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Short summary

The integration of automated shuttles into shared urban spaces presents challenges due to the
absence of traffic rules and the complex dynamics of pedestrian interactions. This paper presents
a Virtual Reality (VR) study simulating diverse pedestrian-automated shuttle interactions in a
shared space environment, including approaching from various angles and navigating continuous
traffic. We focus on key behaviors, such as hesitation, deviation, gazing, and proxemics, that play
a critical role in shaping safe and efficient interactions. Additionally, we propose a hybrid model
that combines psychological principles with deep learning for trajectory and intention prediction for
enhanced interpretability and accuracy. This approach aims to promote the harmonious integration
of automated shuttles into urban environments, ensuring safer and more efficient shared spaces.

Keywords: pedestrian-automated vehicle interaction; shared space; Virtual Reality; neural stochas-
tic differential equation.

1 Introduction

The emergence of automated shuttles offers promising solutions for last-mile transportation, yet
their integration into urban environments introduces risks and uncertainties, especially for vulner-
able road users like pedestrians. While autonomous vehicles (AVs) aim to enhance safety, their
operation in shared spaces - urban environments without imposed traffic rules - poses unique chal-
lenges due to the diversity and complexity of interactions. Pedestrians in these shared spaces
often exhibit significant behavioral changes when encountering small, automation-capable vehicles
(Wang et al., 2022). Thus, understanding and predicting pedestrian behavior in these contexts is
crucial for fostering a harmonious coexistence between pedestrians and automated shuttles.

AV-pedestrian interactions in shared spaces have been explored in real-world scenarios, but these ef-
forts usually focus on pedestrian-vehicle interactions modeled by social force methods (Golchoubian
et al., 2023). Existing datasets (Robicquet et al., 2016; Yang et al., 2019; Zhou et al., 2020) largely
feature conventional cars, which differ significantly from automated shuttles in size, speed, and in-
teraction dynamics. Besides, field experiments with automated shuttles (De Ceunynck et al., 2022)
reported rare occurrences of critical situations due to the conservative settings and low speeds of
automated shuttles. Moreover, these observational studies typically rely on vehicle-perspective
data, leaving human-perspective data such as gaze behavior, underexplored.

Immersive technologies have also been employed in controlled studies to understand such an inter-
action in shared space. For instance, Woodman et al. (2019) examined pedestrian gap acceptance
with a platoon of shuttles at varying speeds, gaps, and environments using virtual reality, while
Feng et al. (2024) explored the influence of factors including social context, external human-machine
interfaces (eHMIs), vehicle deceleration styles, and road conditions. Andrijanto et al. (2022) stud-
ied crossing and parallel interactions between pedestrians and automated shuttles using the cave
automatic virtual environment. However, these studies generally focus on perpendicular crossing
interactions, leaving other versatile interactions occurring in shared spaces unexplored. As a re-
sult, interaction models have been constrained to crossing-related variables and are often based on
relatively simplistic statistical approaches.
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To address these gaps, this paper presents a virtual reality study simulating interactions between
pedestrians and automated shuttles in a shared space. More specially, we firstly explore previously
unstudied scenarios involving shuttles approaching from different angles and/or navigating within
continuous traffic. Secondly, we collect a diverse dataset incorporating human signals such as eye
gaze to examine people’s micro-level attention and investigate evasive and hesitation behaviors to
enhance the understanding of safe and efficient pedestrian-automated shuttle interactions in shared
spaces. Lastly, we will develop a hybrid model integrating cognitive theories with deep learning
techniques for pedestrian trajectory prediction, aiming at achieving enhanced interpretability and
accuracy.

