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SHORT SUMMARY

A round-trip based alternative to origin/destination matrices is presented. The formal approach
treats the round-trips of a population as a distributed quantity and adopts statistical techniques
to the evaluation of this distribution. An operational Bayesian calibration approach is presented
as a round-trip-based counterpart to origin/destination matrix estimation. Several concrete
applications of the framework are presented. We believe that the vastly increased representative
power of a round-trip-based model when compared to origin/destination matrices, in combination
with its compatibility with modern agent-based simulation packages, outweighs its somewhat
more involved technical development.
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1 INTRODUCTION

Origin/destination (OD) matrices are ubiquitous in both person and freight network assignment
modeling. The rows of a static OD matrix represent origins, its columns represent destina-
tions, and its entries represent (freight or person) transport between origins and destinations.
Dynamic OD matrices add a (usually discrete) time index, meaning that they map the triplet
(origin, destination, time index) onto a transport demand. OD matrices are covered in any trans-
port modeling textbook (e.g., Ortuzar and Willumsen, 2004; Cascetta, 2001).

The widespread use of OD matrices may be traced back to three ingredients: their simple and
intuitive structure, their compatibility with mainstream network assignment models, and the
availability of a comprehensive mathematical machinery for estimating OD matrices. Still, their
appealing simplicity comes with limitations: An OD matrix does not encode any relationship
between the individual movements it represents, neither does a dynamic OD matrix encode any
temporal relationships. The resulting independence assumption across movements may violate
mass conservation (e.g., more travelers leave a shopping mall than enter it) and causality (e.g.,
even if the time-sum of entries and exits to a shopping mall is zero, the entries may occur after
the exits). In addition, the cell entries of a single OD matrix represent a homogeneous number of
anonymous movements, and capturing heterogeneity by introducing group-specific OD matrices
quickly reaches the computational limits of representing a correspondingly large number of OD
matrices with correspondingly small entries. For similar reasons, the number of time steps resp.
origins and destinations (usually traffic analysis zones) is limited, introducing a temporal resp.
spatial aggregation bias.

These observations are not new and were one of the drivers for developing agent-based models
(Horni et al., 2016; Nagel and Flötteröd, 2012). An agent-based transport demand is represented
based on one trip-list per agent, with each trip being (minimally) annotated by origin, desti-
nation, and departure time. This allows, at the agent level, to ensure both spatial consistency

1



(origin of one trip must be destination of the previous trip) and temporal consistency (departure
time of one trip must not be earlier than arrival time of the previous trip). Agent-based models
for strategic planning (where a long-term, stationary state of the transport system of interest
is considered) may consider circular trip lists: Person agents return to their homes on a daily
basis, freight vehicle agents return to their depots at possibly larger time intervals (consider, for
example, weekly train schedules).

This document describes an operational simulation/estimation framework for trip-list-based
transport representations. It makes concrete and develops further the ideas sketched in Flötteröd
(2024), going beyond that reference by (i) specifying in detail a round-trip sampling approach,
(ii) considering not just one but arbitrarily many round-trips simultaneously, and (iii) presenting
a Bayesian calibration framework. We believe that the vastly increased representative power of
this approach when compared to OD matrices, in combination with its compatibility with modern
agent-based simulation packages, outweighs the somewhat more involved technical developments.

2 METHOD

Round-trip-lists

We discretize time into intervals (time bins) k ∈ K = {1, . . . ,K} and consider a population of
agents n = 1, . . . , N . A location set Ln of size Ln is available to agent n. We define agent

n’s location list ln = [l
(1)
n , . . . , l

(Jn)
n ] and departure time bin list dn = [d

(1)
n , . . . , d

(Jn)
n ] where

Jn ∈ {1, . . . ,min{Jmax,K}} is the finite length of both lists, l
(j)
n is the origin location of the jth

trip, and d
(j)
n is its departure time bin. The location and departure time list of agent n constitute

its trip list xn = (ln, dn). To treat trip lists independently of an agent, we introduce the function
J(·) that maps a trip list onto its length; obviously, J(xn) = Jn. Causality is established by
requiring

d(j)n < d(j+1)
n for all j ∈ {1, . . . , Jn − 1}. (1)

(Note that this implies the above requirement Jn ≤ K.) Repeated trips with the same departure
location are allowed for to enable the representation of intra-zonal travel when locations are
traffic analysis zones.

We subsequently consider round-trips where the destination location of the last trip is the depar-
ture location of the first trip.1 For instance, given an hourly time discretization, the round-trip

([home, office, shopping mall], [6, 16, 17])

means that the considered agent leaves home at 6 am for office work, departs at 4 pm from the
office, makes a short stop at the shopping mall that is planned to end at 5 pm, and then returns
back home. The departure time bins represent a desired time structure that may or may not be
compatible with a given physical reality of finite travel speeds; more on this further below.

