, remains popular in congested cities like Rome due to its 

efficiency in navigating traffic. However, safety concerns are a major deterrent, underscoring the 

need for enhanced safety regulations and alternative transport options. 

The data analysis (Figure 10) reveals that in average car users would need to transfer an average 

of three times if they switched to PT, indicating inefficiencies in the network. Improving direct 

routes and reducing transfer requirements would enhance PT competitiveness with private vehi-

cles. PT affordability, reliability, and accessibility are key to increasing ridership. Cost elasticity 

results suggest that fare reductions or subsidies would significantly boost public transport use. 

Flat-rate fares and integration with bike-sharing services improve connectivity and first- and last-

mile solutions. Increasing service frequencies, providing real-time tracking, and reducing transfer 

requirements are crucial for improving public transport competitiveness against private vehicles. 

Walking and cycling, while sustainable, are limited by travel time concerns, as active modes are 

mainly viable for short distances (around 5 km for cyclists and 2 km for pedestrians based on 

Figure 10). Expanding protected bike lanes and pedestrianized streets, developing walkable 

neighborhoods following the 15-minute city model, and encouraging employer support for active 
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commuting can increase adoption. Community-based initiatives like gamification strategies and 

"walk/bike to work" challenges can further encourage behavior change toward active mobility. 

 

 

Figure 9: Elasticities (blue) and marginal effects (green) of key factors. 
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Figure 10: The distribution of No. of transfers (top) and travel distances (bottom) for each mode. 

4. CONCLUSIONS 

This study compares NN and MNL models using survey data from Rome employees. While the 

NN model achieves slightly higher accuracy, the difference is not statistically significant. The 

MNL model, despite its lower accuracy, provides valuable interpretability, making it a viable 

choice for policy applications. 

The results highlight critical transportation challenges in Rome, including high car dependency, 

inefficient public transport connectivity, limited cycling and pedestrian infrastructure, and safety 

concerns for non-motorized transport users. Addressing these issues requires targeted interven-

tions to improve mobility options and encourage sustainable transport choices. This study pro-

vides some policies to answer this problem, offering insights that can inform transportation 
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strategies aimed at reducing car dependency and promoting sustainable mobility solutions in 

Rome and other cities facing similar challenges. 
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