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Abstract 

This study introduces a grammar-based framework for utility function specification in discrete 
choice models (DCMs), combining interpretability and domain knowledge with data-driven 
automation. Using Grammatical Evolution (GE), the framework systematically explores 
variables, transformations, and interactions while enforcing theoretical constraints. Tested on 
synthetic data generated from a predefined “true” model, the approach demonstrates its ability 
to recover accurate utility specifications and prioritize key variables like travel time and cost. 
By balancing complexity and simplicity through parsimony penalties, this framework offers a 
robust, interpretable alternative to traditional trial-and-error methods, enhancing consistency 
and precision in DCM applications. 

1. Introduction 

Discrete choice models (DCMs) are widely used to understand and predict individual or group 
decision-making among alternatives in fields like transportation, marketing, and policy 
analysis. Traditionally built as random utility models (RUMs) (McFadden, 1974), they assume 
decision-makers maximize utility, with utility functions quantifying the influence of attributes 
and individual characteristics. These functions’ analytical form enables interpretability, 
offering insights into choice behavior. However, utility specification often relies on a 
subjective, trial-and-error process, introducing inconsistencies, inefficiencies, and potential 
biases in model results. Manual specification is labor-intensive, prone to errors like omitting 
key variables (Torres et al., 2011) or using incorrect transformations, and lacks a systematic 
framework to incorporate domain knowledge (Kling, 1989).  

Recent advances in machine learning (ML) provide tools to uncover complex relationships in 
data but face challenges of interpretability and incorporating theoretical constraints (Haj-Yahia 
et al., 2023). Hybrid approaches, such as combining ML with traditional DCMs (Sifringer et 
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al., 2020; Han et al., 2020), and optimization-based methods for automated utility specification 
(Ortelli et al., 2021) show promise but remain limited by computational demands, reliance on 
pre-specified variables, and inconsistent alignment with domain knowledge.  

This study addresses these gaps by introducing a grammar-based approach to utility 
specification in DCMs. Leveraging grammatical evolution (GE), an evolutionary algorithm, 
this method automates the selection of variables, transformations, and interactions while 
adhering to theoretical constraints. By combining data-driven flexibility with interpretability, 
the framework offers a systematic alternative to manual specification methods, improving 
efficiency and robustness in model development. 

2. Methods 

2.1.  Problem formulation 

Specification of DCM utility functions requires formulating mathematical functions for each 
of the choice alternatives. The specification involves selection of variables to be included, their 
functional forms and interactions, and ensuring that the model predictions comply with 
expectations regarding behavior. At the same time, the specification should be parsimonious 
to reduce the risk of overfitting.  

To facilitate these requirements, the utility specification task is formulated as an optimization 
problem with the objective is to maximize the model performance fitness subject to three types 
of constraints that guarantee identification of the generated model, its agreement with the 
modeling conventions and preferences set by the modeler and with domain knowledge:  

max 						 𝑚𝑜𝑑𝑒𝑙	𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑛𝑐𝑒	𝑚𝑒𝑎𝑠𝑢𝑟𝑒	(𝑀𝑃𝑀)                   (1)  

s. t.									𝑀𝑜𝑑𝑒𝑙	𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛         (2)  

															𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠       (3)  

															𝐷𝑜𝑚𝑎𝑖𝑛	𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒	𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒       (4)  

 

The objective function evaluates candidate utility specifications based on two key criteria: how 
well the model fits the data and the specification simplicity, which makes its interpretation 
easier. The adopted objective function used to measure the model performance is therefore 
given by:   

𝑀𝑃𝑀 = 𝐿𝐿 − 𝛼 ⋅ 𝑘                                      (5)   

where 𝑀𝑃𝑀 is the model performance measure. 𝐿𝐿 is the model log-likelihood. 𝑘 is the number 
of parameters in the specification, and α is a predefined penalty parameter. This function 
incorporates both AIC and BIC as special cases when 𝛼 = 1, and 𝛼 = !

