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Short summary

This paper introduces a methodology for calculating accessibility for demand responsive
transport (DRT) within the agent-based simulation framework “MATSim”. A difficulty
that arises in DRT accessibility calculations involves the mode’s sensitivity to supply and
demand: explicitly simulating DRT trips for accessibility distorts demand patterns, on
which accessibility calculations depend. Our solution involves estimating DRT travel and
wait times based on the outputs of MATSim simulations of DRT trips; this is combined
with the access and egress walks to the relevant DRT stops. To our knowledge, this is the
first instance of a DRT accessibility methodology for a stop-based and pooled service within
an agent-based model. To demonstrate this methodology, we calculate DRT accessibility
for the city of Kelheim. Future work should adapt the DRT trip estimation to be more
sensitive to origin location and departure time.
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1 Introduction

This paper presents a methodology for calculating accessibility for demand responsive
transport (DRT) within an agent-based model (ABM)—“MATSim”—which is then applied
to Kelheim (Bavaria, Germany). MATSim (Horni et al., 2016), is an open-source framework
for large-scale transport simulations. Within a simulated day, agents use different modes
to travel between activity locations; this single day is iterated hundreds of times, giving
agents a chance to improve their daily plans.

One mode that can be simulated within MATSim is DRT, as described by Maciejewski
(2016) and Bischoff et al. (2017). DRT systems are generally free-floating, meaning that
vehicles are not bound by fixed routes or timetables; optionally, DRT systems can allow
pooling, meaning multiple customers share portions of their rides. This can be an alter-
native to traditional public transit (PT), especially in areas where the transport demand
is diffused over a large region. The potential of DRT is especially high for people who do
not drive.

Accessibility describes the potential to overcome spatial separation to take advantage of
opportunities, and is thus a useful analysis tool for transport/land-use scenarios. MATSim
has an official extension (Ziemke, 2016) to calculate accessibilities for various modes; case
studies include Switzerland (Nicolai & Nagel, 2014) and South Africa (Joubert et al., 2015).
Ziemke (2016) argues that MATSim is well-suited for accessibility calculations because it
is inherently sensitive to the four central facets of accessibility, as delineated by (Geurs &
van Wee, 2004): transport, land-use, temporal, and individual components. MATSim sce-
narios consider transportation infrastructure, as well as coordinate-based activity facilities.
The model’s dynamic mobility simulation allows the accessibility of different modes to be
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calculated for different times of the day. Finally, as MATSim is an ABM, each member of
the population is endowed with an individual set of socio-demographic attributes.

While MATSim is capable of simulating DRT travel, and can calculate accessibilities of
many modes, there is an inherent difficulty in the combination: calculating accessibility of
DRT. As mentioned in Ziemke & Bischoff (2023) and Wang et al. (2023), DRT accessibility
is very sensitive towards DRT supply and demand patterns. In other words, the length of
time that a person must wait to be picked up, and the degree to which the trip is detoured
to pickup/drop-off other passengers, depends on (a) the number of vehicles currently on-
duty (supply) and (b) the number of customers requesting rides at that time (demand).
Given a limited supply, explicitly simulating DRT trips for every pair of measuring point
and opportunity would skew the demand patterns, which would, in turn, affect accessibility
measurements.

Ziemke & Bischoff (2023) were the first to calculate DRT accessibility based on a MATSim
model of Berlin. Their methodology explicitly simulates DRT trips, but assumes arbitrary
supply and demand patterns; they randomly reassign 10% of PT rides to DRT to find the
average wait times per location. After pickup, DRT trip time is calculated analogously to
a taxi; no ride-sharing takes place. Diepolder et al. (2024) also develop a methodology for
calculating DRT accessibility in conjunction with MATSim, focusing on DRT as a feeder
to conventional PT; using the outputs of a fully-iterated MATSim scenario they estimate
DRT wait and travel times for all possible feeder relations, creating time tables which can
be implemented as part of the PT network. As compared to Diepolder et al. (2024),
our methodology allows stand-alone DRT services to be analyzed and does not require
additional software for the processing of the MATSim output.

