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Abstract

Bicycles offer significant potential for sustainable urban transport by reducing emissions and noise
when replacing motorized traffic. Understanding cyclists’ route choices is crucial for city planners,
and traditionally is analyzed using multinomial logit (MNL) models. Recent advancements in ma-
chine learning (ML) show capability for greater predictive accuracy. This study explores potential
of the ML modeling technique convolutional neural networks (CNN) for bicycle route choice mod-
eling using GPS data from around 183,000 trips across six German cities. By comparing CNN with
MNL, we evaluate their strengths, limitations, and implications for cycling infrastructure planning.
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1 Introduction

Bicycles offer immense potential for creating eco-friendly urban transport systems by reducing noise
and pollutant emissions when replacing motorized transport for daily trips (Koska & Rudolph,
2016; Buehler & Pucher, 2021). Their popularity is growing across Germany, with more people
using them for regular travel (Nobis, 2019). However, effective promotion of cycling requires
well-developed infrastructure adapted to cyclists’ needs. Limited municipal resources necessitate
prioritizing measures based on data and informed planning.
Understanding cyclists’ route choices is a crucial aspect of transportation planning. Data on
cycling routes and the models derived from them can assist network planning (Huber et al., 2019).
Traditional approaches rely on discrete choice theory models, such as multinomial logit (MNL),
which effectively analyze factors affecting route selection and traffic demand. These models have
long been a cornerstone in transport science (Ortúzar & Willumsen, 2011).
However, advancements in machine learning (ML) methods, with their high predictive accuracy,
challenge the dominance of traditional models (Zhang & Xie, 2008; Stenneth et al., 2011; Zhao et
al., 2020). ML models have demonstrated over 90% prediction accuracy in various transportation
studies, outperforming established models like MNL (see Section 2). Despite this, ML’s potential
for analyzing cyclists’ route preferences remains unexplored.
The aim of the presented study is to reveal the potential of machine learning methods for bicycle
route choice analysis and modeling. We therefore examine existing research, first. Hence, we apply
different an MNL and convolutional neural networks (CNNs), that are tailored to the structure of
route choice data, on a large GPS data set containing around 183,000 trips from six different cities
in Germany. In the last step, we compare the model results in terms of their predictive qualities,
highlighting the strengths and limitations of ML models as well as the implications for bicycle
planning.

2 Literature Review

Over the past few decades, numerous international studies leveraged GPS data to analyse bicycle
route choice (e.g. Menghini et al., 2010; Broach et al., 2012; Casello & Usyukov, 2014; Khatri et
al., 2016; Ton et al., 2017; Peng Chen & Childress, 2018; Scott et al., 2021; Huber et al., 2024).
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A synthesis of their findings reveals consistent preference trends: longer distances and steeper
slopes tend to deter route choice, while the presence of cycling infrastructure and well-maintained
surfaces increases the likelihood of selecting a given route. Additionally, high traffic volumes and
fast-moving motorized traffic reduce the probability of a route being chosen, as does a high density
of intersections.
With advancements in machine learning (ML), methods from these fields have been increasingly
incorporated into a wide range of research areas. Researchers in traffic science have also recognized
the potential benefits of ML, leading to a significant increase in its application across various
domains over the past decade. Some studies applied ML methods explicitly to route choice. Early
research on route choice using ML methods dates back to the 1990s (e.g. Yang et al., 1993).
However, most of these investigations focus on analyzing and modeling route choice behavior in
motorized traffic. Nevertheless, the studies demonstrate that analyzing and modeling route choice
behavior based on various influencing factors is feasible and valuable. Moreover, these studies have
achieved high levels of accuracy (e.g. Sun & Park, 2017; Lai et al., 2018; Marra & Corman, 2021).
Yang et al. (1993) used neural networks (NN) with stated preference (SP) data, achieving 93%
accuracy. Lee et al. (2005) developed a genetic neural network combining NNs and genetic algo-
rithms, achieving 97.3% accuracy, outperforming the MNL (75.2%). Dia & Panwai (2006) showed
NNs significantly surpassed traditional models’ accuracy (50–73%) with 95–97% accuracy. Sun &
Park (2017) found support vector machines offered better efficiency and comparable accuracy to
NNs. The results of Lai et al. (2018) indicate that ML models significantly outperformed tradi-
tional models in predictive accuracy and performance. Marra & Corman (2021) uses Deep NNs,
more specifically CNNs, on GPS data to analyze route choice in public transport and comparing
it to Path Size Logit (PSL), where the CNNs outperform the PSL in terms of prediction accuracy
(75-97%).
Two studies specifically address bicycle route choice using machine learning methods. Meng &
Zheng (2023) developed a bike-ability framework to create personalized cycling route recommen-
dations. Their model incorporates factors like infrastructure, land use, and distance to calculate
visual perceptibility and assess road network impedance. However, it does not utilize revealed
preference data, such as GPS trajectories, to analyze actual route choices.
Sobhani et al. (2018) investigated the applicability of ML methods for modeling cyclists’ route
choices using a dataset from a household survey in Toronto, Canada. This dataset included GPS
routes, trip purposes, and temporal factors enriched with road network attributes from Toronto
GIS. The authors estimated several ML models, including Decision Trees and Random Forests,
and compared their performance with that of a traditional Expanded PSL model. Unfortunately,
their findings remain incomplete as only a conference abstract has been published, leaving details
of their outcomes unavailable.
The literature highlights significant research on bicycle route choice, but most ML applications
focus on motorized traffic. The studies of Meng & Zheng (2023) and Sobhani et al. (2018) demon-
strate the potential of ML in this domain. Nonetheless, the limited number of studies address-
ing bicycle-specific route choice suggests that ML applications in cycling remain underexplored,
warranting further research to harness their potential for improving cycling infrastructure and
planning.