2 Methodology

Modeling methods

Our approach is inspired by the drift-diffusion model (DDM) (Ratcliff, 1978), a psychological model
of decision-making. The DDM describes evidence accumulation over time, starting from an initial
bias and progressing with a drift rate until reaching a decision boundary. Mathematically, this
process can be expressed as a stochastic differential equation (SDE):

dz = f(z, t)dt+ g(z, t)dW (1)

where z is the accumulated evidence, initialized as z(0) (the starting bias); f(z, t) is the drift rate,
typically a linear function of relevant variables over time; g(z, t) is the diffusion term capturing
stochastic variability and dW is a Wiener process. Providing a cognitive perspective, it has been
applied to model the first passage time in road-crossing contexts (Giles et al., 2019; Pekkanen et
al., 2022).
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Figure 1: An overview of our proposed model.

Building on this foundation, we propose a neural extension of the DDM to predict pedestrian’s
decisions X[1,...,Tf ] based on past observations X[−Tp,...,0]. Our model, illustrated in Fig.1, consists
of the following components:

• Initial bias encoder : This module processes sequences of past trajectory data and visual
inputs from the pedestrian’s perspective to estimate the initial evidence (or starting bias).

• Neural SDE encoder : Extending the conventional SDE formulation, this module uses neu-
ral networks to parameterize the drift f(x, t) term and/or diffusion term g(x, t) (Tzen &
Raginsky, 2019). We implement this in a recurrent neural network (RNN) structure to
enable flexible, continuous-time latent evidence accumulation while incorporating various
experimental factors as inputs.

• Trajectory decoder : This component translates the latent evidence into future trajectories,
generating predictions at regular time intervals.

• Intention decoder : Using the same latent evidence, this module enables irregular sampling
to model hesitation behaviors, which can be critical in ambiguous shared space scenarios.

In summary, our model combines the interpretability of the DDM with the flexibility of neural net-
works to jointly predict pedestrian intention and trajectory. By accounting for hesitation and inte-
grating the pedestrian’s visual perspective, it aligns closely with real-world behavior. Furthermore,
the model’s ability to capture complex, nonlinear dynamics enables it to extend beyond traditional
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psychological frameworks, offering a robust solution for understanding pedestrian decision-making
in shared spaces.

Experiment design

We develop an immersive virtual reality experiment to examine how various factors influence
pedestrian-automated shuttle interaction.

Virtual environment: The virtual environment of a shared space resembling Delft streets is
selected in VR using Unreal Engine 5 (see Fig. 2 b), mimicking a shopping center. The environment
has no elements that indicate the right of way, i.e., no traffic lights, no stop signs, no pedestrian
zebra, and no lane specification for automated shuttles. An audio effect of a noisy shared space
and automated shuttles and background pedestrians are added to enhance the realism of VR
experiments.
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a) An illustration of factor definition and experiment setup in 

the virtual environment. 
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Figure 2: An overview of experiment setup.

Factor design: Four within-subject variables were included, namely shuttle behavior (i.e., yield-
ing, non-yielding), eHMI presence (i.e., with eHMI, without eHMI), approaching angle (i.e., 45, 90,
135 degrees), and the number of shuttles (i.e., single shuttle, two shuttles with a gap of 3 seconds,
two shuttles with a gap of 5 seconds). An illustration of the last two variables is shown in Fig. 2 a),
and a detailed explanation is shown below.

• Shuttle behavior: The shuttle can either stop or not stop for pedestrians in a shared space
environment. For non-yielding cases, automated shuttles maintain the speed. For yielding
cases, we choose the design of type I deceleration profile in Feng et al. (2024) and adapt it
to detect pedestrians from 12 meters.

• eHMI presence: The eHMI is designed with a pedestrian sign displayed on the front window
when it is activated. Depending on the shuttle’s behavior, a red pedestrian sign means it
cannot stop for the pedestrian while a shuttle signaling a green pedestrian sign means it can
stop in front of the pedestrian. The displays are shown in Fig. 2 c).

• Approaching angles: The angle between the forward directions of the automated shuttle
and the pedestrian forms the approaching angle. The 90-degree angle resembles the typical
crossing scenario. Additionally, we consider 45 and 135 degrees to examine how visibility
influences such an interaction.

