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Short summary

Ride-pooling services, such as UberPool and Lyft Shared Saver, enable a single vehicle to serve
multiple passengers within a shared trip. This work introduces a novel detour planning algorithm
designed for ride-pooling vehicles with available capacity. Instead of following the shortest path
from the current passenger’s origin to destination, the proposed method aims to design a path,
which maximizes the likelihood of matching with additional passengers en route while respecting
the time constraint for the current passenger. In contrast to traditional approaches that group
passengers and vehicles based on predefined time windows, our algorithm provides immediate re-
sponses to passenger requests, dynamically considers real-time passenger demand, and coordinates
partially occupied vehicles with other fleets. Approximated as an integer linear programming (ILP)
problem, the method is computationally efficient and practical for real-world implementation. The
effectiveness of the proposed approach is verified by simulation results built on the road network
of Shenzhen, China, demonstrating significant improvements in service quality.
Keywords: Shared mobility; Traffic, network, and mobility management; Vehicle routing; Path
planning; Operations research applications.

1 Introduction

Urban mobility demand is rising rapidly due to the expansion of metropolitan areas and increasing
population. Compared to public transportation, the ride-sourcing service offers a more conve-
nient and privacy-preserving mobility alternative, by efficiently connecting drivers and passengers
through mobile internet. Moreover, as a part of the sharing economy, it enhances vehicle utilization
Ke et al. (2020) and helps reduce air pollution. However, this expanding market also brings chal-
lenges, such as developing efficient car-passenger matching Pelzer et al. (2015), optimizing routing
Alonso-Mora et al. (2017), and real-time fleet operations Wallar et al. (2019); Zhu et al. (2024).
In addition to the traditional service model, where one vehicle serves one ride, ride-sourcing
providers are introducing ride-pooling services, such as UberPool and Lyft Shared Saver, which
allow two or more passengers to share their trips in a single vehicle Storch et al. (2021); Ke et al.
(2021). It improves urban mobility accessibility by utilizing available seats, not only increasing
driver profits but also helping alleviate traffic congestion. What’s more, passengers benefit from
discounted trip costs when sharing rides Zhang et al. (2023), making it a win-win-win situation for
the urban environment, drivers, and passengers.
One critical challenge in ride pooling services is the routing problem. Many studies have been
conducted to find route planning for vehicles and passengers that optimizes a prescribed objective.
For example, in order to minimize the total traveling distance, a large-scale taxi-searching algorithm
was proposed to quickly match candidate taxis with passenger requests in Ma et al. (2013). An
online ride-sharing system was designed in Cici et al. (2015) to maximize the number of matched
requests, where the passengers send their requests for a ride in advance. Besides, Asghari et al.
(2016) focused on maximizing the total revenue of the system, while Hosni et al. (2014) formulated
a mixed-integer programming approach to maximize driver profit and minimize passenger travel
time and costs. A unified approach for route planning was proposed in Tong et al. (2018) for
shared mobility, which optimized the sequence of pickups and dropoffs while managing conflicting
objectives. Most of these studies, however, assume static conditions where the travel requests are
fully known in advance. Dynamic route planning is essential Furuhata et al. (2013) in practical
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applications, due to the time-varying traffic conditions and the stochastic nature of passenger
demand. To address this, Shah et al. (2020) introduced an Approximate Dynamic Programming
method to enable real-time routing that can respond effectively to time-varying demand.
Different from conventional route planning which typically suggests the shortest path for drivers,
the ride-pooling scenario allows a certain detour within the threshold in exchange for reduced
fares for passengers. In B. Wang et al. (2019), it was claimed that a high-quality planning path
crowded with potential passengers is more valuable than a low-quality path for both drivers and
passengers. A detour-planning algorithm was also examined in crowdsourcing systems by Liao
& Hsu (2013), where workers were encouraged to take detours to complete additional tasks for
profit without exceeding their original deadlines. However, existing research lacks fine-grained
detour path planning algorithms for ride-pooling services, especially in dynamic, real-time routing
contexts.
In this work, we formulate the detour planning problem as an Arc Orienteering Problem (AOP)
Souffriau et al. (2011), a routing category focused on determining a sequence of edges to visit that
maximizes the total collected score or profit within a specified time or resource budget. More
specifically, we address path planning for partially occupied taxis, designing detailed routes from
their current positions to the current passenger’s destination with the goal of maximizing the
likelihood of picking up additional passengers en route. At the same time, this approach also
facilitates coordination with other vehicles in the urban area. Rather than batching customers
and vehicles based on a predetermined time window, our algorithm enables real-time responses to
passenger requests.
The remainder of this paper is organized as follows: In Section 2, the motivation for the path-
planning problem for partially occupied vehicles is provided. In Section 2, we model the matching
probability considering two key factors, Attractiveness and Repulsiveness, related to the influence
of other vehicles. We then approximate the objective function in linear form and formulate the
path-planning task as an integer linear programming problem in Section 3. The proposed algorithm
is tested on a ride-sharing simulator in Section 4. Finally, we conclude the work in Section 5.

