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ABSTRACT 

This study applies MNL and Integrated Choice and Latent Variable (ICLV) models to study the mode-

shift potentials from cars towards bikes and e-bikes. The results reveal improved model fit of the 

ICLV. A structural model construct with a random latent variable captures the variance differences 

between Revealed Preference (RP) and Stated Preference (SP) models. This model also shows that car 

ownership, particularly the type of car, is the most influential factor for attitudes towards mode-choice 

and policy preferences, offering deeper insights into transport policy preferences and the willingness 

to shift away from cars compared to pure sociodemographic factors. The latent variable strongly 

influences preferences for cycling policies, such as expanding bike networks at the expense of parking. 

Furthermore, we present a novel cycling infrastructure share interaction term which captures existing 

cycling infrastructure information at a trip level and successfully incorporate it in the estimation of our 

models.   

  



1 Introduction 

Policymakers and academics have been discussing ways to overcome the negative externalities of 

massive car use at least since the publication of the Buchanan report in the 1960s (Gunn, 2011). Noise, 

pollution and delays to due congestion on roads have been issues in transport planning since then. 

Reducing car-use and car dependency has thus been a core element of many transport policy white-

papers in western Europe (Schöller-Schwedes, 2010; Arnold and Haefeli, 2013) and many European 

cities have implemented measures to reduce car usage in their central areas (Buehler et al., 2017). 

Despite these efforts, which, often enough, don’t go beyond intentions on paper (Schöller-Schwedes, 

2010), car-ownership, -usage and the ensuing negative externalities have only grown in the past 

decades (Steffen et al., 2015).  

Technological change, especially across production and consumption life-cycles can take decades to 

be implemented while behavioral change can be much faster and generate a higher impact (Nelson and 

Allwood, 2021). The transition towards a sustainable transport system therefore forcibly requires 

substantial behavioral change, especially moving away from energy-intensive and high-emission 

modes to more energy-efficient ones. Public transport and active modes are such alternatives. 

Demand-management policies such as congestion pricing have shown to be effective, but the changes 

in mode-shares are limited and possibly reduced over time (Börjesson and Kristoffersson, 2018; 

Richards, 2006). Supply-sided measures can be much more effective in diverting individuals from car 

use. Many successful cases exist, in which car lanes are repurposed towards cycling lanes or 

walkways. In Barcelona, superblocks caused the car mode-share to be reduced from 26.1% to 21.1% 

(Mueller et al., 2020) and in Paris, the repurposing of car lanes to cycling lanes has caused a 14% 

reduction in car traffic and a 166% increase in cycling traffic between 2018 and 2022 (Ville de Paris, 

2024). It is therefore no surprise that urbanism concepts such as the 15-minute city (Moreno et al., 

2021), Superblocks (Rueda, 2019) or E-Bike cities (Ballo et al., 2023) focused on low car traffic are 

being proposed and discussed with enthusiasm by transport planners and politicians. 

The present work emerged as part of the E-Bike city research project (Ballo et al., 2023). The project 

aims to investigate how large-scale cycling network expansion, combined with reduced road capacity 

for cars, can support e-bikes, which through their low motorization can overcome physical capabilities 

and expand the practice of cycling towards a broader public (Rérat, 2021; Meyer de Freitas and 

Axhausen, 2024) in enabling a much larger portion of the population to adopt cycling and reduce car 

use. This paper aims at estimating mode-shift potentials to conventional bikes, e-bikes (25 km/h) and 

s-pedelecs (45 km/h) in an E-Bike city context. Besides this contribution at a policy level, this paper 

also provides three main methodological contributions:  

- An online interactive travel diary application for data collection; 

- A method to integrate existing OSM data on cycling infrastructure into mode-choice models; 

- A discussion on the role of SP designs to capture radical changes in transport networks. 

 

2 Methodology 

This study was based on a two-stage transport survey, one introductory survey consisting of a travel 

diary and sociodemographic and attitudinal questions. The second survey consisted of a stated-

preference mode-choice survey. Following the data collection, simple multinomial logit (MNL) and 

integrated choice and latent variable models (ICLV) were estimated.  