We consider distributed population round-trips X = [X1, . . . ,XN ] where Pr(X = x) = Pr(X1 =
x1, . . . ,XN = xN ) is a discrete probability with (for finite population and maximum trip-list
length) finite support. To evaluate this distribution, a method to sample round-trips from a
given target distribution p(x) is required. For generality, we do not yet make assumptions about
where this target distribution comes from (ample examples further below) but merely assume it
to be given. We rely here on the Metropolis-Hastings (MH) algorithm (Hastings, 1970). This
algorithm has well-known advantages (generality) and disadvantages (possibly long run-times),
the latter having been addressed in a substantial body of literature. Ross (2012) offers a detailed

1To capture trip-lists that are not round-trips within the same framework, one may add a (Jn+1)th trip where

l
(Jn+1)
n defines the destination of the Jnth trip and d

(Jn+1)
n is arbitrary.
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introduction. We focus subsequently on a basic round-trip-specific instance of the MH algorithm,
omitting general-purpose discussions around its practicalities (convergence tests, extraction of
statistics, etc.).

The state space of the considered MH algorithm is composed of population round-trips x =
[x1, . . . , xN ]. The algorithm requires an irreducible proposal distribution p(x, y) from any state
x to any state y, which is subsequently developed.

MH proposal distribution for a single round-trip (N = 1)

Since a single round-trip is considered, the agent index n is suppressed in this section. Four
operations on a single round-trip are subsequently defined; their combination will yield the
desired proposal distribution.

INS(ERT) Given a round-trip x of length J < Jmax, an insertion index i is uniformly drawn
from {1, . . . , J +1}. A new location is drawn uniformly from the location set L, and a new
departure time bin is drawn uniformly from the set of not yet used departure time bins
K\ ∪J

j=1 d
(j). For i ≤ J , these values are inserted into the location and departure time list

at index i. For i = J+1, they are appended to the end of the lists. To comply with (1), the
departure time list is subsequently ordered by increasing magnitude without changing the
ordering of the location list. Letting the round-trip y be the result of an insert operation
at index i in round-trip x, the probability of obtaining y from x is

qINS(x, y) =
1

J + 1
·
1

L
·

1

K − J
. (2)

Since the length of the round-trip increases by one, the new round-trip differs from the old
one.

REM(OVE) Given a round-trip x of length J > 0, an index i is uniformly drawn from
{1, . . . , J} and the ith element is removed from the location and departure time list. Let-
ting y be the result of a remove operation from round-trip x, the probability of obtaining
y from x is

qREM(x, y) =
1

J
. (3)

Since the length of the round-trip decreases by one, the new round-trip differs from the old
one.

FLIP_LOC(ATION) Given a round-trip x of length J , a location flip index i is uniformly
drawn from {1, . . . , J}. A new location is uniformly drawn from L\l(i) to replace l(i).
Letting y be the result of flipping a location in round-trip x, the probability of obtaining
y from x is

qFLIP_LOC(x, y) =
1

J
·

1

L− 1
. (4)

Since the newly drawn location must differ from the original value, the new round-trip
differs from the old one.

FLIP_DEP(ARTURE) Given a round-trip x of length J , a departure time flip index i is
uniformly drawn from {1, . . . , J}. A random departure time is drawn from K\∪J

j=1 d
(j) to

replace d(i). The resulting departure time list is sorted by increasing magnitude without
changing the ordering of the location list. Letting y be the result of flipping a departure
time in round-trip x, the probability of obtaining y from x is

qFLIP_DEP(x, y) =
1

J
·

1

K − J
. (5)
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Since the newly drawn time must differ from the original value, the new round-trip differs
from the old one.

Given a round-trip y that results from applying any of the above operations to a given round-trip
x, the applied operation is uniquely given: J(y) > J(x) can only result from INS; J(y) < J(x) can
only result from REM; J(x) = J(y) and lx 6= ly can only result from FLIP_LOC; J(x) = J(y)
and dx 6= dy can only result from FLIP_DEP; J(x) = J(y) and lx = ly and dx = dy is impossible.
Let φINS, φREM, φFLIP_LOC, φFLIP_DEP be the selection probabilities of the respective operations;
they are strictly positive and sum up to one.2 Drawing an operation, applying it to round-trip
x and receiving round-trip y hence occurs with the following probability:

q[1](x, y) =































φINS · qINS(x, y) if J(y) > J(x)

φREM · qREM(x, y) if J(y) < J(x)

φFLIP_LOC · qFLIP_LOC(x, y) if J(y) = J(x) ∧ lx 6= ly

φFLIP_DEP · qFLIP_DEP(x, y) if J(y) = J(x) ∧ dx 6= dy

0 otherwise.