To address the intricacy capturing DRT accessibility within an ABM without skewing the
DRT demand patterns, we integrated an innovation by Lu et al. (2025) into the accessibility
pipeline: the DRT Estimator. This allows for the estimation of DRT travel time for any
origin-destination pair—based on calibration on real or simulated data—without explicitly
simulating the DRT trip. One of the main benefits of our methodology is that it integrates
seamlessly into the MATSim ecosystem. This is beneficial because the DRT accessibility
analysis can (a) be attached to a MATSim simulation with minimal additional effort (b) be
coherently compared to accessibilities of other modes, (c) leverage fine-grained information
from agent attributes, (d) make use of the many specialized and interchangeable modules
(e.g., teleported walk router can be exchanged for a network-based walk router) and (e) be
sensitive to different DRT operation schemes, such as ridepooling or rebalancing strategies.
This paper contributes a methodology to calculate accessibility of pooled and stop-based
DRT, integrated into an established ABM.

2 Methodology

The following derivation of an econometric accessibility measure is described in Nicolai &
Nagel (2014), and is based on the work by Ben-Akiva & Lerman (1979). Given an individual
with a choice set of opportunities, accessibility is defined as the maximum utility of the all
alternatives. Given an origin location l, we define the utility of an opportunity alternative
k as

Ulk = Vk + Vlk + ϵlk, (1)

wherein Vk is the utility (usually positive) associated with realizing the opportunity, Vlk is
the utility (usually negative) of traveling to the opportunity, and ϵik is a random term which
absorbs randomness and uncertainties in Vk and Vlk. If we assume that all opportunities
k have the same systematic utilities Vk ≡ V , and ϵk is Gumbel distributed with a mean of
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Figure 1: To calculate the accessibility from measuring point l, the travel (dis)utility to
each opportunity k is combined, as shown in Eq. (3). For a single measuring point /
opportunity relation, we see that a DRT trip is made up of three legs: the access walk
from the measuring point l to the pickup DRT stop i (green line), the DRT trip between
DRT stops i and j (solid blue line) and the egress walk between the drop-off DRT stop j
to the opportunity k (yellow line). Additionally, a wait time for the vehicle at the access
DRT stop needs to be included (purple timer). The DRT Estimator is used to calculate
the travel time of the DRT route (solid blue line)—which takes a detour to pickup a
passenger—based on the shortest path (segmented blue line).

zero and the same width parameter for each k, then expectation value of Ul becomes:

E(Ul) = E(max
k

Ulk) = ln
∑
k

eVlk + Const = Al + Const (2)

Al + Const is the maximum utility of selecting the optimal k (including ϵlk), traveling to
it, and receiving V + ϵk once there. Under normal circumstances, this value is positive.
However, since Const is just an additive shift of the result, it is normally left out for
accessibility computations, resulting in Al which is often negative. This leaves us with a
simplified form of the accessibility from an origin l:

Al := ln
∑
k

eVlk . (3)

The calculation of Vlk depends on the mode being examined; this paper’s main contribution
is a process of calculating the utility of a DRT trip between origin l and opportunity k in
a stop-based system:

Vlk,drt = Vli︸︷︷︸
Access

+ Vij︸︷︷︸
DRT Trip

+ Vjk︸︷︷︸
Egress

+ ASCdrt , (4)

wherein (see also Figure 1)

1. Vli: the access walk from the measuring point l to the pickup DRT stop i,

2. Vij : the DRT trip between DRT stops i and j,

3. Vjk: the egress walk between the drop-off DRT stop j to the opportunity k,

4. ASCdrt is the “alternative specific constant” for DRT, which can be interpreted as
the baseline attitude or preference of agents towards the mode relative to the walk
mode (which has an ASC of 0).
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In a stop-based DRT system, the access walk (see 1) and egress walk (see 3) may have a
significant impact on accessibility for the entire trip. As a first step, the closest DRT stop
to the measuring point and opportunity, respectively, are identified. The travel time and
distance of the walk trips are estimated using the euclidean distance, an average detour
factor, and an average walk speed of 3.8 km/h.