Travel diary 

Participants were recruited through a panel run by a public opinion research institute. Our survey 

targeted a representative sample of the population living in the canton of Zurich as well as all its 

neighboring cantons. An app was developed to make use of an interactive travel diary in JavaScript 



and embedded in the Qualtrics survey engine (Figure 1). To complete the diary, respondents had to 

first select the reporting date for the travel diary. Respondents were asked to use a day within the last 

week where they actually left their home as a reference day for the diary. The second step was to type 

in the home-adress with an autocomplete function. The third and last required information were the 

trips themselves. For this the users could either search an address in field 3 (see Figure 1) or they 

could directly navigate to a location in the interactive map and click on it. Instantly after either of the 

input methods for an activity was used, a pop-up window, as shown in Figure 1, was displayed asking 

for answers from drop-down menus concerning the trip purpose, the mode of transport, the arrival 

time (15 minute bins) and the travel time (5min bins). This provided a simple and easily 

understandable data collection method.  

 

Figure 1: Interactive travel diary. 

 

 Stated Preference Experiment 

Out of the 3243 individuals who started the first survey, 1274 completed the second survey (the SP 

experiment). Out of these, 1177 were usable answers. The SP-experiment was targeted to understand 

the mode-shift stemming from a repurposing of streets from cars to cycling infrastructure. We 

explicitly refrained from incorporating cycling infrastructure type variations in the SP experiment 

since this would have increased the experiment complexity with longer response times and lower 

response rates. Also, we believe that route choice models and experiments on cycling infrastructure 

are better suited for understanding cycling infrastructure qualities, as extensively done in the literature 

(eg. (Hardinghaus and Papantoniou, 2020; Meyer de Freitas and Axhausen, 2023; Menghini et al., 

2010). For this reason, for the purpose of the SP experiment, the improved cycling infrastructure was 

communicated as a general base transformation in the experiment which is valid in all choice 

situations. To remind respondents, images showing the transformations between today and the 

scenario were repeatedly shown (Figure 3). Nonetheless, as shown below we did include today’s 

cycling infrastructure at a trip level in the choice models.  



 

Figure 3: Examples of the images shown to the respondents. 

The respondents were also reminded of their travel diary of the first survey and shown the selected 

reference trip for the SP survey (Figure 4). The variables available in Table 1 were varied in the 

experiment.  

 

Figure 4: Reference trip display for SP experiment 

The repurposing of streets in the experiment scenario had, besides the improved cycling infrastructure, 

another main result: The radical increase in car travel times. Unlike cycling infrastructure, car travel 

times are easily communicated in a number and we therefore did include these as a variable in the car 

alternative. We made use of a MATSim scenario for the E-bike city consisting of the city of Zurich 

and all the municipalities where at least 10% of residents commute towards Zurich. In this scenario, 

the repurposing of streets, i.e. the reduction of road capacities resulting from the E-bike city using the 

SNMan algorithm (Ballo et al., 2024) was simulated. The redesigned network substantially increases 



the length and width of cycling facilities while maintaining the quality of public transport and 

guaranteeing basic car access for every residential location. This results in several 2-lane streets being 

transformed in one-way streets for cars while the rest of space is repurposed as cycling lanes. The 

resulting changes in car travel times from this simulation is shown in Figure 5. The change is 

substantial, with car drivers in the morning peak having a 50% larger median travel time. The resulting 

travel time differences are then aggregated at the level of departure time and detailed (9-level) 

urbanization degrees of the start and end locations. We match the trips of our (swiss-wide) travel diary 

to the MATSim results based on these variables and use them as a base car travel time in our SP 

experiment.  

 

Figure 5: Boxplot of travel time differences by departure times (medians displayed in the numbers).  

 

The travel times for all alternatives were calculated as follows:  

-Car: For today’s travel time, the Google Directions API was used, even for trips which were reported 

with car as a travel mode to remove biases across individuals. This travel time was then multiplied 

with the travel time increase factor calculated from the scenario differences in MATSim based on OD 

pairs and departure travel time.  

-Public transport: Also using Google Directions API.  

-Walk: Google Directions API 

-Bike/E-Bike/S-Pedelec: The brouterR was used. The router used individual physical capabilities 

information collected from each respondent, to estimate the travel times for each of these modes. See 

Meyer de Freitas and Axhausen (2024) for a detailed description of the methodology.  

Figure 6 shows an exemplary choice situation and Table 1 shows the variable levels in the experiment.  