(6)

This distribution is irreducible because any state (round-trip) b can be reached from any other
state a with positive probability: (i) If J(a) = J(b), a sequence of FLIP_LOC and FLIP_DEP
operations that turn a into b is possible. (ii) If J(a) < J(b) resp. J(a) > J(b), a sequence of INS
resp. REM operations is possible that yields an intermediate state a′ with J(a′) = J(b), which
then can be turned into b according to (i).

MH proposal distribution for multiple round-trips (N > 1)

We return to indexing the different round-trips in x by n = 1, . . . , N and compose the proposal
distribution for population round-trips from that for single round-trips. We sweep once over all
round-trips n = 1, . . . , N and modify round-trip xn with probability φMOD > 0 into yn 6= xn
according to q(xn, yn) in (6), otherwise we let yn = xn.3 If this results in x = y (meaning that no
modification has taken place), we repeat the process until x 6= y. This implements the proposal
distribution

q[1:N ](x, y) =











1
1−φN

MOD

∏N
n=1

{

φMOD · q[1](xn, yn) if xn 6= yn

1 otherwise
if x 6= y

0 otherwise.

(7)

We have already established that any single round-trip can be turned into any other single round-
trip by a suitable operation sequence. Consider now the problem of turning any population
round-trip a = (a1, . . . , aN ) into any other population round-trip b = (b1, . . . , bN ). This can be
achieved by only selecting n = 1 for modification until a1 has been turned into b1, then doing
the same for n = 2, etc. This sequence of selecting round-trips for modification arises with
positive probability, and so does every single modification from an into bn. This establishes the
irreducibility of the population proposal distribution q[1:N ].

MH target weights

A major advantage of the MH algorithm in the given context is that it only requires an un-
normalized version t(x) of a given target distribution p(x), meaning that any t(x) with p(x) =

2Our experimentation so far suggests that a uniform selection distribution performs well.
3Letting φMOD = 1/N has performed well in our experimentation so far.
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t(x)/
∑

x′ t(x′) for all x is sufficient to use the algorithm to draw from p(x). This avoids a
normalization of the target distribution over the possibly gigantic state space.

The time structure of a round-trip represents an ambition; its physically feasibility depends on
the movement duration between its locations. When there is a need to evaluate the physical
realization of a round-trip, a deterministic mapping g from the population round-trips x onto
some data structure representing the realized movement experiences (a movement simulation)
can be used. The corresponding target distribution would still only depend on x but internally
also evaluate the movement simulation g. We subsequently suppress the possible use of g when
writing out a target distribution.

The concrete form of the target distribution is application-specific. We discuss below the problem
of calibrating a population round-trip distribution against some given data-set. This constitutes
the round-trip-based counterpart of OD matrix estimation.

Round-trip calibration and uninformed prior distribution

We adopt a Bayesian approach. Given the data y, a likelihood function p(y | x) is formulated that
expresses the probability of observing the data y given the population round-trips x. A Bayesian
approach to conditioning the round trip distribution onto the data amounts to sampling from
the (un-normalized) target distribution

t(x | y) ∼ p(y | x)pprior(x) (8)

where the prior distribution pprior(x) represents available knowledge about the population round-
trips before having seen the data y; if available, this may comprise travel behavioral assumptions
(Flötteröd et al., 2011).

The construction of an uniformed prior distribution requires some care. Considering any agent
n, the number of round-trip configurations of length J available to that agent is

#n(J) = LJ
n

(

K

J

)

(9)

where the first factor accounts for all possible location configurations and the second factor rep-
resents the number of possible departure time configurations, given their ordering by increasing
magnitude. This means that the number of available round-trip configurations of a given length
grows combinatorically with that length. A naive uniform prior distribution over all possible
round-trips of an agent would hence be biased towards longer round-trips.

A maximum entropy (ME) approach is hence adopted to represent a maximally uninformed
round-trip distribution. The prior distribution pME

n (xn) over all possible round-trips of agent
n is chosen to maximize entropy subject to the constraint that the expected round-trip length
equals some exogenously given parameter Jn.4 The corresponding Lagrangian reads

L(pME
n , λ, γ) = −

∑

xn

pME
n (xn) ln p

ME
n (xn) . . . (10)

+λ ·

(

∑

xn

pME
n (xn)− 1

)

+ γ ·

(

∑

xn

J(xn)p
ME
n (xn)− Jn

)

(11)

where the first constraint with multiplier λ requires probabilities to sum to one and the second
constraint with multiplier γ enforces the expected length. Evaluating first-order conditions on
pME
n :

dL

dpME
n (xn)