Next, the travel distance and travel time of the DRT trip (see 2) between these two stops
have to be estimated. This is not a trivial task: the wait time and circuitousness of the
DRT route depends heavily on where DRT vehicles are at the time of request, and how
many other customers are requesting rides. It therefore does not make sense to, within
the DRT accessibility calculation, physically simulate a DRT trip between every measuring
point and every opportunity, as this would not represent realistic DRT booking patterns.

We therefore employed the “DRT Estimator” tool by Lu et al. (2025) to estimate DRT
travel time as a function of direct car travel distance. MATSim’s trip router for mode
“car” was used to calculate the direct car travel distance between the access DRT stop
and the egress DRT stop. This allows effects of, e.g., congestion to be included in this
calculation. Eq. (5) is then used to calculate a DRT travel time that also includes the
detours to pickup and drop-off other passengers in a pooled ride. This estimated travel
time is combined with an estimate for the wait time, wherein the agent waits at the curb
for the vehicle to pick them up. The parameters α and β required for Eq. (5) are estimated
using a linear regression model, on the basis of MATSim-simulated DRT trips (see also
Figure 2).

tdrt = α · tcar + β (5)

3 Results and Discussion

Schlenther et al. (2023) developed a 25% sample MATSim scenario for the city of Kelheim
(Bavaria, Germany). The model is calibrated against real DRT ride data from the KEXI
service operating in the area since 2020(Landkreis Kehlheim, n.d.). For the ASCdrt, we
assume a value of 0.0, which corresponds to the portion of the population that is ambivalent
towards DRT; they have the same base preference towards DRT, as they do to walk or
PT. To parametrize the DRT Estimator, as shown in Figure 2, we used the outputs of a
MATSim simulation with a small DRT fleet of 3 vehicles (corresponds to real-life service).

To understand the mechanics of the DRT accessibility calculation, we will begin by ex-
amining a single opportunity. Figure 3a shows the DRT accessibility to the train station
in Saal an der Donau (towards the south-east of the service area) at 12:00pm. As to be
expected, DRT stops close to the train station have higher accessibilities than the further-
away DRT stops; DRT accessibility depends on the DRT travel time, as shown in Vij . We
can see clearly that Vij depends not on the euclidean distance but on the network distance.
Although measuring point “b” is closer to the train station by euclidean distance, the route
along the network is more circuitous and thus longer than from measuring point “a”. Fur-
thermore, longer access/egress walks lead to lower accessibility; see the municipality of
Ihrlerstein to the north-west of Kelheim (annotated by “c”).

The effects of three design decisions for DRT accessibility calculations can be observed in
the case of Herrnsaal (annotated by “d”):

1. Only the DRT route between the closest DRT stop to the measuring point and the
closest DRT stop to the opportunity (by euclidean distance) is calculated.

2. A DRT route is replaced by a walk route if either (i) the pickup and drop-off DRT
stops are identical or (ii) the (dis)utility of a direct walk to the destination is greater
(less negative) than the DRT trip.
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Figure 2: To use the DRT Estimator, parameters α and β in Eq. (5) need to be calculated
using a linear regression. The data points (n = 172) represent simulated DRT trips gener-
ated by a 3-vehicle fleet; the y-axis shows the DRT travel time (including detours), and the
x-axis shows the direct network-distance (excluding detours). The resulting parameters are
α = 0.119 and β = 71.82, wherein R2 = 0.44

3. The (dis)utility of walk routes (whether access, egress, or direct walks) is based on
the euclidean distance rather than network distance.