"
log(N) (where 𝑁 is the 

sample size), respectively.  
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The constraints for utility function specification ensure consistency with fundamental 
principles and modeling preferences. In DCMs, choice probabilities depend on differences in 
utility between alternatives, not their absolute values. To maintain identification, normalization 
is required: for a model with 𝐽 alternatives, only 𝐽 − 1 alternative-specific constants (ASCs) 
can be estimated, with the remaining ASC fixed to zero. Socio-demographic variables, such as 
income or age, that do not vary across alternatives can appear in at most 𝐽 − 1 utility functions. 
Categorical variables, such as gender or education, are converted into binary dummy indicators, 
with one category omitted as a base reference. 

Modeling preferences allow for optional constraints reflecting the modeler’s style and norms. 
When interaction terms between socio-demographic variables and alternative attributes are 
included in the utility function, the main effects of these attributes must also be included to 
ensure interpretability. To prevent overfitting and maintain simplicity, the level of interactions 
is limited, for example, by allowing only two-variable interactions and excluding higher-order 
terms. Utility functions may also be designed to share variables, interactions, or parameter 
structures, with flexibility for generic or alternative-specific parameters. Additionally, the 
modeler defines a set of allowable transformations, constraining the search space for 
optimization. 

Finally, estimated model parameters must align with established behavioral theory. For 
instance, it is expected that increases in travel time or cost reduce an alternative’s utility and 
choice probability, as reflected by negative parameter sensitivities and elasticities. These 
constraints ensure the resulting models remain theoretically sound and behaviorally 
meaningful. 

 

2.2.  Grammar 

The grammar, shown in Figure 1 is tailored to generate mathematically valid utility functions 
that satisfy the constraints described above. Its starting symbol (𝑆) is decomposed using 
Production rule (1) into 𝐽 utility functions (𝑈#) – one for each alternative in the DCM. 
Production rule (2) constructs additive utility functions that include one or more expressions 
(𝐸#). The number of expressions in the utility is unbounded. Each expression can take two 
forms as specified in Production rule (3): It may be a single transformed variable (𝑊#) or an 
interaction between a transformed variable and an already existing expression. This version of 
the grammar does not bound the level of interaction. Modified versions can guarantee 
satisfying upper bounds on the interaction level. For example, the following production rule 
allows 𝐸# to only take a single transformed variable or an interaction between two transformed 
variables, and so limits interactions to be between two variables at most:   

< 𝐸! >		→	< 𝑊! >< 𝑂 >< 𝑊! >                                                                                               (6)      

                | < 𝑊! > 

Production rule (4) defines the mathematical operators that may be used. These include both 
multiplication and division. It is straightforward to include additional operators. Production 
rule (5) defines a transformed variable (𝑊#) results from applying a transformation function 
(𝐹) to a variable (𝑉#). The available transformations, (e.g., linear, logarithmic, exponential, 
Box-Cox) are defined in Production rule (6). Finally, Production rules (7) list the variables that 
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are available for each of the utility functions 𝑈#. These include alternative attributes and socio-
demographic characteristics. Categorical variables with 𝐾 levels are represented as a set of 𝐾 −
1 dummy variables to maintain identification. For example, consider two variables for 𝑈#: 𝑐𝑜𝑠𝑡# 
and 𝑖𝑛𝑐𝑜𝑚𝑒. The cost variable is continuous, and income is a categorical variable with three 
levels. The Production rule expands 𝑉# to either 𝑐𝑜𝑠𝑡# or a set of two 𝑖𝑛𝑐𝑜𝑚𝑒 dummy variables, 
as follows: 

< 𝑉! >		→ 	𝑐𝑜𝑠𝑡!                                                                                                                        (7)      

                |(𝑖𝑛𝑐𝑜𝑚𝑒" + 𝑖𝑛𝑐𝑜𝑚𝑒# + 1) 

The categorical variables are one-hot dummy coded. The “+1” symbol signifies that the main 
effect is included in case an interaction of the categorical with an alternative attribute is 
included, which would satisfy the main effects constraints.  

