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1 Introduction
Generating synthetic data has gained significant importance in recent years. For
instance, statistically accurate population data serves as a vital input for activity-
based models, which are crucial for modeling the transportation behavior of individ-
uals. However, due to privacy concerns, access to fully disaggregated data is often
restricted. This creates a need for tools that can construct accurate population
datasets using partial information from various sources.

Given the importance of this problem, it is not surprising that numerous approaches
have been developed. Since synthetic population generation is essentially a statis-
tical problem, several Machine Learning techniques have been proposed for this
purpose. These techniques include Bayesian networks, variational autoencoders,
and generative adversarial networks. While these methods can achieve promising
results, they also exhibit significant drawbacks, such as being computationally ex-
pensive and relatively complex to implement. See Lederrey et al. (2022) for the
discussion.

The classical tool for data synthesis is the so-called Iterative Proportional Fitting
(IPF) algorithm. Its history dates back to at least to Deming and Stephan (1940),
Ireland and Kullback (1968). Despite some limitations, the algorithm remains widely
used among practitioners; see, for example, Kaddoura et al. (2024), Chang et al.
(2023) for the recent application. The reason is simple: IPF is an easy-to-implement
and intuitive algorithm. It can be considered a "second-best" solution that delivers
sufficiently good results when simplicity and ease of implementation are prioritized.

IPF operates using two types of information: a sample dataset and aggregated
data. The algorithm iteratively adjusts the joint distribution of the sample data
to ensure consistency with the aggregated data. In the context of data synthesis
problems, IPF is often treated as a black-box algorithm. For example, instead of
modifying the algorithm itself, some researchers have proposed preprocessing the
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data to mitigate its limitations Kolenikov (2014). In contrast, we take a different
approach. Inspired by recent advances in the field of Machine learning, we modify
the underlying optimization problem that IPF solves. Leveraging the fact that IPF is
designed to solve a well-defined convex optimization problem with linear constraints,
we reformulate this problem to address its drawbacks.

One of the main issues with IPF is the so-called "zero problem." Specifically, if an
individual with certain characteristics is absent from the sample, they will also be
absent in the synthetic data. This is clearly undesirable. Due to combinatorial
effects, the zero problem is more likely to occur in small samples. A common way to
address this issue is to introduce small probabilities into the empirical distribution
used to generate the sample. However, this approach introduces biases in two ways.
First, data manipulation can distort the properties of the empirical distribution.
Second, as we demonstrate below, such manipulations bias the results obtained
through IPF.

To overcome these issues, we propose a modification of the optimization problem that
IPF solves. IPF traditionally seeks the distribution closest to the target distribution
in terms of the Kullback-Leibler (KL) divergence. Instead, we propose using the Beta
divergence, which is a one-parameter family of divergences that generalizes the KL
divergence. The properties of Beta divergence have been discussed extensively in
Cichocki and Amari (2010).

The use of Beta divergence is advantageous for several reasons. First, its polynomial
functional form penalizes small values differently, which helps address the zero prob-
lem. Second, the KL divergence is a special case of Beta divergence when β = 1,
allowing the classical solution to be retained as a specific instance. Third, Beta di-
vergence belongs to the broader class of Bregman divergences, enabling the solution
to be obtained through a simple alternating technique similar to IPF Dhillon and
Tropp (2008).

Selecting the appropriate divergence measure for a statistical problem has become an
increasingly active area of research, particularly in the fields of Machine Learning
and Optimal Transport. For example, the classical regularized optimal transport
problem can be formulated as the minimization of the KL divergence. Other di-
vergences, such as Rényi divergence Bresch and Stein (2024) or Tsallis divergence
Muzellec et al. (2017), have been applied in specific contexts for a particular ap-
plication. Conceptually, our approach follows a similar rationale by exploring an
alternative divergence measure to address specific shortcomings of IPF.

2 IPF

2.1 Optimization Problem

For completeness, without going into much detail, we briefly summarize the op-
timization problem where IPF can be applied as a numerical algorithm to find a
solution.
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Let there be a true distribution that we want to get an approximation of. For sim-
plicity, our true distribution is discrete and bivariate.1 We have two pieces of infor-
mation about true distribution: the marginal distribution and a sample from it. We
denote the marginal distribution as (pi)i∈1:I , (qj)j∈1:J and sample as (π̂ij)i∈1:I,j∈1:J .
The true distribution is (πij)i∈1:I,j∈1:J .

To approximate the true distribution, we select the closest distribution to the sample
while ensuring consistency with the marginal distributions. Formally, the problem
is defined as:

min
x∈∆I×J

DKL(x; π̂)

s.t.
J∑

j=1

xij = pi ∀i ∈ 1 : I,

I∑
i=1

xij = qj ∀j ∈ 1 : J,

(1)

where

DKL =
I∑

i=1

J∑
j=1

xij log
xij

π̂ij

is KL divergence between distributions (xij) and (π̂ij).

The optimality conditions can be derived from the Lagrangian formulation. Due to
the infinite penalty introduced by the KL divergence for zeros, non-negativity con-
straints can be omitted. Taking the first-order conditions (FOC) of the Lagrangian
with respect to xij and rearranging results in

xij = π̂ije
ξi−1eηj ,

where ξi and ηj are corresponding Lagrange multipliers. Denoting ui = eξi−1 and
vj = eηj we get equality xij = π̂ijuivj. Using constraints, we get the system of
equations

pi = ui

J∑
j=1

π̂ijvj, qj = vj

I∑
i=1

π̂ijui (2)

with respect to ui and vj for each i ∈ 1 : I and j ∈ 1 : J . The numerical solution
to the system of equations (2) is given by the IPF: the initial values of ui and vj
are initialized and they are updated sequentially using (2). One can show that the
algorithm indeed converges to the solution to the set of equations (2).

