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Short summary

The Multinomial Logit (MNL) model is popular in route choice modelling for its simple choice
probability function. Still, it has limitations: it assumes homoscedastic error terms, ignores route
overlap correlations, and assigns non-zero probabilities to all routes. We address these by devel-
oping the Bounded q-Product Logit (BqPL) model, which introduces heteroscedastic errors with
bounded support. The parameter q scales error variance with trip cost, and routes exceeding a cost
threshold are assigned zero probability, thus implicitly defining the choice set. We extend BqPL
to capture route overlap correlations with a path size correction term, yielding the Bounded Path
Size q-Product Logit (BPSqPL) model. After demonstrating the model properties on a small-scale
example, it is benchmarked in a large-scale case study. The BPSqPL showed great improvements
in fit and predictive ability while providing valuable insights on the non-considered routes and on
how cyclists compare the different routes from a choice set.

Keywords: route choice, heteroscedasticity, route overlap, choice set formation, large-scale appli-
cation

1 Introduction

The Multinomial Logit (MNL) model (McFadden, 1974) is popular in route choice applications
due to its simple closed-form choice probabilities. However, MNL relies on several assumptions
that limit its behavioral realism:

• Homoscedasticity: MNL assumes identical variance for error terms across all routes, which
may be unrealistic in many contexts (Bhat, 1995; Munizaga et al., 2000).

• Independence: MNL assumes uncorrelated error terms, yet routes often overlap, sharing
links and unobserved attributes (Cascetta et al., 1996; Ben-Akiva & Bierlaire, 1999).

• Non-bounded support: MNL assumes that each alternative has a non-zero choice probability,
disregarding choice set formation and leading to potential biases (Horowitz & Louviere, 1995;
Williams & Ortuzar, 1982).

Several models have emerged to address these limitations individually, including approaches for
heteroscedasticity (Bhat, 1995; Castillo et al., 2008; Chikaraishi & Nakayama, 2016), route over-
lap (Vovsha, 1997; Cascetta et al., 1996; Ben-Akiva & Bierlaire, 1999), and alternative non-
consideration has been adressed in various way, such as using two-stage models (Manski, 1977),
one-stage approximations (Cascetta & Papola, 2001), or bounded-support probability distribu-
tions (Watling et al., 2018; Tan et al., 2024). However, few models address multiple limitations
simultaneously. For example, the Path Size Weibit (Kitthamkesorn & Chen, 2013) model handles
both heteroscedasticity and correlation, while the Bounded Path Size Logit (Duncan et al., 2022)
addresses overlap and choice set formation. To our knowledge, no model addresses these three
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limitation simultaneously, which is mainly due to confounding effects (Hess & Train, 2017) and
poor scalability of some of the above-mentionned methods to large-scale problems such as route
choice.

In this paper, we introduce a new model that unifies these elements. Building on the q-Product
Logit (qPL) (Chikaraishi & Nakayama, 2016) and Bounded Logit (BL) (Watling et al., 2018)
models, we develop the Bounded Path Size q-Product Logit (BPSqPL). This model integrates
bounded choice sets, heteroscedasticity, and route correlation, offering a flexible framework that
encompasses multiple existing models.

2 Methods

Let us assume that we observe a choice situation with choice set C. We assume that each observa-
tion can be described by a positive random cost function Ci

1, which both depends on observed
attributes, aggregated in a deterministic cost ci, and a random error term ϵi. While logit mod-
els assume a Ci = ci + ϵi and weibit models assume Ci = ciϵi, we will present the concept of
"q-generalisation", allowing the relation between deterministic and random cost components to
be between the sum and product. This concept is at the core of Chikaraishi & Nakayama (2016)
derivation of the qPL model, as well as our BqPL model.

q-Generalisation

Here, we present some q-operators. First, the "q-product" (Borges (2004)) can be seen as an
in-between of the sum and the product. The q ∈ [0, 1] parameter controls the closeness to the sum
or product. It is defined for a > 0 and b > 0 such that a1−q + b1−q − 1 > 0 as:

a⊗q b =
(
a1−q + b1−q − 1

) 1
1−q

+
(1)

where (.)+ = max(0, .). Its limiting cases are lim
q→1

a ⊗q b = ab and a ⊗0 b = a + b − 1. We can

similarly define the "q-ratio" as the inverse operator of the q-product:

a⊘q b =
(
a1−q − b1−q + 1

) 1
1−q

+
(2)

Its limiting cases are lim
q→1

a ⊘q b = a/b and a ⊘0 b = a − b + 1. It is the inverse of the q-product

because a⊗q (1⊘q a) = 1. Additionally, for any positive real number x, we define the "q-logarithm"
(Tsallis (1994)) as:

lnq(x) =


x1−q − 1

1− q
if q ̸= 1

ln(x) if q = 1
(3)