 

N = 8U$,				E$,				W$,				V$,			O,				F@	 

T = {+,			 ∗ ,				available	variables} 

S = 8N< U" >,… ,< U$ >,… ,< U% >P@ 

P = 

(1) < S >			→	< U" >,… ,< U$ >,… ,< U% >									 (0)	

(2) < U$ >	→	<U$>+<E$>									(0)	

																		|<E$>																							(1)	

(3) < E$ >	→	<E$><O><E$>									(0)	

																		|<W$>																												(1) 

(4) < O >	→	*												(0)	

																		|/										(1)	

(5) < W$ >	→	< F > X< V$ >Y									(0) 

(6) < F >	→ sef	of	allowed	transformations	 

(7) < V$ >	→ set	of	available	variables	for	alternative	j 

Figure 1. Grammar encoding 

 

2.3.  Optimization 

The grammar-based optimization framework begins by generating an initial population of 
chromosomes, which are decoded into utility function skeletons. Parameters are estimated 
using training data and maximum likelihood estimation. Candidate models are evaluated in two 
stages: first, adherence to theoretical constraints (e.g., negative sensitivities to travel time and 
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cost) is verified, and non-compliant models are assigned lowest fitness scores. Second, 
compliant models are assessed for fit using validation data to improve generalization and 
prevent overfitting. 

The genetic algorithm iteratively refines solutions using selection, crossover, and mutation 
until termination criteria, such as performance convergence or a generation limit, are met. 
Selection is performed via a tournament, while crossover employs a k-point block operator to 
combine parent solutions without disrupting utility function integrity. Mutation introduces 
diversity by randomly altering codon values within a fixed range, ensuring broad exploration 
of the solution space. 

3. Case study 

The proposed framework is demonstrated with a synthetic dataset derived from the original 
Swissmetro observations (Bierlaire et al., 2001) using known choice model and utility 
functions. The data is used to evaluate the ability of the models developed using the grammar-
based method to recover the “true” model, also depending on the value of the penalty parameter 
α.  

The synthetic dataset was generated using a predefined “true” utility model with the 
following functional form: 

𝑉! = 𝛽&! + 𝛽'()*! 𝑙𝑜𝑔X𝑇𝑟𝑎𝑣𝑒𝑙	𝑡𝑖𝑚𝑒!Y + 𝛽+*,-.,/! 𝑙𝑜𝑔X𝐻𝑒𝑎𝑑𝑤𝑎𝑦!Y + 𝛽012'! 𝑙𝑜𝑔X𝑇𝑟𝑎𝑣𝑒𝑙	𝑐𝑜𝑠𝑡!Y 

								+∑ 𝛽012',4! 𝑙𝑜𝑔X𝑇𝑟𝑎𝑣𝑒𝑙	𝑐𝑜𝑠𝑡!Y 𝛿(501)*,44 + ∑ 𝛽,4*,+!𝛿,4*,++ + 𝛽2*,'2,67𝛿,(89(5*6*,'2𝛿67     (8)                                                                           

Where, 

•  𝑉# is the systematic utility of alternative 𝑗. 

•  𝑇𝑟𝑎𝑣𝑒𝑙	𝑡𝑖𝑚𝑒#, 𝐻𝑒𝑎𝑑𝑤𝑎𝑦# and 𝑇𝑟𝑎𝑣𝑒𝑙	𝑐𝑜𝑠𝑡# represent the alternative-specific attributes. 

•  𝛿$%&'(),+ and 𝛿,+),- are indicators for income and age categories, respectively. 

•  𝛿,$./$%)0),12 indicates the presence of airline seats, specific to the Swissmetro alternative 
(𝛿03). 

•  𝛽 terms are alternative-specific parameters. 

This model uses non-linear transformations (logarithmic) for travel time, cost, and headway, 
as well as interactions between travel cost and income categories. It also accounts for 
alternative-specific effects, such as airline seats for Swissmetro. Parameter values, estimated 
using the original dataset with a multinomial logit model, were applied to compute mode choice 
probabilities. Synthetic mode choices were then drawn randomly based on these probabilities, 
preserving the original dataset’s independent variable values. The synthetic dataset thus 
represents choices generated from a known “true” model, enabling validation of the proposed 
framework. 
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Consistency with behavioral expectations was imposed by constraining the sensitivities of 
utilities to changes in travel times and costs to be non-positive:  

45!
46.,7)/	1$()!