The closest DRT stop to the measuring point in Herrnsaal and to the opportunity are
identical: the DRT stop at the train station. Thus, the accessibility algorithm instead
assigns the trip to the mode “walk”. However, the walk router calculates travel time on
the basis of euclidean distance, which does not account for the separation effect of the
river Danube (the nearest bridge is approximately 3km west of the measuring point), and
therefore overestimates the accessibility. If the algorithm allowed for the second-closest
DRT stop to be considered, the logical route would be for the person to walk to the
DRT stop “e”, and take a DRT vehicle to the train station. The three above-mentioned
simplifications were made for computational reasons; future work needs to weigh the benefit
to the results of reducing the artifacts against the prolonged simulation time.

To explore the effect of multiple opportunities on DRT accessibility, we will now turn to an
amenity with multiple instances in Kelheim: supermarkets, see Figure 3b. Compared to the
accessibility analysis of the train station, the accessibility values for supermarkets are higher
across the board. The larger number of supermarkets causes this increased accessibility
because (i) the average distance to at least one supermarket is generally shorter than the
distance to the single train station and (ii) the log-sum accessibility calculation, shown in
Eq. (3), does not only examine the closest opportunity but all opportunities in the study
area. The log-sum econometric approach from Eq. (3) assumes that residents benefit from
having a broad choice in amenity; e.g. they might prefer the second-closest supermarket
rather than the closest one. This explains the relatively low value for DRT accessibility
surrounding the supermarket in Herrnsaal (see “a”); since the area lacks DRT stops, it is
not well connected to the other supermarkets in the center of Kelheim.

The methodology presented in this paper, and demonstrated in the case of Kelheim, will
allow for analyses of diverse DRT case studies; specific policy analyses are, however, out-
of-scope for this paper.

5



(a) DRT Accessibility to Train Station

(b) DRT Accessibility to Supermarkets

Figure 3: DRT accessibility to (a) the train station in Saal an der Donau and (b) su-
permarkets. Measuring points are arranged in a spatial grid wherein pixels are spaced
at 100 meters; pixels are not rendered if they do not contain buildings (according to
OpenStreetMaps). The coloring of the pixels indicates the accessibility (yellow is higher
accessibility); the bin sizes are defined using the Jenks optimization method.
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4 Conclusions

This paper has presented a methodology for estimating accessibility for pooled and stop-
based DRT within an ABM. The main challenge was that accessibility is strongly dependent
on the supply (available vehicles) and demand (customers) for the DRT service. This makes
it difficult to calculate the potential accessibility from all measuring points, as the ensuing
supply and demand patterns would not be realistic. Thus, instead of physically simulating
these DRT trips within MATSim, we used a model which estimates the time of a DRT
trip based on the direct travel distance. This estimated time includes not only the waiting
time, but also the extra time associated with ride-pooling, wherein the DRT vehicle makes
a detour to pickup or drop-off further passengers. The approach leverages the outputs
from MATSim to get a more expressive values for accessibility than previous approaches
in literature.

To further leverage the fine-grained information of simulated DRT trips in MATSim out-
puts, it would be low-hanging fruit to differentiate α and β parameters (see Eq. (5))
depending on the start location/time of the trip, as done in Diepolder et al. (2024) and
Ziemke & Bischoff (2023). The infrastructure developed in collaboration with Lu et al.
(2025) would allow this disaggregation in future work. This stronger spatio-temporal influ-
ence would, e.g., lower DRT accessibilities in outskirts of the city (depending on rebalancing
strategy), at times with high demand (rush hour) or low supply (nights).

Additionally, future work should explore the option of inter-modal accessibility; e.g., using
DRT as a feeder to traditional PT. Another consideration is that the DRT accessibility
does not limit the distance an agent can walk to a stop; long walk-distances are untenable
for much of the population, especially those with mobility impairments.

Amid ongoing budgetary challenges, non-urban municipalities face significant hurdles in
offering residents viable alternatives to car-based mobility. Within this context, assessing
the efficacy of DRT systems becomes an increasingly pertinent area of research, particularly
when considering the potential rise of autonomous vehicles. This underscores the relevance
of our proposed methodology in addressing these critical mobility challenges.