• Multiple shuttles: We decide gap size of 3 and 5 seconds from our pilot study.

Sampling method: The combination of all variables yields 36 scenarios. However, to reduce
participant fatigue, we determine 12 scenarios per participant based on a pilot study and use the
Latin hypercube sampling (LHS) method (McKay et al., 1979) to sample from all combinations.
Unlike random sampling, LHS stratifies the range of each factor into equal intervals and ensures
that each interval is sampled exactly once, preventing overlap across the different factors. This
approach preserves the Latin square property and thus provides more representative samples.
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Experimental task: At the beginning of each scenario, there is a green and a white circle
indicating the start and goal positions of the interaction task, respectively. Participants are required
to step into the green circle, orient themselves toward the goal, and press the controller when they
are ready to walk. Upon walking, the automated shuttle starts to approach the pedestrian from
a distance of 17.3 meters at a speed of 15 km/h following the shared space speed limit in the
Netherlands. Participants are instructed to reach the goal safely as they would do in daily life.
The trial ends once participants reach the goal position, after which the next scenario is initiated.

Experiment procedure

The experiment procedure is summarized in Fig. 3. Upon arrival, participants are provided with
written information about the experiment, including automated shuttle and eHMI design, pro-
cedure, and tasks. They then read and sign a consent form to confirm participation. Next,
participants are equipped with a calibrated VR headset and start a familiarization phase consist-
ing of two stages: 1) to practice moving freely in the virtual environment and 2) to familiarize
the experiment task and the display and behavior of automated shuttles. The formal experiment
begins after familiarization. Participants are randomly assigned to one of 12 sampled scenarios.
After completing each scenario, they return to the predefined start position for the next trial.
After finishing the VR experiment, participants remove the headset and fill in five questionnaires.
Each participant receives 15 euros as compensation. Ethical approval was granted by the Human
Research Ethics Committee of Delft University of Technology (Reference ID 4888).

VR calibration &
familiarization

Introduction &
obtain consent

VR experiment (sample 12 scenarios) Post questionnairesExperiment starts

Experiment ends
 - eHMI condition (x2)
 - pod behavior (x2)
 - approaching angle (x3)
 - between-pod gap (x3)

 Simulation sickness
 questionnaire (16)

 Demographic survey (9)

 Presence questionnaire
(29)

Trust in automation (6)

Pedestrian behavior
questionnaire (12)

Figure 3: Experiment procedure. The numbers in the VR experiment block represent
the levels of each variable, while the numbers in the post-questionnaire block indicate the
number of items in each questionnaire.

Experiment apparatus

The VR experiment was conducted in a 10×5 meter room. HTC VIVE Pro Eye headset (resolution:
1440×1600 pixels per eye, 110 field-of-view, 90 Hz refresh rate) was used during the experiment.
We also used the real walking locomotion style, allowing users to have continuous movements and
rotations in the real world, which can be matched under a 1:1 scheme to the virtual environment.

Data Collection

Two types of data were collected during the experiment, including objective and subjective data.

Objective data: The whole interaction process in the virtual environment was recorded. The
data recording started when participants left the start position (at the green circle) and ended when
they reached the goal position (at the white circle). The collected data include: 1) timestamp,
2) participant’s position, 3) head orientation, 4) eye gaze direction, fixation point, and fixation
object. All data were recorded at 20 Hz.