Notably, ln0(x) = x − 1. We have that lnq(a ⊗q b) = lnq(a) + lnq(b). Additionally, we define the
q-LogLogistic distribution as follows:

FZ(x) = FqL(x|θ, µ, q) :=
1

1 + exp [−θ(lnq(x)− lnq(µZ))]
(4)

Chikaraishi & Nakayama (2016) derives the qPL model by assuming that, for each alternative i,
Ci = ci⊗q ϵi, where lnq(ϵi) follow independent Gumbel distributions. This assumption implies that
the error term q-Ratio between any two alternatives ϵi ⊘q ϵj follows the q-LogLogistic distribution
defined in Equation 4. We use a similar assumption to derive the BqPL model, with the difference
that we use a left-truncated distribution.

Derivation of the Bounded q-Product Logit model

Analogously to Watling et al. (2018)’s BL model, we assume that individuals compare each alter-
native i ∈ C to an imaginary reference alternative r∗ in terms of utility q-Ratio:

Ci ⊘q Cr∗ = (ci ⊗q ϵi)⊘q (cr∗ ⊗q ϵr∗) = ci ⊘q cr∗ ⊗q ϵi ⊘q ϵr∗ = ci ⊘q cr∗ ⊗q εi

1The model can be equally be derived for utility maximization and cost minimization
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The proposed Truncated q-Log-Logistic distribution is derived by left-truncating the q-Log-Logistic
distribution at a lower bound 1⊘q ϕ for some ϕ ≥ 1. The following PDF defines it:

fqT (x|θ, µ, q, ϕ) =


fqL(x|θ, µ, q)

1− FqL(1⊘q ϕ|θ, µ, q)
if x ≥ 1⊘q ϕ

0 if 0 ≤ x < 1⊘q ϕ
(5)

The BqPL choice probabilities can be obtained from this assumption, and are defined by:

PBqPL
i := Pr(i|C) =

(
e−θ lnq(ci⊘q(ϕ⊗qcr∗ )) − 1

)
+∑

j∈C

(
e−θ lnq(cj⊘q(ϕ⊗qcr∗ )) − 1

)
+

(6)

Accounting for route overlap

To account for route overlap, we take inspiration from the Bounded Path Size Logit (BPSL) model
(Duncan et al., 2022) to formulate a Bounded Path Size q-Product Logit (BPSqPL) model, where
the path size terms are defined appropriately to capture correlations between considered routes
only and a continuous choice probability function is maintained. Each route i ∈ C consists of a set
of links Ai ⊆ A, where A is the universal set of links in the network. These links are defined by
attributes aggregated in positive cost functions ta, a ∈ A, parameterised by a vector of parameters
α. The total cost ci of route i is link-additive, i.e. ci =

∑
a∈Ai

ta. The BPSqPL choice probability

function for route i is:

PBPSqPL
i =

(
γBPSqPL
i

)η
(
exp(−θ(lnq(ci)− lnq(φmin

l∈C
cl)))− 1

)
+∑

j∈C

(
γBPSqPL
j

)η
(
exp(−θ(lnq(cj)− lnq(φmin

l∈C
cl)))− 1

)
+

(7)

where (γBPSqPL
i )η is the path size correction factor for considered route i ∈ C. η ≥ 0 is the path

size scaling parameter scaling sensitivity to route distinctiveness, and γBPSqPL
i ∈ [0, 1] is calculated

as follows:
γBPSqPL
i =

∑
a∈Ai

ta
ci

wi∑
j∈C wjδaj

(8)

wi =

(
exp(−θ(lnq(ci)− lnq(φmin

l∈C
cl)))− 1

)
+

is the weight of route i in the Path-Size contribution

of all the other routes, proportional to its choice probability. This model generalizes Ben-Akiva
& Bierlaire (1999) correction, which sets wi = 1,∀i. Hence, γBPSqPL

i is specified so that a) routes
with costs above the bound do not contribute to reducing the path size terms of routes with costs
below the bound, and b) the path size term function is continuous as routes enter and exit the
considered route set.

Special cases of the BPSqPL

Both the BqPL and BPSqPL are generalizations of some existing (and new) choice models. For
q = 1, the BqPL (respectively, the BPSqPL) collapse to what we define as the Bounded Weibit
(BW) (respectively, the Bounded Path Size Weibit (BPSW), which extend Castillo et al. (2008)
Multinomial Weibit (MNW). For q = 0, the models respectively collapse to the BL and BPSL.
When the bound φ tends to +∞, the bounded models tend to their unbounded counterparts. The
BPSqPL thus unifies several modelling frameworks.