≤ 0,					∀𝑗                                                                                                           (9) 

45!
46.,7)/	&'21!

≤ 0,					∀𝑗                                                                                                                  (10)   

Models that violate any of these constraints are assigned the worst possible performance 
measure values, so that they are not considered further in the evolutionary generation process.  

Sensitivity analyses focused on parameter penalties (𝛼), which balance model fit and 
simplicity. Penalty values ranged from 0 (no penalty, best fit) to 10 (maximum penalty, most 
parsimonious). Using 𝛼 = 1 aligns with AIC, while 𝛼 ≈ 3.7 corresponds to BIC. The synthetic 
data, generated from a “true” model with generic utility functions and alternative-specific 
parameters, was used to develop grammar-based models following this structure. 

The grammar-based models were evaluated on their fit to testing data using metrics like 
average log-likelihood (ALL), accuracy, and root mean square error (RMSE) of predicted 
market shares. For the synthetic data, model similarity to the “true” model was assessed using 
two metrics:  

Brier Score (BS): This measures the difference between predicted and true choice probabilities, 
with lower scores indicating higher accuracy. 

𝐵𝑆 = !
9
∑ ∑ e𝑃fg𝑌%#i − 𝑃jg𝑌%#ik

":
#;!

9
%;!                                                                                            (11) 

where, 𝑃fg𝑌%#i are the choice probability calculated by the “true” model.  

Specification Similarity Indices (SSI): Based on the Jaccard index, these evaluate overlap 
between variables in the estimated and “true” models: 

𝑆𝑆𝐼$ = 𝐽(𝐴$ , 𝐵$) =
∣="∩?"∣
∣="∪?"∣

                                                        (12) 

where, 𝐴$ and 𝐵$ are the sets of variables that are present in the utility functions of the estimated 
model and the “true” model, respectively. The index 𝑖 signifies the level of overlap between 
the variables in utility functions that is considered similar: 

𝑆𝑆𝐼!: Measures variable overlap 

𝑆𝑆𝐼": Accounts for transformations (e.g., log(time) vs. time). 

𝑆𝑆𝐼A: Considers interaction terms holistically (e.g., Income·cost²). 

These indices range from 0 to 1, where 0 indicates no shared variables, and 1 indicates an 
identical set of variables. 
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4. Results 

4.1.  Synthetic data 

Figure 2 shows the results with respect to the number of parameters in the final model and the 
goodness of fit measures: the average log-likelihood, accuracy, and RMSE as a function of the 
penalty parameter 𝛼. For each level of 𝛼, the figure shows the mean and 95% confidence 
intervals for each metric were calculated based on the best 20 models.  

Figure 2(a) shows that as 𝛼 increases the number of parameters estimated in the model 
decreases and stabilizes at about 7 parameters for 𝛼 ≥ 4. The narrow confidence intervals 
indicate high consistency in the complexity of the estimated models. The average log-
likelihood (ALL) is shown in Figure 2(b) for the training, validation, and testing sets. As 
expected ALL is best for the training set and worst for the testing set that was not used to 
develop the models. The mean ALL values decrease as α increases, particularly between up to 
𝛼 = 2. With higher values of α, confidence intervals are wider, which suggest lower robustness 
of the model fit when models are overly parsimonious and may omit important variables. 
Figure 2(c) that shows the prediction accuracy exhibits a similar trend. Accuracy decreases as 
α increases. The confidence intervals for of the training set are wider compared validation and 
testing, suggesting that models with similar accuracy on training may have greater differences 
on unseen data. The RMSE of market shares are shown in Figure 2(d). RMSE is exactly zero 
for the training set, which is a mathematical property of the multinomial logit model (Ben-
Akiva and Lerman, 1985). For the validation and testing sets, RMSE increases with 𝛼 values 
up to 𝛼 = 3, after which it stabilizes. The confidence intervals wider for the testing set, 
especially with larger 𝛼 values. This again indicates that the prediction performance of models 
that are more constrained by the penalty term tends to be less reliable.   