2 Problem Statement and Modeling

Motivation

Path 1

Path 2
Path 0

Path 3

𝑶	𝑨
𝑫	𝑨

Figure 1: Four different path choices for a partially occupied vehicle. The shortest path,
labeled ‘Path 0’, is shown in green. Waiting passengers are indicated by square markers,
with arrows pointing to their intended travel directions. The arc lengths represent the
lengths of each path.

In a ride-sharing scenario, a taxi can serve multiple passengers simultaneously. Specifically, we
focus on the common case where taxis have a capacity of two. It means they can serve up to two
passengers with separate origins and destinations on one trip. A partially occupied vehicle has
already picked up one passenger at their origin OA and is en route to the passenger’s destination
DA. There are multiple candidate paths as shown in Fig. 1. Path 0, the shortest route between OA

and DA in terms of distance, has no waiting passengers along it. Thus, if the vehicle follows Path
0, it will complete a solo trip without picking up additional passengers. Path 3, although populated
with waiting passengers, primarily has passengers traveling in the opposite direction of the current
trip, from OA to DA, making it less viable for pooling. There are waiting passengers whose trips
are compatible with the current one near Paths 1 and 2, but Path 1 has more competing vehicles
for matching. Therefore, even though Path 2 involves a detour, making it longer than the shortest
route, it is considered the most preferable option due to the greater likelihood of successfully
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pooling another passenger along this path.
This example demonstrates that, in a ride-pooling context, the shortest path is not necessarily
the optimal choice. Instead, an efficient path-planning algorithm for partially occupied vehicles
is essential to improve operational efficiency and service quality. In this work, we focus on the
path-planning problem of planning an efficient route from the origin to the destination of the first
passenger, maximizing the likelihood of picking up an additional passenger en route.
Based on the observations above, an effective route should consider the following factors:

• Attractiveness: Passenger demand. By routing through areas with high concentrations of
requests with similar travel directions, a vehicle increases its likelihood of matching with a
second passenger.

• Repulsiveness: Competition from other vehicles. Coordinating these vehicles enables route
planning that avoids oversupply or undersupply in urban areas.

In the following subsection, a matching probability model is developed to quantify the likelihood
of a partially occupied vehicle picking up a second passenger en route to the current passenger’s
destination. This model is used as the foundation for our path-planning algorithm, which aims to
maximize this likelihood by considering the aforementioned two factors.

Trip-specific Matching Probability Modeling

The road network is represented by a graph G = (Q,E, ω), where Q is the set of nodes (road
intersections), E is the set of edges (road segments) and ω is the length of each road segment
accordingly. A passenger request can be described through a pair (OA, DA) ∈ Q × Q, where OA

and DA represent the origin and destination nodes, respectively, with OA ̸= DA.
Inspired by the matching function considered in Buchholz (2021) and the empirical law of pooling-
matching probability found in Ke et al. (2021), we formulate the probability of a match for a
partially occupied vehicle at node i, given the current trip (OA, DA), as follows

ptnode(i, O
A, DA) = 1− ζexp

(
−λt

Att(i, O
A, DA)

ηnt(i)

)
, (1)

where ζ ∈ (0, 1] is a parameter related to the matching radius dtm and the distributions of passengers
and vehicles. The matching radius defines the area within which the vehicle searches for potential
passengers. η is a region-specific positive parameter related to the difficulty of searching available
vehicles, influenced by factors such as the network structure.
Some studies have been devoted to modeling the matching probability at the network level (see
Yan et al. (2020); Ke et al. (2021)). However, these models are not suitable for our focus on trip-
specific pool-matching probabilities. To account for pooling constraints, such as acceptable detour
distances for individual passengers, we define the expected compatible passenger demand at node
i for a partially occupied vehicle currently on trip (OA, DA) as