Example

We demonstrate the features of the BPSqPL model and its variations on a test network (Figure
1), which includes seven links with costs defined by parameters λ > 0 and 0 < ρ < λ. These links
form five routes between O and D, detailed in Table 1. A key feature of this network is that Route
3 is correlated with Route 4, which becomes less preferable as ρ grows. This setup illustrates the
differences between the BPSx (BPSW/BPSL/BPSqPL) correction and the commonly used Path
size correction from Ben-Akiva & Bierlaire (1999).
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O D

Fig. 1: Toy network with 7 links and 5 routes

Route Links Cost

1 1-3 λ
2 1-4 λ
3 2-5 λ
4 2-6 λ+ ρ
5 7 λ

Tab. 1: Set of routes using the network from Figure 1

We plot the choice probabilities of each alternative in Figures 3 and 2 as a function of the ratio
ρ/λ, which ranges from 0 to 1. This ratio indicates how distinct Routes 1 to 4 are from each other
(0 means fully confounded; 1 means fully distinct). We use two values for λ (λ = 1 and λ = 10) to
represent short and long trips.

Figure 3 shows the choice probabilities for models without Path size correction or bounding ((a),
(b), and (c)) and for a bounded model without Path size correction (BqPL, (d)). For λ = 1,
MNL, MNW, and qPL models have similar choice probabilities. As ρ increases, Route 4 becomes
less competitive, reducing its choice probability. When λ = 10, the three models diverge: MNL
(Figure 3 (a)) shows a sharper decrease for Route 4 due to cost sensitivity, while MNW (Figure 3
(b)) remains unaffected by scale, focusing on cost ratios alone. The qPL (Figure 3 (c)) balances
between MNL and MNW, responding to the cost q-Ratio. The BqPL model (Figure 3 (d)) behaves
similarly to qPL but assigns zero probability to Route 4 once it reaches the relative cost bound
(ρ = 0.8λ), increasing the choice probability gradient compared to qPL. In all cases, Routes 1, 2,
3, and 5 share the same probability regardless of overlap.

Figure 2 addresses this limitation with the BPSqPL model, which includes Path size correction. In
Figure 2 (a), the BqPL-PS model uses a correction term that penalizes utility without depending
on route cost. Route 5 has the highest choice probability due to minimal overlap with other
routes. However, Route 3 receives the same penalty as Routes 1 and 2, even if it overlaps with a
less realistic option, a standard Path size correction limitation, as noted by Duncan et al. (2020).
The BPSqPL model (Figure 2 (b)) improves this by assigning Route 5 the highest probability,
given its distinctness. When ρ = 0, Routes 1 and 2 and Routes 3 and 4 are confounded and share
split probabilities. As ρ increases, Route 4’s probability decreases, while Route 3 converges with
Route 5, which has no overlaps. When ρ > 0.8λ, Route 4’s cost exceeds the bound, resulting in a
zero probability, and Route 3 aligns with Route 5’s probability due to the lack of overlap.
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(a) MNL, Left: λ = 1, Right: λ = 10
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(c) qPL, Left: λ = 1, Right: λ = 10
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(d) BqPL, Left: λ = 1, Right: λ = 10

Fig. 2: Choice probabilities as a function of ρ on the example network from Figure 1.

3 Case study

The case utilised a large-scale crowd-sourced data set of bicycle GPS trajectories received from
Hövding. The original dataset covers the entire Greater Copenhagen Area from the 16th September
2019 until 31st May 2021. For a detailed description of the data, the bicycle network, and the
algorithms applied for data processing, we refer to Łukawska et al. (2023). The final dataset for
model estimation consists of a subset of this dataset containing 4,134 trips made by 4,134 cyclists.
For a detailed description of the choice set generation technique, and the model specification, the
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(a) BqPL-PS, Left: λ = 1, Right: λ = 10
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(b) BPSqPL, Left: λ = 1, Right: λ = 10

Fig. 3: Choice probabilities as a function of ρ on the example network from Figure 1.

reader is referred to Cazor et al. (2024).

Estimation results

The results are presented in Table 2, which comprise the BPSqPL and some of its special cases: the
MNL, qPL, BL, BqPL, BPSL. Moreover, the BqPL-PS was presented, using Ben-Akiva & Bierlaire
(1999), to compare this alternative correction. All the estimated parameters were significant at
the 0.01 level. Each extension of the MNL and its one additional parameter significantly affects
model fit, which can be seen in a decrease in the BIC for the more complex models.

We make the following observations:

• The qPL, BqPL and BPSqPL all estimate a q parameter significantly different from 0 and
1, inducing heteroscedasticity in the route costs. This suggests that cyclists are neither
sensitive to route cost differences nor ratios but something in-between (closer to the ratio,
though, as q ranges between 0.562 and 0.706).

• For the bounded models that incorporate choice set formation (Table ??), the relative cost
bound is consistent across models, estimated between 1.102 and 1.162. This implies that
cyclists rarely considered routes more than 10.2–16.2% costlier than the cheapest option.
Non-considered routes (those with zero probability) accounted for 41.9–68.5% of the pre-
generated routes, indicating that the choice-set generation method included a substantial
number of behaviorally unrealistic routes.