= 0 ⇒ eλ−1eγJ(xn). (12)

4The arguably simplest setting of this parameter is Jn = J for all n, with J the estimated total number of
trips made in a study region divided by its population.
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Inserting this into the probability sum constraint yields

pME
n (xn) =

eγJ(xn)

∑min{K,Jmax}
J=0 #n(J)eγJ

, (13)

which has, unsurprisingly (Anas, 1983), the form of a multinomial logit round-trip choice model
with scale parameter γ. This parameter is obtained by inserting (13) into the mean length
constraint and numerically solving the one-dimensional problem

∑min{K,Jmax}
J=0 J ·#(J)eγJ

∑min{K,Jmax}
J=0 #(J)eγJ

= Jn (14)

for γ.

Overall, the ME population round-trip distribution becomes

pME(x) =
N
∏

n=1

pME
n (xn) (15)

in combination with (13) and (14). The symmetry of this development to the long-standing
ME-based estimation of OD matrices may be noteworthy (Van Zuylen and Willumsen, 1980).

3 RESULTS AND DISCUSSION

A primary result of this work is the above described modeling/estimation framework, which is
accompanied by a freely available software implementation at https://github.com/vtisweden/
matsim-projects/tree/master/roundtrips. The remainder of this section summarizes existing
and ongoing applications of the framework, illustrating its versatility and applicability.

An early version of the framework was applied by Flötteröd (2024) to study daily electrical
vehicle charging patterns in the Swedish municipality Skellefteå. To accommodate location-
specific charging decisions, the physical network was extended into one where each location was
duplicated into one (location, charging) and one (location, no-charging) node; sampling paths on
the extended network hence also induced temporal charging patterns. The target distribution
aimed to represent basic time- and land use assumptions. Figure 1(left) shows part of the study
region, and Figure 1(right) exemplifies the estimated home- and time-of-day-dependent en-route
charging patterns.

Figure 1: Electric vehicle charging analysis
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A more recent application is that of Charalampidou et al. (2025) where implications of shopping
location placement and opening times in a fifteen-minute-city setting are investigated. Here,
the round trip encodes weekly activity/travel patterns. To encode activity participation, the
physical network is extended into one where each location is duplicated into several (location,
activity) nodes, representing participation in a particular activity at that location. The target
distribution is set such that round trips respecting weekly activity-specific time use assumptions
receive high probabilities. Figure 2(left) shows the study region (the Liesing district in the city
of Vienna, Austria) and Figure 2(right) exemplifies the resulting shopping activity participation
time structure.

Figure 2: Time use and activity participation in a 15-minute-city

An instance of a multi-round trip calibration for the entire city of Vienna is presented by
Rupprecht et al. (2025). The approach starts out from the ME prior (15) and combines it with
two likelihood terms, one representing the all-day reproduction of an available static target OD
matrix, and the other one representing spatio-temporal travel and activity participation summary
statistics. The scatter-plot in Figure 3(left) displays the almost perfect reproduction of the static
target OD matrix from a representative population of 50’000 round-tips, while Figure 3(right)
illustrates the within-day time structure of the same 50’000 round-trips. The resulting popula-
tion round-trips serve as initial travel plans file for an agent-based route/mode/departure time
network assignment model.

Figure 3: All-day travel pattern synthesis for agent-based traffic assignment

One ongoing but not yet documented application is the inclusion of travel survey data in the
population round-trip estimation problem, aiming to complement the Swedish national person
transport model with time-of-day dynamics. Another application is the generation of freight
vehicle round-trips for Sweden and neighboring countries, aiming at an improved representation
of freight consolidation in the Swedish national freight model.
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4 SUMMARY

An operational round-trip based alternative to OD matrices has been presented, comprising
a formal framework, an estimation method, and several application examples. The idea of
replacing OD matrices by (round-)trip-lists has been around for a long time, and any agent-based
transport simulation packages inevitably relies on some kind of traveler- or vehicle (round-)trip-
list discretization of a possibly given OD matrix. This document contributes to this a formal
and operational machinery to sampling population round trips from general target distributions.
A concrete Bayesian calibration approach resting on this machinery is developed, offering a
round-trip based alternative to OD matrix estimation.

Ample further developments of the presented method are possible; these comprise the specifi-
cation of other than uniform MH proposal distributions, refinements of the basic MH approach
(e.g. into Gibbs sampling where the round trip distribution of any single agent is conditioned
on the round trips of all other agents), and the not obvious exploitation of parallel computing
facilities to speeding up the inherently sequential MH process. A comparison to generative AI
approaches such as that of Shone and Hillel (2024) may be attempted, even though much of the
appeal of the presented method is its derivation from first principles, while generative AI appears
to be more of a black-box approach.
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