 

 

 



Table 1: Variables and levels for SP experiment 

Variable Levels 

Car travel time 1 (as in future scenario) / 1.4x that value 

Car cost 1x /2x today's estimated costs 

Car parking cost  5/ 10 CHF 

PT travel time 1x /1.5x today's travel time 

PT access/egress 1x/0.75x today's value 

PT service frequency 1x/0.75 today's value 

PT crowding low, medium, high 

Bike, E-Bike and S-Pedelec 

travel times  
individually calculated, no variation 

Externality costs for all modes Based on EBIS project values, no variation 

 

Figure 6: Example of a choice situation.  

 

Modelling  

The estimation of models was conducted with classic MNL as well as a LV (latent variable model). 

Different models were estimated in increasing degree of complexity.  

The utility functions for the models are shown below: 

𝑉i,RP = μRP ⋅ ( 𝐴𝑆𝐶i + 𝛽DEGURBA_1i
⋅ (DEGURBA=city) + 𝛽DEGURBA_2

⋅ (DEGURBA=towns and suburbs) + 𝛽tti
⋅ travelTime

⋅ (
distance

𝛿dist ⋅ median_distance
)

𝜆distance

⋅ (
cycling_infra_share

cycling_distance_safety ⋅ 𝛿dist ⋅ median_distance
)

𝜆share_cycling_bikei

+ βLVbike ⋅ LV*) 



𝑉i,SP = μSP ⋅ ( 𝐴𝑆𝐶i + 𝛽DEGURBA_1i
⋅ (DEGURBA=city) + 𝛽DEGURBA_2

⋅ (DEGURBA=towns and suburbs) + 𝛽tti
⋅ travelTime + βLVbike ⋅ LV*) 

*LV equals 0 in the simple MNL model, it is only used in the ICLV model.  

DEGURBA is the level of urbanization categorization by EUROSTAT consisting of 3 levels (rural, 

towns and suburbs, cities). The cycling infrastructure share term is inspired on the Mackie interaction 

term (Mackie et al., 2003) which increases behavioral realism and which is also used in the utility 

formulation for all modes. Our premise is that such a cycling infrastructure term only makes sense if 

interacted with travel time and travel distance given that it is lastly the level of exposure of traffic, 

which is also time dependent, which makes sense and not simply a preference towards cycling 

infrastructures, which can poorly be captured based on RP data given that good quality cycling 

infrastructure is sometimes not observable. 

The cycling infrastructure trip-based data was obtained using a brouter R-wrapper. This tool is a multi-

thread R-implementation of the brouter (Abrensch, 2022) described in (Meyer de Freitas and 

Axhausen, 2024). Brouter is an open-source dedicated cycling router which is based on OSM-data. 

The router has different routing profiles, which can be programmed individually. For the purposes of 

this work, we used the “safety” profile, which consistently prefers cycling infrastructure, if available, 

even at the expense of detours as well as the “shortest” router, which aims at providing the shortest 

travel time, ignoring cycling infrastructure.  

For each trip, cycling alternative were routed using both routing profiles. We then read out from the 

“safety” profile trip response the total distance of cycling infrastructure. We then divide it by the its 

distance to obtain the cycling infrastructure share. In order to account for the detour factor of this 

safest alternative we discount the share based on the ratio among the safety-distance and the shortest 

distance, hence the term 𝛿dist. The share is also divided by the median distance for all trips, as in the 

original Mackie term. By using two routing results, we also ensure that the cycling infrastructure share 

parameter is not biased towards the router being used, but considers the quality of cycling 

infrastructure at an OD-level by using information of two routing results.  

The Integrated Choice and Latent Variable (ICLV) model expanded the first simple MNL models by 

adding attitudinal information linking policy preference and mode choice by structurally linking them 

through a latent variable. This random latent variable is a latent construct of unobserved behavioral 

construct that influences individual decision-making but cannot be directly measured. This unobserved 

construct (LV) is estimated based on observable sociodemographic (age, income, education) and 

attitudinal (car ownership by car type) variables. This construct is directly linked to the preferences for 

the policies below in an ordered logit model:  

- Policy 1: “General 30 km/h speed limit in city centers”.  

- Policy 2: “Cycling path network expansion through the removal of parking spots”.  