2.2 Discussion

We focus on the limitations of IPF, particularly issues related to rare events and
small probability values. One such issue is the "zero problem." If an individual

1Below, we briefly discuss how the problem and the solution algorithms can be easily generalized
for more dimensions.
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with certain characteristics is absent from the sample, they will also be absent in
the synthetic data. This arises due to the log penalty. Specifically, the fraction log
penalty. The fraction log

xij

0
is unbounded below if xij ̸= 0.

There is an additional implicit feature of the problem (1). Consider the situation
in which π̂ij is very low. In this case, value of log xij

π̂ij
will be relatively low only if

xij is the same order of π̂ij. If xij >> π̂ij then the fraction xij

π̂ij
takes the high value.

Therefore, intuitively, if π̂ij is very low, even the difference xij − π̂ij is positive for
optimal xij, the value will be rather small in magnitude. This feature is important
for at least two reasons. First, in the small samples, if the value of π̂ij is very low,
then intuitively, the optimal value of xij also tends to be very low. Second, the "zero
problem" is usually addressed by adding very low numbers instead of zeros. The
intuition above suggests that the optimal value xij of this event will be close to zero.

In the case of the small dataset, an individual with rare characteristics will most
likely be underrepresented. The analysis above implies that the IPF algorithm
will discriminate against this type of individual, and in the synthetic dataset, an
individual will be even more underrepresented. For some applications, it can be
an unpleasant issue. To address the problems, we suggest changing the objective
function to Beta divergence. Beta divergence (Févotte and Idier (2011)) is defined
as

Dβ =



1
β(1−β)

I∑
i=1

J∑
j=1

(
xβ
ij + (β − 1)π̂β

ij − βxijπ̂
β−1
ij log

xij

π̂ij

)
, if β ∈ R \ {0, 1},

I∑
i=1

J∑
j=1

xij log
xij

π̂ij
, if β = 1,

I∑
i=1

J∑
j=1

(
xij

π̂ij
− log

xij

π̂ij
− 1

)
, if β = 0.

Standardly, the value of Dβ in β = 0 and β = 1 is defined by continuity. If β = 1,
then Beta divergence is simply KL divergence.

We observe that for a general value of β, Beta divergence mitigates the problems
we discussed in Section 2.2. There is no infinite penalty when π̂ij = 0 and a large
penalty for large value xij when π̂ij is very low. Moreover, let π̂ij be zero or very low.
The value of β controls the penalty for increasing xij. The first-order penalty of a
pair (xij, π̂ij) is controlled by the value βxβ−1

ij . For larger values of β, where β > 1,
the penalty for larger xij becomes less severe. Therefore, the analyst can straight-
forwardly control the penalties. If, in the particular application, the individuals
with rare characteristics are less important, the low value of β is more appropriate.
If the individuals with rare characteristics are more valuable, the analyst should
increase the value of β. The choice of the value of β reminiscences the choice of the
hyperparameters in Machine Learning.

We confirm the given above intuition with a toy example.
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3 Toy Example
Let (πij) be the true joint distribution of the population with two characteristics:
age and gender. (πij) is given by matrix

Age/Gender Woman Man p

Young 0.028 0.139 0.167

Adult 0.25 0.25 0.25

Old 0.222 0.111 0.333

q 0.5 0.5

Table 1: Matrix representing the distribution (πij) of age and gender.

We pick the following distribution to analyze the prediction of the probability of an
individual with characteristics: Young, Woman. We assume that there is a small
sample of size 50. The probability of being in the sample for this type of individual
is very low, and it is very likely that such an individual does not even appear in
the sample. Therefore, distribution (πij) is suitable for illustrating the advantages
of using Beta divergences.

For our simulations we generate 1000 samples with size 50. For each sample, we
calculate the optimal value of x11 using four different objective functions: KL diver-
gence and Beta divergence for β = {1.2, 2, 3.5}. We draw a histogram for optimal
values of x11 for each optimization problem.

5



(a) KL divergence. (b) Beta divergence with β = 1.2.

(c) Beta divergence with β = 2. (d) Beta divergence with β = 3.5.

Figure 1: Histograms for optimal (πij) for different divergences.

In Figure 1, we observe that, indeed, the optimal (πij) in the case of KL divergence
has a hike peak for the very low values. Other histograms are more spread. Notably,
going from value β = 1, which corresponds to the KL divergence, to β = 1.2,
decreases the amount of very low values by more than half.

Additionally, we observe that the naive increase value of β decreases the small values
of (πij); the distribution does not reflect the true value of the parameter. Therefore,
the choice of appropriate β needs to be cautious.

Comparing the fit of the four different models is not a straightforward task because
the Beta divergence with β = 2 is essentially an Euclidean distance and, therefore,
MSE as a measure of fit is not appropriate. Instead, we choose the average KL
divergence between the fitted distribution and the true one. The results for the
comparison are in the Table 2.

KL Beta β = 1.2 Beta β = 2 Beta β = 3.5

0.0387 0.0236 0.0257 0.0412

Table 2: Comparison of KL and Beta divergences for different values of β.
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The results are rather surprising. The minimization of KL divergence is worse than
the minimization of Beta divergence with β = {1.2, 2} in the case of the average KL
divergence! The results confirm our intuition that in the case of the small samples
appropriately chosen, Beta divergence outperforms KL divergence as a measure.

Finally, we briefly comment that the solution algorithm to problem (1) with Beta
divergence can be easily extended from the IPF. Dhillon and Tropp (2008) show
how the algorithm for minimization of the Bregman divergences with respect to the
affine constraint naturally extends IPF.
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