Acknowledgments

This work was funded by the “Deutsche Forschungsgemeinschaft”—grant number 322166923—
as well as the “Bundesministerium für Verkehr und digitale Infrastruktur”—grant number
45KI04D041. We thank Tilmann Schlenther, Dominik Ziemke, and Chengqi Lu for the
productive discussions and collaboration.

References

Ben-Akiva, M., & Lerman, S. R. (1979). Disaggregate Travel and Mobility-Choice Models and
Measures of Accessibility. In Behavioural Travel Modelling. Routledge.

Bischoff, J., Maciejewski, M., & Nagel, K. (2017, October). City-wide shared taxis: A simulation
study in Berlin. In 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC) (pp. 275–280). doi: 10.1109/ITSC.2017.8317926

Diepolder, S., Araldo, A., Chouaki, T., Maiti, S., Hörl, S., & Antoniou, C. (2024, August). On
the Computation of Accessibility Provided by Shared On-Demand Mobility. In Review. doi:
10.21203/rs.3.rs-4803855/v1

Geurs, K. T., & van Wee, B. (2004, June). Accessibility evaluation of land-use and transport
strategies: Review and research directions. Journal of Transport Geography , 12 (2), 127–140.
doi: 10.1016/j.jtrangeo.2003.10.005

7



Horni, A., Nagel, K., & Axhausen, K. (Eds.). (2016). Multi-Agent Transport Simulation MATSim.
London: Ubiquity Press. doi: 10.5334/baw

Joubert, J., Ziemke, D., & Nagel, K. (2015). Accessibility in a post-apartheid city: Comparison
of two approaches for the computation of accessibility indicators. Louvain-la-Neuve: European
Regional Science Association (ERSA).

Landkreis Kehlheim. (n.d.). Kexi - dein expressbus im landkreis kelheim. Retrieved 18.01.2025,
from https://kexi.de

Lu, C., Rakow, C., & Nagel, K. (2025, January). An improved procedure for simulation of
demand-responsive transport services in agent-based transport simulation framework. VSP Work-
ing Paper 25-01. TU Berlin, Transport Systems Planning and Transport Telematics. URL
http://www.vsp.tuberlin.de/publications.

Maciejewski, M. (2016). Dynamic Transport Services. In A. Horni, K. Nagel, & K. Axhausen
(Eds.), Multi-Agent Transport Simulation MATSim (pp. 145–152). London: Ubiquity Press.
doi: 10.5334/baw

Nicolai, T. W., & Nagel, K. (2014, December). High resolution accessibility computations. In
A. Condeço-Melhorado, A. Reggiani, & J. Gutiérrez (Eds.), Accessibility and Spatial Interaction.
Edward Elgar Publishing. doi: 10.4337/9781782540731.00010

Schlenther, T., Lu, C., Meinhardt, S., Rakow, C., & Nagel, K. (2023). Autonomous Mobility-on-
Demand in a Rural Area: Calibration, Simulation and Projection based on Real-world Data. In
World Conference on Transport Research - WCTR 2023. Montreal: Transportation Research
Procedia.

Wang, D., Araldo, A., & Yacoubi, M. A. E. (2023, October). AccEq-DRT: Planning Demand-
Responsive Transit to reduce inequality of accessibility (No. arXiv:2310.04348). arXiv. doi:
10.48550/arXiv.2310.04348

Ziemke, D. (2016). Accessibility. In A. Horni, K. Nagel, & K. Axhausen (Eds.), Multi-Agent
Transport Simulation MATSim (pp. 237–245). London: Ubiquity Press. doi: 10.5334/baw

Ziemke, D., & Bischoff, J. (2023). Accessibilities by shared autonomous vehicles under different
regulatory scenarios. Procedia Computer Science, 220 , 747–754. doi: 10.1016/j.procs.2023.03
.099

8

https://kexi.de

	Introduction
	Methodology
	Results and Discussion
	Conclusions