Subjective data: The subjective part includes several questionnaires, namely 1) personal char-
acteristics, 2) simulation sickness questionnaire, 3) presence questionnaire, 4) pedestrian behavior
questionnaire, and 5) trust in automation. Personal characteristics include age, gender, nationality,
achieved highest education level, dominant hand, walking frequency in daily life, familiarity with
VR, familiarity with the concept of automated shuttles, and previous experience regarding interac-
tion with automated shuttles. The simulation sickness questionnaire was adopted from (Kennedy
et al., 1993) to measure the experienced simulation sickness of participants in the virtual envi-
ronment. The presence questionnaire from (Witmer et al., 2005) measures the feeling of presence
in the virtual environment. The pedestrian behavior questionnaire (Deb et al., 2017) measures
three behavior scores that are relevant to people’s attention, namely violation, lapse, and positive
behaviors. Finally, trust in automation was adopted from (Payre et al., 2016).
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Participants

In total, 51 participants aged between 21 and 61 (M=26.62, SD=5.76) were recruited. All partici-
pants had normal vision or corrected vision and normal mobility. None of the participants dropped
the experiment due to motion sickness. The participant characteristics are shown in Tab. 1.

Table 1: Demographic information of participants.

Description Category Number
(Percentage) Description Category Number

(Percentage)

Gender Male 27 (52.94%) Dominant
hand

Right hand 47 (92.16%)
Female 24 (47.06%) Left hand 4 (7.84%)

Highest
education
level

High school or eq. 2 (3.92%)
Previous
experience
with VR

Never 17 (33.33%)
Associate degree or eq. 0 (0.00%) Seldom 23 (45.10%)
Bachelor’s degree or eq. 19 (37.25%) Sometimes 10 (19.61%)
Master’s degree or eq. 26 (50.98%) Often 1 (1.96%)
Doctoral degree or eq. 4 (7.94%) Very often 0 (0.00%)

Familiarity
with the
concept of
automated
shuttles

Not at all 5 (9.80%) Previous
experience
with
automated
shuttles

No experience 27 (52.94%)
Slightly familiar 17 (33.33%) Little experience 13 (25.49%)
Moderate familiar 19 (37.25%) Some experience 10 (19.61%)
Very familiar 7 (13.73%) A lot of experience 1 (1.96%)
Extremely familiar 3 (5.88%) Extensive experience 0 (0.00%)

3 Results

We expect to complete the inferential analysis on pedestrian trajectory and intention prediction
before the conference. Here, we present some statistical results first. We derive the following
metrics from the experimental data collected, categorized into five groups:

• Movement behaviors:
– Gap selection: The gap participants choose to cross.
– Waiting time: The time from the trial start to the participants’ last movement initiation.

• Hesitation behaviors:
– Initiation count : The number of crossing attempts, including the final successful attempt.
– Backward count : The number of times participants stepped backward during the trial.

• Deviation behaviors:
– Mean deviation: The average lateral offset between the participant’s actual path and the

ideal straight-line path.
– Max. deviation: The maximal lateral offset between the participant’s actual path and the

ideal straight-line path.

• Gazing behaviors:
– Pre-crossing shuttle-gazing pct.: The percentage of time that participants looked at the

shuttle before starting their crossing.
– During-crossing shuttle-gazing pct.: The percentage of time that participants focused on

the shuttle while crossing.

• Proxemics:
– Lateral clearance: The lateral distance between the participant and the shuttle as it passed.

Each participant completed 12 trials in total. The total number of trials amounts to 612. Removing
those mistakenly triggered and bad signals, we obtained 580 trials. Table. 2 shows descriptive
statistics for the five groups of indicators described above. Yielding shuttle behavior generally
makes crossing easier and reduces hesitation behavior, as reflected by shorter waiting time, fewer
initiation counts, smaller distance, and pre-crossing shuttle-gazing, although pedestrians spend
more time observing the shuttle during the crossing. Interestingly, the presence of eHMI seems to
increase hesitation behavior, possibly due to its timing being relatively late. However, overall, eHMI
presence has minimal impact on deviation and gazing behaviors. Approaching angle significantly
affects behavior, with acute angles leading to greater hesitation, larger deviations, and reduced
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lateral clearance. Poor visibility at acute angles (e.g., 45 degrees) also appears to result in reduced
attention to traffic. Finally, scenarios involving two shuttles with 5-second gaps increase hesitation
and reduce lateral clearance, highlighting the added complexity in decision-making under such
conditions.