3 Data description

A route choice dataset was created using data from the Germany-wide „CITY CYCLING“ cam-
paign (Lißner et al., 2023), in which participants are tracking their day-to-day cycling trips via
a smartphone app for the period of three weeks between May and September. In this study, we
consider data from the year 2022 of 6 German cities with different characteristics, see Table 1. For
each tracked route, two alternative routes are generated to provide options that could have been
chosen instead. This setup allows for a comprehensive analysis of the factors influencing route
choice by comparing the selected route to its plausible alternatives for each origin-destination pair
(Huber, 2022).
Secondary data, that contains characteristics of every route in the data set was gathered using
OpenStreetMap. In this study, we consider a total of thirty variables that describe the route
properties. These variables describe the route distance, its slope properties, the existence and
type of cycling infrastructure, the share of feeder roads along the route, speed limits for motorized
traffic and the properties of surface. Besides the distance variable, all the variables are referring
to the share of the route, that possesses these properties. The distance variable can be considered
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Attribute Darmstadt Dresden Freiburg Munich Offenburg Weimar
Area in km2 122.07 328.48 153.04 310.7 78.37 84.47
Population 162,243 563,311 236,140 1,512,491 61,670 65,620
Population class large large large large medium medium
Topography class flat hilly hilly flat hilly hilly
Number of trips 19,825 32,364 41,862 70,995 14,652 3718

Table 1: Characteristics of the six cities, including the number of recorded cycling trips.

in two ways: absolute distance (in meters) or a distance ratio, where the longest route within a
route triple gets assigned value one and the other ones are divided by the longest route. In this
study, only these distance ratios are included and not the absolute distance, such that all the input
values are between zero and one. A full list of the input variables can be found in the appendix in
Table 2.
For MNL the variables are pre-selected, such that only nine of the thirty are considered. This
preselection is necessary for several reasons, particularly when modeling complex behaviors like
route choice. Including too many, especially irrelevant or collinear variables, increases the risk
of overfitting the training data, while pre-selection focuses on essential variables to capture true
relationships and improve generalization. Moreover, pre-selection simplifies the model, highlighting
key variables like route distance or slope for more precise insights.

4 Models

In the following section, two different modeling techniques are described: MNL and CNN. All the
models are trained on n data pairs
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Each input matrix has three rows: the first row contains p variables for the tracked route, while
the next two rows represent its generated alternatives. The corresponding output y(k) is a 3-
dimensional label vector, where 1 indicates the tracked route and 0 indicates the generated alter-
native routes indicating which route was tracked.
The prediction performance of the models is evaluated using accuracy, which is calculated as the
proportion of cases where the predicted choice matches the actual choice. Cross-validation is
performed to prevent overfitting by splitting the whole dataset into 70% training data and 30%
test data. The models are trained using the training set, and their accuracy is evaluated on the
test set. Additionally, accuracy can be calculated on the training data to measure the goodness of
fitting.