Both policies where measured in a 5-point Likert scale (strongly disagree, somewhat disagree, 

indifferent, somewhat approve, strongly approve). Besides the mode-choice equations shown above, 

the ICLV model also contains the structural equations below: 

 

 



LV = 𝛾age ⋅ alter + 𝛾other ⋅ (other education) + 𝛾university ⋅ (university level education) + 𝛾income

⋅ income + 𝛾income_uni ⋅ (university level education) ⋅
income

1000
+ 𝛾car_type_small

⋅ (small car (as Fiat500 or Volkswagen Polo)) + 𝛾car_type_medium

⋅ (medium car (as Skoda Octavia or BMW 3)) + 𝛾car_type_suv

⋅ (SUV (as BMWX3 or Volkswagen Tiguan))              + 𝛾car_type_van

⋅ (VAN)                                                                             + 𝛾car_type_luxury

⋅ (luxury car (as Mercedes E class, BMW 7 or Porsche 911))    + 𝛾car_type_noCar

⋅ (no car) + 𝜂 

Ypolicy 1  =  ζpolicy1 ⋅  LV, with   τ1,1-4 

Ypolicy 2  =  ζpolicy2 ⋅  LV, with    τ2,1-4 

Where:  

𝜂 is the random component of the random latent variable LV, representing a normal distribution. 100 

Halton draws were taken to simulate this random component.  

τ1,1-4 are the thresholds of the utility function Y for the policy preferences. 

  

3 Results  

The experiment result shows a substantial mode-shift from cars towards bikes and public transport 

between the observed trip-diary behavior (RP model component) and the E-bike city scenario 

simulated in the SP model component. Especially e-bikes and s-pedelecs gained substantially in mode-

share terms. This increased attractivity is due mostly to the attractive travel times these modes present. 

The potential is especially large for s-pedelecs, which, in our experiment see a mode-share increase 

from 0.6% of trips to 15.2%.  

 

  

Figure 6: Mode-shares from the RP model component (travel diary) and SP model component. 
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MNL model results 

The model with Mackie interaction parameter results as well as cycling infrastructure results is shown 

in Table 2. The results show that increasing cycling infrastructure shares have a positive effect on the 

utility of bikes since it interacts with the negative travel time parameter. Interestingly, the effect 

increases with the speed of the bicycle type, being highest for s-pedelecs. While this sounds 

counterintuitive and contradicts stated-preference route choice results of different cyclists (Meyer de 

Freitas and Axhausen, 2023), our hypothesis is, that this is mostly due to the fact that current 

conventional bike cyclists are less intimidated and fearful of poor cycling infrastructure. E-bikes are 

also mostly chosen by women and individuals who have not recently taken up cycling (Rérat, 2021). 

These individuals are often less used to sharing space with cars or with poor infrastructure and 

therefore have a stronger preference for cycling as a whole. In sum, all would prefer improved cycling 

infrastructure but those who already cycle now and are used to cycle in a more exposed environment 

to cars, usually have less problems with doing so. 

Tables 4-6 present the results from the latent variable model. Based on the comparison with the 

Akaike-Information-Criterion (AIC) results for both models shown in Tables 3 and 6 we see that the 

mode-choice model goodness-of-fit is considerably improved in the ICLV model. Another interesting 

general result, is the fact that in the ICLV model, the model scaling factors μ are statistically 

indifferent, which means that there is no difference in variance between both RP and SP models. This 

result indicates, that the latent variable is able to capture the difference in variance between the RP and 

SP model. In other words, the difference in behavior in today’s world and the preferences in the E-

bike city scenario shown in the SP experiments come down to attitudes simulated through this random 

latent variable.  

From the ICLV model we see that car ownership is the most important variable for the latent variable, 

especially the type of car owned. The difference in the type of owned car, therefore tells us more about 

transport policy preferences as well as about the willingness to move away from cars, than 

sociodemographic factors. Furthermore, through the ζ policy 1 and ζ policy 2 parameters (Table 5) we 

see that the latent variable is especially important in terms of explaining the preference for policy 2, 

that is if someone approves or opposes the expansion of cycling networks based on the removal of 

parking spots. At the same time, the βLV parameters show that the latent variable is particularly 

important for the choice of cycling or not, with bigger car owners being less prone to cycling. At the 

same time, we see that βLV s-pedelec is less than ¼ the scale of βLV bike, which shows that this 

mode and e-bikes as well have a great potential to shift the behavior of drivers.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Simple MNL model results 

Variable Estimate s.e. t.rat.(0) 