λt
Att(i, O

A, DA) =
∑
j∈Q

λt(i, j)
Ls(O

A, DA) + Ls(i, j)

2Lp(OA, DA, i, j)
, (2)

where λt(i, j) is the Poisson arrival rate of customers requesting trips from node i to node j at
time t, estimated from historical data. Ls(a, b) is a function that returns the traveling distance if a
vehicle travels directly from node a to b following the shortest path calculated by Floyd-Warshall
Algorithm Floyd (1962). Lp(O

A, DA, i, j) returns the minimal combined traveling distance when
passenger A pools a ride with another passenger requesting a trip from i to j.
In this work, we consider two possible shared traveling sequences for ride-pooling: OA → OB →
DA → DB (first pick-up, first drop-off) and OA → OB → DB → DA (first pick-up, last drop-off).
Accordingly, Lp(O

A, DA, i, j) is defined as:

Lp(O
A, DA, i, j) = min{Ls(O

A, i) + Ls(i, j) + Ls(j,D
A),

Ls(O
A, i) + Ls(i,D

A) + Ls(D
A, j)}

(3)

Compared with the traditional formulation λt(i) =
∑

j∈Q λt(i, j) describing the Poisson arrival at
node i without considering pooling constraints (as used in Buchholz (2021)), our formulation (2)

includes the ratio Ls(i,j)+Ls(OA,DA)
2Lp(OA,DA,i,j)

∈ (0, 1]. This ratio serves as a weighting factor that quantifies
the efficiency of pooling the two trips (OA, DA) and (i, j). If its value is close to 1, it indicates
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that the combined trip does not significantly increase the total travel distance compared to both
passengers traveling separately, making the potential match more attractive; while a lower ratio
suggests the pooling would involve a substantial detour. For example, when many trips from node
i are heading in the opposite direction of trip (OA, DA), this results in a smaller ratio, decreasing
the attractiveness of node i. Therefore, the entire expression in (2) quantifies the attractiveness of
node i for picking up a second passenger compatible with the current trip.
In addition, the repulsiveness due to the competition from other vehicles is considered in our model
Eq. (1). Specifically, nt(i) represents the number of available vehicles surrounding node i within a
matching radius dtm at time t, calculated as:

nt(i) = nt
empty(i) + nt

drop(i) + 0.5nt
partial(i), (4)

where captures the effective number of available vehicles near node i, accounting for different
levels of availability. Empty vehicles, represented by nt

empty(i), are fully available for new passenger
requests. Vehicles in the process of dropping off their final passenger, nt

drop(i), will soon be available
once they reach their destinations. Partially occupied vehicles, denoted by nt

partial(i), are assigned
a multiplier of 0.5, as they can only accept one additional passenger, i.e., half of their capacity.

Likelihood of getting a second passenger on edge

Assuming that the start and end nodes contribute equally to a potential match on a road segment,
the probability of a match event occurring on the edge (i, j) ∈ E, starting at node i and ending at
j, is defined as:

ptedge(i, j, O
A, DA) = (ptnode(i, O

A, DA) + ptnode(j,O
A, DA))/2. (5)

The travel time on edge (i, j) can be estimated using measurement methods such as infrared loop
detector, historical data, or real-time vehicle GPS trajectories Y. Wang et al. (2014), denoted as
T̂ (i, j). By assuming that match opportunities occur independently over time, the probability of
not obtaining a match during the travel time T̂ (i, j) is (1 − ptedge(i, j, O

A, DA))T̂ (i,j). Therefore,
the probability of a partially occupied vehicle picking up a second passenger while traveling along
edge (i, j) is given by

Pt
ij = 1− (1− ptedge(i, j, O

A, DA))T̂ (i,j). (6)

3 En route Path-planning Algorithm

Objective Function

A path is planned for a partially occupied vehicle from a given start node (origin of current
passenger OA) to an end node (destination of current passenger DA) that maximizes the likelihood
of picking up a second passenger en route. We define the decision variable xij as follows:

xij =

{
1 if edge (i, j) ∈ E is part of the path,
0 otherwise.

(7)

The overall probability of not picking up any passenger along the planned route, which includes
a sequence of edges, can be determined by multiplying the probability of not picking up a second
passenger on each individual edge. Thus, our objective can be expressed as

max
xij

J = 1−
∏

(i,j)∈E

(
1− Pt

ij · xij

) (8)

To simplify the objective function, we apply a logarithmic transformation to reformulate the max-
imization problem which gives:

max
xij

J = min
xij

(log (1− J))

= min
xij

log

 ∏
(i,j)∈E

(
1− Pt

ij · xij

)
= min

xij

 ∑
(i,j)∈E

log
(
1− Pt

ij · xij

) .