Multinomial Logit

Established route choice models, are based on the random utility maximization theory (see e.g.
McFadden & Train, 2000), where it is assumed, that every choice that is made by a person, aims
to maximize an individual utility, considering all the information for existing alternatives. The
utility of the k-th routes triple associated with i-th possible route is defined as follows:

U
(k)
i =

p∑
j=1

βix
(k)
i,j + ε

(k)
i , (2)

where x
(k)
i,j is an entry of the input matrix X(k) from (1), β = (β1, . . . , βp) is a vector of regression

coefficients, that should be estimated and a random term ε
(k)
i that aims to address the fact, that

route choice made by humans, are sometimes influenced by factors, that are not represented within
the data on which the model is trained. To obtain the regression coefficient, the utilities of the
chosen routes need to be maximized while the utilities of the alternatives are minimized.

3



The logistic regression aims to model the probabilities of the tracked route and its alternatives.
The probability for choosing a route i within the k-th triple of route alternatives is then modeled
by the multidimensional logistic function:

P (i|X(k)) =
eU

(k)
i∑3

j=1 e
U

(k)
j

. (3)

The route with the largest probability is predicted as the chosen one. The regression coefficients
β are estimated using maximum likelihood estimation. Together with respective significance mea-
sures, these coefficients provide impact and the importance of each input variable. This study
focuses on the comparison of models by their accuracy, and we refer to Huber et al. 2025 for the
investigation of the route variables influence.
For implementation of the MNL the Python package xlogit (Arteaga et al., 2022) was used.

Convolutional Neural Networks

CNNs are developed for image classification problem (LeCun et al., 1998, 1989; Broach et al., 2012),
which allows matrix input data. This is not the case for simple feed-forward neural networks, and
considering that the input of the route choice data is also in matrix form, it is quite intuitive to
utilize a CNN for this use case, too.
The first CNN-architecture aims to mimic the MNL model suggested by Marra & Corman (2021).
It has the form of Figure 1. Besides the input layer, this CNN has one convolutional layer with
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Figure 1: Multinomial logit in the form of a one-layer convolutional neural network (short:
CNN-1C).

an one-dimensional filter β, which is equivalent to the regression coefficient in the MNL model, a
bias b, and a softmax-activation function σ, which is the same logistic function, that is used for
multinomial logistic regression. That way, the objective function, resulting from the CNN, has an
equivalent structure as the MNL. The only difference is the calculation of the hyperparameters,
which are determined by backpropagation in the CNN model, (see e.g. LeCun et al., 1998).
Using this one-layer CNN (later on referred to as CNN-1C) as a starting point, the neural network
structure can be expanded in many different ways, e.g. by adding additional layers or by using
more than one filter vector β. In this study, we created three more CNN structures. For the first
variation of the CNN a dense layer was added after the convolutional layer (CNN-1C1D) and for
the second variation a second convolutional layer with four filters was added between the input
and the existing convolutional layer (CNN-2C). In a third version, both of these layers are added,
resulting in a total of three layers (CNN-2C1D). The detailed CNN structures can be seen in Figure
4.
So far, the in- and output are ordered such that for every data pair

{
X(k),y(k)

}
the first row

represents the chosen route and the other entries are alternatives that were not chosen. With this
data structure, these slightly more complex networks are easily able to learn, that the upper row
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always gets label one. This is why the data needs to get shuffled, such that the model does not
simply learn the order. To prevent that, the in- and output pair gets randomly shuffled, such that
it exemplarily could look like the following:

X(k) =

x
(k)
2,1 x

(k)
2,2 . . . x

(k)
2,p

x
(k)
3,1 x

(k)
3,2 . . . x

(k)
3,p

x
(k)
1,1 x

(k)
1,2 . . . x

(k)
1,p

 , y(k) =

y
(k)
2

y
(k)
3

y
(k)
1

 =

0
0
1


Such randomly shuffled data pairs are used for training and testing of all the CNN versions.
The CNNs are implemented in Python using the TensorFlow interface (Abadi et al., 2015).