• The scale is the only parameter that varies between models, while the taste parameters are
rather stable. The different scales are linked to the different assumed distributions for the
error terms (Gumbel, q-Gumbel or Weibull), whose variance behaves differently when route
length increases. Overall, This implies that accounting for heteroscedasticity, choice set
formation, and alternative correlation does not change the taste interpretation (at least in
this dataset) but is of good value for getting closer to realistic substitution patterns between
routes and more reliable forecasting.

• Notably, when comparing Path size specifications, the more advanced and consistent one
greatly improves the fit (BPSqPL vs. BqPL-PS). This suggests that this weighting is more
behaviorally realistic.
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Model MNL qPL BL BqPL BPSL BPSqPL BqPL-PS

Length - - - - - - -
Elevation gain 0.00352 0.00658 0.0031 0.00616 0.0036 0.00438 0.0045
No Bike infrastructure 0.182 0.183 0.17 0.181 0.159 0.155 0.151
Non-smooth surface 0.194 0.2 0.171 0.198 0.153 0.153 0.16
Wrong way 0.332 0.358 0.31 0.356 0.267 0.262 0.296

Scale (θ) -28.5 -51.76 -25.42 -50.5 -14.71 -28.56 -58.68
Path size term (η) - - - - 1.643 1.571 1.122
q - 0.706 - 0.688 - 0.562 0.67
Relative cost bound (φ) - - 1.111 1.149 1.105 1.115 1.126

Final LL -11,087 -10,363 -10,791 -10,357 -9,910 -9,683 -10,163
BIC 22,192 20,748 21,604 20,739 19,845 19,395 20,355
Adj. ρ2 0.513 0.545 0.526 0.545 0.565 0.575 0.554
N. of parameters 5 6 6 7 7 8 8
% of routes cut by φ - - 66.3% 53.4% 65.7% 60.3% 56.8%

Tab. 2: Model estimates for selected models

Model validation

We performed Monte-Carlo cross-validation on our dataset to assess the model’s predictive perfor-
mance and test for overfitting. To do so, we repeated N = 10 (as in Cazor et al. (2024)) times the
following steps:

1. Randomly split the original dataset S into a training St and validation set Sv (|St| =
0.7|S|; |Sv| = 0.3|S|).

2. Estimate all the models on the training set St, obtain, for each model m, the training
parameters βt

m.

3. Calculate, for each model m, the log-likelihood on the validation set, LL =∑
x∈Sv

logPm
ix
(βt

m), where ix is the index of the chosen alternative for observation x ∈ Sv

The cross-validation results are shown in Table 3. The BPSqPL is the best-performing model in
every cross-validation experiment, followed by the BPSL, the BqPL, the qPL, the BL and the
MNL. This indicates that these models did not overfit the data. Moreover, we observed that the
model estimates across the experiments were stable.

Model MNL qPL BL BqPL BPSL BPSqPL

Average LL -3,217.48 -3,009.63 -3,107.61 -3,005.12 -2,872.35 -2,817.81

Tab. 3: Average log-likelihood on the cross-validation sets

4 Conclusion

In this paper, we have developed new closed-form choice models that generalise the MNL to account
for heteroscedasticity of the error terms, correlations between overlapping routes, and choice set
formation effects through setting a bound on the relative cost distribution. We first developed a
model that combines Chikaraishi & Nakayama (2016)’s q-Product Logit (qPL) model with Watling
et al. (2018)’s Bounded Logit (BL) model, to derive a Bounded q-Product Logit (BqPL) model. It
is derived by assuming a Truncated q-Log-Logistic distribution for random error term differences
and can be seen as a one-stage choice set formation model. We then extended the BqPL model to
account for route overlap in a fashion similar to Duncan et al. (2022)’s BPSL model.

The BPSqPL model remains parsimonious and easy to estimate by introducing only one additional
parameter per property. This model unifies several frameworks and generalises several known and
new models. Model properties were first demonstrated using a small-scale example and then
benchmarked against existing models in a large-scale bicycle route choice case study.
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Our findings from the large-scale application show that accounting for heteroscedasticity, route
overlap, and choice set formation considerably improves model fit and predictive accuracy. The
estimate for the q parameter also indicates that error term variance does increase with expected
route cost but is slightly slower than the quadratic increase assumed by a Weibit model. These
enhancements were achieved without a substantial increase in model complexity. Additionally,
these models offer more realistic substitution patterns between alternatives due to consistent path
size corrections and the exclusion of unrealistic alternatives, which account for about 50% of the
generated representative universal choice set of routes. The values of the taste coefficients for the
observed attributes also remained stable across models.
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