(9)
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Given small values of Pt
ij · xij , we can use the approximation log(1 − y) ≈ −y when y is close to

zero. Therefore, the objective function is approximated to a linear form as follows

max
xij

 ∑
(i,j)∈E

Pt
ij · xij

 . (10)

Integer Linear Programming (ILP) for Partially Occupied Vehicle Path-Planning

The en-route path planning problem can be formulated as the following ILP problem:

max
xij

∑
(i,j)∈E

Pt
ij · xij , (11a)

subject to
xij ∈ {0, 1}, ∀(i, j) ∈ E, (11b)∑
j:(OA,j)∈E

xOA,j = 1, (11c)

∑
i:(i,DA)∈E

xi,DA = 1, (11d)

∑
j:(i,j)∈E

xij −
∑

k:(k,i)∈E

xki = 0,∀i ∈ N \ {OA, DA}, (11e)

∑
j:(i,j)∈E

xij ≤ 1,
∑

k:(k,i)∈E

xki ≤ 1, ∀i ∈ N, (11f)

∑
(i,j)∈E

ωij · xij ≤ α · L(OA, DA), α ≥ 1. (11g)

where Pt
ij is the probability of getting a second passenger while traveling along edge (i, j) at time

t, as described in Eq. (6), and ωij represents the length of edge (i, j). Constraint (11b) enforces
the binary nature of the decision variables. Constraints (11c) and (11d) guarantee that the route
begins at node OA (the origin of the current passenger) and ends at node DA (the destination of
the current passenger). Constraint (11e) ensures flow continuity at all nodes except the start and
end nodes, maintaining a continuous path. Constraint (11f) ensures that each node is visited at
most once, preventing cycles in the path. Finally, the total length of the planned route is limited in
(11g) to be no more than α times the length of the shortest path Ls(O

A, DA), i.e., the maximum
detour distance. Solving this ILP problem provides the optimal set of edges, which maximizes the
likelihood of picking up an additional passenger along it while adhering to constraints. The route
rcurrent is then constructed by sequentially connecting these selected edges, forming a continuous
path from the origin OA to the destination DA.

4 Case Study

Matching scheme

A basic matching policy is implemented in the simulation, following a “first-come, first-served” ap-
proach. When a passenger request is issued, the platform searches for the nearest empty vehicles to
the passenger’s origin. If the closest empty vehicle can reach the passenger within a predetermined
waiting time threshold, Tw, the request is assigned to this vehicle. If no empty vehicle is available
and the passenger is open to ride-pooling, the platform then searches for the nearest partially
occupied vehicle whose current passenger is also willing to share the ride. A match will happen if
the detour distance for each passenger does not exceed α times the length of their shortest path.
In this simulation, cancellations after matching are not permitted. However, if no available vehi-
cles are found within a maximum period, Tm—the duration the request remains in the matching
pool—the passenger will cancel the request.
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Experimental setup

The proposed algorithm was tested using a shared-mobility simulator Beojone & Geroliminis (2021)
based on the urban road network of the Luohu and Futian districts in Shenzhen, China, includ-
ing 1,858 intersections and 2,013 bidirectional road segments. We consider a three-hour testing
simulation, where 400 requests per hour are issued in the first and third hours, i.e., low-demand
hours and 800 requests per hour are issued in the second hour, i.e., the high-demand hour. The
fleet size is 100, and their initial locations are randomly generated and evenly distributed over
the road network. The passenger detour distance threshold is set to α = 1.2, allowing detours
up to 20% longer than the shortest path. The passenger waiting and matching time threshold
are Tw = 5min and Tm = 1min, respectively. For our proposed method, In our case study, we
selected the parameter configuration that maximizes the answer rate. Uniform values of ζ = 1 and
η = 0.001 are applied across all nodes, since our matching scheme is operated through a centralized
cloud platform. For the sake of brevity, we assume a constant traveling speed when vehicles travel
along a planned route. The travel speed is given by a macroscopic fundamental diagram (MFD,
see Beojone & Geroliminis (2021)), which describes the relationship between the accumulation of
vehicles (i.e., the total number of vehicles) and the space-mean speed vt. Then, the travel time
for edge (i, j) at time t, given its length ωij and speed vt, can be calculated as T̂ (i, j) =

ωij

vt . The
corresponding matching radius is calculated by dtm = Tw · vt km.