5 Empirical Results and Discussion

For each of the six cities, all the models described in Section 4 are trained independently. Due
to the randomness in the training process, each CNN architecture is trained one hundred times
to account for variability in the resulting models. This approach enables a thorough analysis of
accuracy distribution across multiple runs, providing insights into the model’s consistency and
performance variability. The accuracy empirical distributions are visualized using violin plots in
Figure 2, with the red dashed line indicating the accuracy of MNL for comparison.
Two key trends emerge from the violin plots for accuracy in Figure 2. First, the CNN-1C and
CNN-2C models perform surprisingly worse than the MNL, whereas the CNN architectures that
include a dense layer slightly outperform the MNL up to Weimar, a medium sized city with the
smallest number of observed tracked routes. In case of the large cities the accuracy of the CNNs
with a dense layer is approximately 1.6% higher than that of the MNL. On the other hand if only
the best models from these 100 models per CNN architecture was picked, it can be seen, that these
CNN-1C1D and CNN-2C1D models have slightly better accuracies (up to 3.2% improvement).
In conclusion, future studies should explore more complex CNN architectures and variations in
depth, encompassing both shallow and deep designs. Second, models for CNN-1C1D and CNN-
2C1D achieve the best results for Munich, the city with the most collected trips, and worst for
Weimar, the city with the smallest number of collected trips. This coincides with the known fact
that complex models like CNN perform well for data with many observations.
The results for the medium-sized cities of Offenburg and Weimer are different from those for the
large cities and require further analysis. The variation in terms of prediction quality is very large,
especially for the models, that have a dense layer (CNN-1C1D and CNN-2C1D), which at the same
time also contain the best models. This can be explained by the rather small sample size (14,652
for Offenburg and 3718 for Weimar, whereas the other cities range between 19,800 and almost
71,000, see Table 1). Besides that, in the study of Huber et al. (2025), it was already explained
that both cities had lower significance levels for some variables in the MNL models than the other
cities, which was reasoned by a higher heterogeneity in the data.
That is why a closer look was taken at the training accuracies of these two model architectures for
Offenburg and Weimar. In practice, a model that already has a bad fit or accuracy on the training
data would not be considered for further prediction tasks. Following this reasoning, all models
with a training accuracy greater than 66% are re-examined. The large cities are not affected by
this filtering step, but for the medium cities Offenburg and Weimar, some models get excluded:
for Offenburg two models are filtered out for CNN-1C1D, one for CNN-2C1D and for Weimar 53
models for CNN-1C1D and 26 for CNN-1C1. Based on that filtering, Figure 3 shows the prediction
accuracy of only the models whose training accuracy was above 66%. The additional filtering step
is not meant to distort the results. Instead, the intention behind this was to show how important
it might be to inspect the training quality before moving on to testing the model. This showed
that for future investigations, it is recommended to conduct such a filtering step.
While this study demonstrates that CNNs can achieve higher prediction accuracy, the improvement
is less than expected. Previous studies (see Section 2) have shown that ML techniques have the
potential to achieve accuracy exceeding 90%. Nonetheless, there remains significant room for
enhancement, particularly through optimizing the number of layers and filters in the models.
Future work could delve deeper into these aspects while also addressing the need to optimize
training and prediction runtimes, potentially by leveraging highly parallelized algorithms.
This paper primarily focuses on developing novel model architectures and evaluating their predic-
tive capabilities rather than examining the influence of input variables. A comprehensive analysis
of the input variables has already been conducted in the study by Huber et al. (2025), which
analyzes the same dataset. Therefore, the regression coefficients and significance levels derived
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Figure 2: Violin plots of accuracy for different CNN architectures based on 100 fits. The
red dashed lines represent the accuracy of MNL.

from the MNL model are not discussed here. However, future research will aim to enhance the
explainability of machine learning methods, such as CNNs, enabling more meaningful comparisons
with models like MNL in this context. One further idea for future studies is to include personal
attributes into the models.
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Figure 3: Violin plots for model quality of one filtered CNNs with dense layer