Figure 3 presents the evaluation of the similarity of the estimated models to the “true” model 
that was used to generate the data as a function of 𝛼. Figure 3(a) shows the structural similarity 
indices: 𝑆𝑆𝐼! , 𝑆𝑆𝐼", and 𝑆𝑆𝐼A. As expected from their definitions the values of 𝑆𝑆𝐼! are highest 
and of 𝑆𝑆𝐼A are the lowest. The values of all three similarity indices decrease with an increase 
in 𝛼 values and stabilize for larger values. With the larger penalties, the models become more 
selective, prioritizing less developed utility functions and so tend to miss some of the lesser 
variables in the utility functions and exhibit lower similarity to the “true” model.  

Figure 3 (b) presents the Brier Scores, which measures the difference in predicted choice 
probabilities between the estimated and “true” models, for the training, validation, and testing 
sets. BS increase with an increase in the value of 𝛼. The confidence intervals for these metrics 
are also wider for larger values of 𝛼, which suggests less robust performance on different 
samples.  
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Figure 2. Goodness of fit measures for the synthetic data models 

 

 
Figure 3. Similarity measures for the synthetic data models 
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The variable inclusion results show a clear pattern of prioritization and simplification 
as 𝛼 increases. At low penalty levels (𝛼 = 0 − 2), travel time, travel cost, and headway are 
universally retained (100%), aligning well with the “true” model. Income (70%), age (67%), 
and SM_SEATS (63%) are included moderately, while variables like luggage (20%) and first-
class seating (15%) appear less frequently, indicating secondary importance. 

At moderate penalty levels (𝛼 = 3 − 7), only travel time and travel cost remain universally 
included (100%). Headway drops sharply to 37%, diverging from the “true” model, where it is 
a key variable. Socio-demographic variables, such as income and age, and all contextual 
variables are excluded, reflecting a shift toward parsimony. 

At high penalty levels (𝛼 = 8 − 10), simplicity dominates, with only travel time and travel 
cost retained (100%). Headway is included in just 7% of models, and all other variables are 
excluded, highlighting a stark contrast to the “true” model’s specification. This suggests that 
high penalties risk oversimplifying the model and omitting critical features. 

Overall, the results demonstrate the framework’s ability to retain key variables under varying 
penalties. However, the exclusion of headway at higher 𝛼 values highlights the trade-off 
between simplicity and fidelity to the “true” model, underscoring the importance of carefully 
tuning 𝛼. 

 

5. Conclusions and discussion 

This study introduces a semi-automated framework for specifying utility functions in discrete 
choice models (DCMs) by combining the interpretability of analytical forms with data-driven 
flexibility. Using a grammar-based approach within a Grammatical Evolution (GE) framework, 
the method enables systematic selection of variables, transformations, and interactions, 
ensuring theoretical soundness and interpretability. 

The framework was validated using a synthetic dataset generated from a predefined “true” 
model. Results demonstrated its ability to recover the “true” utility structure with high 
similarity indices and comparable performance. Parsimony penalties, which reduce model 
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complexity, were shown to prioritize critical variables like travel times and costs while 
maintaining acceptable performance. This balance between simplicity and fit allows the 
framework to align closely with criteria like AIC and BIC. 

By formalizing the specification process through grammar rules, this approach offers a 
systematic alternative to traditional trial-and-error methods, reducing modeler bias and 
enhancing consistency. The study also highlights future directions, such as extending the 
framework to more advanced logit models and incorporating soft constraints to handle real-
world complexities. 

In conclusion, this grammar-based framework bridges the gap between interpretability and 
data-driven exploration in DCMs, offering a robust tool for streamlining model development 
in fields like transportation, marketing, and policy analysis. 
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