ASC car 0.000 reference  
ASC pt -0.805 0.198 -4.072 

ASC bike 0.246 0.262 0.940 

ASC ebike (25 km/h) 0.088 0.166 0.533 

ASC s-pedelec (45 km/h) -0.992 0.374 -2.654 

ASC walk 2.163 0.157 13.737 

Male: e-bike 0.000 reference  
Female: e-bike 0.392 0.126 3.112 

Age: pt -0.008 0.003 -2.817 

Age: bike -0.015 0.003 -4.576 

Age: s-pedelec (45 km/h) -0.042 0.007 -6.027 

DEGURBA (rural areas): pt 0.000 reference  
DEGURBA (towns and suburbs): pt  0.551 0.124 4.439 

DEGURBA (cities): pt  1.205 0.140 8.598 

DEGURBA (rural areas): bike 0.000 reference  
DEGURBA (towns and suburbs): bike 0.696 0.197 3.524 

DEGURBA (cities): bike  1.768 0.207 8.560 

DEGURBA (rural areas, towns and suburbs): e-bike 0.000 reference  
DEGURBA (cities): e-bike  0.400 0.142 2.816 

β travel time car [min] -0.024 0.002 -10.382 

β travel time pt [min] -0.003 0.001 -2.787 

β access/egress time pt [min] -0.053 0.006 -9.468 

β headway pt [min] -0.009 0.003 -2.482 

β travel time bike [min] -0.067 0.005 -13.396 

β travel time e-bike (25 km/h) [min] -0.047 0.004 -11.081 

β travel time s-pedelec (45 km/h) [min] -0.010 0.002 -4.480 

β travel time walk [min] -0.109 0.005 -19.820 

β cost [CHF] -0.036 0.006 -5.685 

λ distance car 0.396 0.043 9.188 

λ distance walk -0.106 0.042 -2.533 

λ distance bike -0.292 0.039 -7.410 

λ distance e-bike (25 km/h) -0.519 0.037 -13.967 

λ distance s-pedelec (45 km/h) -0.368 0.104 -3.539 

λ distance pt 0.887 0.107 8.256 

λ cycling infrastructure share bike -0.017 0.004 -4.065 

λ cycling infrastructure share e-bike (25 km/h) -0.070 0.004 -15.542 

λ cycling infrastructure share s-pedelec ( 45 km/h) -0.145 0.016 -9.253 

μ RP 1.000 reference  
μ SP 0.515 0.040 12.970 

 

Table 3: Model evaluation metrics for pure mnl mode-choice model.  

Model Final LL Params AIC 

RP -3157.37 23 6360.74 

SP -5739.4 15 11508.8 

  AIC mode choice: 17869.5 

 

 

 

 



Table 4: ICLV model result part 1/2: mode choice model 

Multinomial logit model variables Estimate s.e. t.rat.(0) 

ASC car 0 NA NA 

ASC pt 1.974 0.395 4.995 

ASC bike 3.074 0.670 4.586 

ASC ebike (25 km/h) 2.662 0.323 8.249 

ASC s-pedelec (45 km/h) -0.097 0.207 -0.468 

ASC walk 4.773 0.450 10.596 

DEGURBA (rural areas): pt 0.000 reference  
DEGURBA (towns and suburbs): pt  0.288 0.142 2.026 

DEGURBA (cities): pt  0.792 0.220 3.602 

DEGURBA (rural areas): bike 0.000 reference  
DEGURBA (towns and suburbs): bike 0.251 0.255 0.984 

DEGURBA (cities): bike  0.551 0.363 1.521 

DEGURBA (rural areas, towns and suburbs): e-bike 0.000 reference  
DEGURBA (cities): e-bike  0.272 0.177 1.541 

DEGURBA (cities): s-pedelec  0.367 0.153 2.399 

DEGURBA (rural areas, towns and suburbs): walk 0.000 reference  
DEGURBA (cities): walk  0.467 0.225 2.079 