6 Conclusion

In this study multiple CNN architectures for modeling cycling route choice were presented and
compared to MNL in terms of their prediction quality. The model architectures that included a
dense layer showed the highest accuracy among the compared models. In the future research deeper
CNN architectures should be investigated. It could also be deduced, that the models heavily depend
on the amount and quality of the data, which was very apparent for the medium city Weimar. In
order to prevent unnecessary predictive calculations, we recommend taking a closer look at the
goodness of fit to the training data before proceeding to the testing step. Altogether, there is a
high potential of CNNs to improve the state of the art in route choice modeling.
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Appendix

Category Variables
Distance ratio

Cycle traffic routing
mixed traffic, cycle road, cycle path, cycle lane,
shared cycle pedestrian path, pedestrian path
pedestrian path with bicycle permitted

Road type main roads, secondary roads, not specified
Surface condition good, medium, bad, not specified

Surface material asphalt, stone, cobble stone, compact,
not specified

Slope average, maximum, 0-2% slope, 2-4% slope,
>4% slope, negative slope

Max. speed of motorized traffic 30 km/h, 50 km/h, > 50 km/h, not specified

Table 2: Full list of input variables, ordered by categories. All variables, except for the
distance ratio describe the share of the route, that has that respective attribute. For
the distance ratio, the longest route within a route triple gets assigned value one and the
remaining routes are divided by the longest route. The range of all the variables is between
zero and one. For MNL only the nine variables are used, that are labelled with bold letters
here.
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𝑥1,1

⋮

𝑥1,𝑛

𝑥2,1

⋮

𝑥2,𝑛

𝑥3,1

⋮

𝑥3,𝑛

Input

𝛽𝑇𝒙1 + 𝑏 = 𝑈1

𝛽𝑇𝒙2 + 𝑏 = 𝑈2

𝛽𝑇𝒙3 + 𝑏 = 𝑈3

𝜎(𝒘1
𝑇𝑈1 + 𝑏1) = 𝑝1

𝜎(𝒘2
𝑇𝑈2 + 𝑏2) = 𝑝2

𝜎(𝒘3
𝑇𝑈3 + 𝑏3) = 𝑝3

Convolutional Layer
Filter 𝛽 = (𝛽1, … , 𝛽𝑛)

Utility 𝑈 = (𝑈1, 𝑈2, 𝑈3)
Bias 𝑏

𝒙1

𝒙2

𝒙3

Dense Output Layer

Weights 𝑾 = 𝒘1
𝑇 , 𝒘𝟐

𝑇, 𝒘3
𝑇

Biases 𝒃∗ = 𝑏1
∗, 𝑏2

∗, 𝑏3
∗

Softmax activation function 𝜎

(a) CNN with one convolutional and one dense layer (CNN-1C-1D)

𝑥1,1

⋮

𝑥1,𝑝

Input

𝜷 2 𝑇
𝒙1 + 𝑏(2) = 𝑈1

(2)

𝜎 𝜷∗𝑇𝑼 1 + 𝑏∗ = 𝑝1

Convolutional Layer 1

Filters: 𝜷(1) = (𝛽1
1 , … , 𝛽𝑝

(1)
), 𝜷 2 , 𝜷(𝟑),𝜷(4)

Features: 𝑼 1 = (𝑈1
(1)
, 𝑈2

(1)
), 𝑼 2 , 𝑼 3 , 𝑼 4

Biases: 𝑏 1 , 𝑏 2 , 𝑏(3) , 𝑏(4)

𝒙1
𝜷 3 𝑇

𝒙1 + 𝑏(3) = 𝑈1
(3)

𝜷 1
𝑇
𝒙1 + 𝑏(1) = 𝑈1

(1)

𝜷 4
𝑇
𝒙1 + 𝑏(4) = 𝑈1

(4)

Convolutional Layer 2
Filter 𝜷∗ = (𝜷1 , … , 𝜷𝑝)

Bias 𝑏∗

Softmax activation function 𝜎

𝑥2,1

⋮

𝑥2,𝑝

𝜷 2 𝑇
𝒙2+ 𝑏(2) = 𝑈2

(2)