Results and Analysis

To compare the service efficiency and fleet utilization, we consider the following performance met-
rics: Answer rate, which is the proportion of successfully completed orders relative to all pas-
senger requests; Av. waiting time, which is the average time passengers spend waiting from the
moment they issue a request until they are picked up, calculated as the total waiting time divided
by the number of successfully completed orders; No. of shared orders, which is the total number
of orders that are shared with another passenger; Total shared distance, measuring the cumu-
lative distance traveled for shared rides; Total empty distance, which measures the distance
traveled by vehicles when they are empty and cruising freely without passengers.

Table 1: Performance matrices

Answer rate Av. waiting No. of Total shared Total empty
rate (%) (time s) shared orders dist (km) dist (km)

Proposed 81.4 151.3 656 865.6 1772.8
Shortest 80.0 153.8 614 771.9 1845.1
No share 72.2 162.3 0 - 1917.0

We compare our method with two other approaches. The first is the shortest path policy, referred
to as “Shortest” in Table 1. In this approach, after picking up the first passenger, a taxi travels to
the passenger’s destination using the shortest possible route in terms of travel distance, without
considering traffic conditions. In both our proposed method and the “Shortest” policy, we assume
that all taxis have a capacity of two and that all passengers are willing to share their trip. In
contrast, the “No Share” method does not allow ride-pooling, meaning all passengers travel alone
without sharing their trips with others.
With a capacity of two, ride-pooling methods, i.e., “Proposed” and “Shortest”, serve a higher
number of requests with reduced passenger waiting times, as shown in Table 1. Compared to the
“Shortest” policy, our method results in a greater number of shared trips and a longer total shared
distance, suggesting that it effectively plans routes to help taxis match with additional passengers
for shared rides. Moreover, our proposed method shows a reduced total empty travel distance,
indicating higher vehicle utilization.
Fig. 2 provides a snapshot from the simulator, illustrating how our proposed method plans the path
for a taxi whose first passenger travels from node OA to node DA. The planned route maintains
distance from empty vehicles and those dropping off passengers, avoiding overlap with the planned
routes of other partially occupied vehicles. Compared to the shortest path, our planned routes
pass through edges of high attractiveness, as indicated by the warmer colors of the paths.
The two planned paths shown in Fig. 2a and Fig. 2b do not exceed the 20% detour distance
threshold. Notably, the planned path during the low-demand hour is longer (10.39 km) than
that during the high-demand hour (10.29 km). It aligns with our expectations that, for the same
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(a) Low-demand hour. Length of planned path: 10.39 km.

(b) High-demand hour. Length of planned path: 10.29 km.

Figure 2: Illustration of the paths for a partially occupied vehicle traveling from the origin
OA of its first passenger to the destination DA under different demand levels: (a) low-
demand hour and (b) high-demand hour. A heat map is superimposed over the road
network, representing the matching probability ptedge(i, j, O

A, DA) of each edge (i, j). The
shortest path between OA and DA is depicted as a dashed line, with edges colored according
to the matching probability. Its length is 8.83 km. The routes planned by our proposed
method are shown as solid colored lines. Empty vehicles are indicated by blue square-
shaped markers. The current positions and planned routes of other partially occupied
vehicles are represented by black diamond-shaped markers and black dotted lines. Vehicles
dropping off their last passengers are shown as blue diamonds.

origin and destination, less detour distance is needed during high-demand hours due to the higher
probability of finding a second passenger. In contrast, during low-demand hours, the vehicle must
explore longer distances to find additional passengers. This demonstrates that our method can
adapt effectively to varying demand levels.

5 Conclusion

This paper presents a novel en-route path planning algorithm for partially occupied vehicles in ride-
pooling systems. Instead of following the shortest path, our proposed method plans an efficient
route that guides vehicles through high-demand areas while coordinating with other vehicles to
maximize the likelihood of picking up a second passenger to share the current ride. We verify the
performance of our method using an agent-based simulation of the urban network of Shenzhen,
China, demonstrating that it enhances service quality and improves vehicle utilization.
The current work estimates passenger arrival rate using historical data. Future efforts will incor-
porate online prediction of stochastic demand. Accurate prediction of traveling speeds on each
edge is also critical to be investigated.
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