β travel time car [min] -0.003 0.001 -2.465 

β travel time pt [min] -0.004 0.001 -3.349 

β access/egress time pt [min] -0.055 0.006 -9.454 

β headway pt [min] -0.015 0.004 -4.116 

β travel time bike [min] -0.055 0.004 -14.610 

β travel time e-bike (25 km/h) [min] -0.034 0.003 -12.127 

β travel time s-pedelec (45 km/h) [min] -0.007 0.001 -5.930 

β travel time walk [min] -0.108 0.005 -19.700 

β cost [CHF] -0.012 0.005 -2.399 

λ distance car 1.071 0.123 8.736 

λ distance walk -0.096 0.035 -2.720 

λ distance bike -0.351 0.037 -9.619 

λ distance e-bike (25 km/h) -0.429 0.039 -10.877 

λ distance s-pedelec (45 km/h) -0.352 0.075 -4.672 

λ distance pt 0.865 0.102 8.455 

λ cycling infrastructure share bike -0.071 0.005 -14.307 

λ cycling infrastructure share e-bike (25 km/h) -0.147 0.007 -22.479 

λ cycling infrastructure share s-pedelec ( 45 km/h) -0.308 0.016 -19.107 

μ RP 1.000   
μ SP 0.973 0.057 17.128 

βLV: car 0.000 reference  
βLV: pt 2.638 0.159 16.596 

βLV: bike 4.620 0.226 20.462 

βLV: e-bike 2.072 0.155 13.364 

βLV: s-pedelec 0.970 0.120 8.099 

βLV: walk 2.928 0.209 14.015 

 

 

 

 

 

 



Table 5: ICLV model result part 2/2: Random latent variable and ordered logit models 

Random latent variable       

γ car type: no car available 0.000 reference NA 

γ car type: small -0.986 0.092 -10.711 

γ car type: medium -1.080 0.084 -12.851 

γ car type: van -0.912 0.125 -7.323 

γ car type: SUV -1.130 0.103 -11.014 

γ car type: luxury car -1.611  0.236 -6.838 

γ income -0.044 0.018 -2.403 

γ age 0.005 0.002 2.541 

γ education: other  0.000 reference NA 

γ education: university level 0.292 0.139 2.109 

γ income x education: university level 0.034 0.025 1.336 

Ordered logit model variables on policy preferences       

τ policy 1: strongly reject 0.000 reference  
τ policy 1: somewhat reject -1.781 0.125 -14.247 

τ policy 1: indifferent -0.825 0.116 -7.098 

τ  policy 1: somewhat approve -0.150 0.114 -1.319 

τ policy 1: strongly approve 1.044 0.117 8.897 

τ policy 2: strongly reject 0.000 reference  
τ policy 2: somewhat reject -2.221 0.152 -14.607 

τ policy 2: indifferent -1.300 0.142 -9.175 

τ policy 2: somewhat approve -0.384 0.137 -2.809 

τ policy 2: strongly approve 0.796 0.138 5.786 

ζ policy 1 0.726 0.057 12.699 

ζ policy 2 0.920 0.063 14.612 

 

Table 6: Model evaluation metrics for ICLV model  

Model Final LL Variables AIC 

Policy 1 -2151.9 8 4319.8 

Policy 2 -2144.63 8 4305.26 

RP -2758.42 24 5564.84 

SP -4625.72 16 9283.44 

 AIC mode choice: 14848.28 

  

Total 

AIC:   23473.34 

 

 

4 Preliminary conclusions and further work 

The preliminary results shown above show a novel methodology to study mode-shift potentials 

stemming from radical street space repurposing. Also, a new simple and open-source methodology to 

include cycling infrastructure in mode choice models was presented. Concerning mode-shift 

potentials, we see that a policy in which space is removed from car drivers and provided for cyclists is 

potentially very successful to promote mode-shifts to cycling. The ICLV models show that car 

ownership together with sociodemographic factors explains latent preferences towards policies and 

also mode-choice. Incorporating these greatly improves model fit and gives us insights into the 

behavior of different individuals. While seeming simple, one cannot simply take as a policy outcome 

that owners of larger and more expensive vehicles should be prived of the these to make modal-shifts 

successful in an environmentally friendly transport future ideal. Rather, they give us insights into the 

type of individual that is more willing than other to change behavior. The advantage of this, is that the 

results presented here, can be easily used through the derivation of further model indicators such as 



WTP and elasticities, to estimate potentials from different groups in easier manners. Also, further 

studies are necessary to really understand what the driving factors behind car type ownership, attitudes 

and mode-shares in this context are.  

Further work during the next months will compromise further analysis of the results, including the 

derivation willingness-to-pay and elasticity indicators for the models shown above. Also, the resulting 

model is being implemented in a MATSim scenario for an evaluation of such a radical repurposing 

policy for the city of Zurich through the means of a cost-benefit-analysis.  
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