𝜎 𝜷∗𝑇𝑼 2 + 𝑏∗ = 𝑝2
𝒙1

𝜷 3
𝑇
𝒙2+ 𝑏(3) = 𝑈2

(3)

𝜷 1 𝑇
𝒙2 + 𝑏(1) = 𝑈2

(1)

𝜷 4 𝑇
𝒙𝟐+ 𝑏(4) = 𝑈2

(4)

𝑥3,1

⋮

𝑥3,𝑝

𝜷 2 𝑇
𝒙3+ 𝑏(2) = 𝑈3

(2)

𝜎 𝜷∗𝑇𝑼 3 + 𝑏∗ = 𝑝3
𝒙1

𝜷 3 𝑇
𝒙3+ 𝑏(3) = 𝑈3

(3)

𝜷 1 𝑇
𝒙3 + 𝑏(1) = 𝑈3

(1)

𝜷 4 𝑇
𝒙𝟑+ 𝑏(4) = 𝑈3

(4)

(b) CNN with two convolutional layers (CNN-2C)

𝑥1,1

⋮

𝑥1,𝑝

Input

𝜷 2 𝑇
𝒙1 + 𝑏(2) = 𝑈1

(2)

𝜎 𝜷∗
𝑇
𝑼 1 + 𝑏∗ = 𝑈1

∗

Convolutional Layer 1

Filters: 𝜷(1) = (𝛽1
1
, … , 𝛽𝑝

(1)
), 𝜷 2 , 𝜷(𝟑),𝜷(4)

Features: 𝑼 1 = (𝑈1
(1)
, 𝑈2

(1)
), 𝑼 2 , 𝑼 3 , 𝑼 4

Biases: 𝑏 1 , 𝑏 2 , 𝑏(3) , 𝑏(4)

𝒙1
𝜷 3 𝑇

𝒙1 + 𝑏(3) = 𝑈1
(3)

𝜷 1 𝑇
𝒙1 + 𝑏(1) = 𝑈1

(1)

𝜷 4
𝑇
𝒙1 + 𝑏(4) = 𝑈1

(4)

Convolutional Layer 2
Filter 𝜷∗ = (𝜷1 , … , 𝜷𝑝)

Features 𝑼∗ = (𝑈1
∗ , 𝑈2

∗)
Bias 𝑏∗

Softmax activation function 𝜎

𝑥2,1

⋮

𝑥2,𝑝

𝜷 2
𝑇
𝒙2+ 𝑏(2) = 𝑈2

(2)

𝜎 𝜷∗𝑇𝑼 2 + 𝑏∗ = 𝑈2
∗𝒙1

𝜷 3
𝑇
𝒙2+ 𝑏(3) = 𝑈2

(3)

𝜷 1 𝑇
𝒙2 + 𝑏(1) = 𝑈2

(1)

𝜷 4 𝑇
𝒙𝟐+ 𝑏(4) = 𝑈2

(4)

𝑥3,1

⋮

𝑥3,𝑝

𝜷 2
𝑇
𝒙3+ 𝑏(2) = 𝑈3

(2)

𝜎 𝜷∗
𝑇
𝑼 3 + 𝑏∗ = 𝑈3

∗𝒙1
𝜷 3

𝑇
𝒙3+ 𝑏(3) = 𝑈3

(3)

𝜷 1 𝑇
𝒙3 + 𝑏(1) = 𝑈3

(1)

𝜷 4 𝑇
𝒙𝟑+ 𝑏(4) = 𝑈3

(4)

Dense Output Layer

Weights 𝑾 = 𝒘1
𝑇 ,𝒘𝟐

𝑻

Biases 𝒃∗∗ = 𝑏1
∗∗, 𝑏2

∗∗

Softmax activation function 𝜎

𝜎(𝒘1
𝑇𝑈1

∗ + 𝑏1
∗∗) = 𝑝1

𝜎(𝒘2
𝑇𝑈2

∗ + 𝑏2
∗∗) = 𝑝2

𝜎(𝒘3
𝑇𝑈3

∗ + 𝑏3
∗∗) = 𝑝3

(c) CNN with two convolutional and one dense layers (CNN-2C-1D)

Figure 4: Architecture of CNNs.
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