In summary, these shared-space interactions highlight several variations in hesitation, spatial ne-
gotiation, and trajectory deviations across different scenarios, revealing critical differences in how
pedestrians respond to ambiguous situations. These results provide valuable empirical data to
understand pedestrian behavior, which is essential for designing more effective predictive models.

Table 2: Descriptive statistics for movement, hesitation, deviation, gazing, and proxemics
variables.
Measure Shuttle behavior eHMI presence Approaching angle Multiple shuttles

Non-yielding Yielding Absent Present 45◦ 90◦ 135◦
single 2 shuttles 2 shuttles
shuttle (gap=3s) (gap=5s)

Gap selection [count]
before the first shuttle 88 282 190 180 128 111 131 111 130 129
between two shuttles 118 4 62 60 28 54 40 84 2 36
after two shuttles 87 1 39 49 31 32 25 0 61 27
Waiting time [second]
Mean 7.25 5.15 6.17 6.25 6.22 6.33 6.09 5.42 6.94 6.28
Standard deviation 4.64 3.57 4.26 4.30 4.30 4.14 4.41 3.28 4.77 4.52
Initiation count
Mean 1.71 1.62 1.63 1.70 1.68 1.65 1.66 1.64 1.65 1.70
Standard deviation 0.67 0.69 0.65 0.71 0.72 0.59 0.73 0.66 0.64 0.75
Backward count
Mean 0.19 0.07 0.12 0.15 0.18 0.07 0.15 0.10 0.12 0.18
Standard deviation 0.47 0.28 0.38 0.40 0.45 0.28 0.42 0.30 0.36 0.49
Mean deviation [cm]
Mean 21.92 20.33 21.37 20.90 24.01 12.85 26.72 19.98 22.28 21.27
Standard deviation 21.99 19.48 21.25 20.34 25.33 7.71 22.42 16.97 22.90 22.07
Max. deviation [cm]
Mean 46.84 44.04 45.96 44.94 48.92 28.34 59.35 41.45 48.82 46.14
Standard deviation 43.10 36.13 39.49 40.16 44.76 16.15 45.03 32.10 44.88 41.25
Pre-crossing shuttle-gazing pct.
Mean 46.44% 43.80% 45.01% 45.26% 40.95% 46.43% 47.82% 45.32% 45.98% 44.10%
Standard deviation 0.30 0.31 0.31 0.30 0.31 0.28 0.32 0.29 0.32 0.32
During-crossing shuttle-gazing pct.
Mean 16.15% 26.05% 21.97% 20.12% 14.00% 18.30% 30.53% 18.45% 22.20% 22.54%
Standard deviation 0.19 0.25 0.24 0.21 0.14 0.19 0.28 0.21 0.25 0.22
Lateral clearance [cm]
Mean 110.45 128.63 110.64 111.10 109.14 120.87 99.25 115.58 108.55 106.95
Standard deviation 41.99 77.87 46.42 39.67 35.18 49.93 36.28 47.22 39.93 39.83

4 Conclusions

This study explores the intricate dynamics of pedestrian-automated shuttle interactions in shared
spaces through a virtual reality experiment. By simulating diverse interaction scenarios, including
varied approaching angles and continuous traffic patterns, we uncover critical behaviors such as
hesitation, deviation, gazing, and proxemics, which are often overlooked yet essential for ensuring
safety and efficiency in shared environments. Additionally, our hybrid model, integrating psy-
chological principles with deep learning, could potentially enhance trajectory prediction accuracy
while maintaining interpretability. Statistical analyses highlight the diversity of pedestrian behav-
iors observed in our experiment, providing a solid foundation for future model development and
advancing our understanding of pedestrian-automated shuttle interactions.
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