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Short summary

This study introduces an approach for classifying road networks using geo-tagged street-level im-
agery, combining representation learning and clustering techniques. The method addresses scal-
ability issues of traditional methods by gathering images from Google Street View. The process
involves matching street-level images to road sections, extracting image features through a pre-
trained computer vision model, and applying clustering to categorize road sections. We apply this
approach in Delft, Netherlands, classifying around 2,000 road sections with around 70 thousands
images into six clusters, each representing distinct urban typologies. The clusters align with known
road categories and reveal clear distinctions, such as residential, arterial, and motorway types. This
method offers a scalable and adaptable solution, potentially improving urban planning, mobility
studies, and automated vehicle navigation.
Keywords: Clustering, Computer vision, Embedding representation, Road classification, Street-
level images.

1 Introduction

Classifying road networks is a core component of the design and planning of transport networks.
Provides information on characteristics of the network structure of cities and supports a wide
range of practical applications. For example, such classifications can help identify areas that
require different driving behaviors for automated vehicles (Chatziioannou et al., 2024) and people
(Kaptein & Claessens, 1998); regulate roads to improve potential safety concerns (Dijkstra, 2011);
and plan for reduced mobility vehicles, allowing targeted transport project allocation (Gorges et al.,
2018). Beyond these practical applications, road classification can influence outcomes like urban
expansion and spatial development (Hu & Liang, 2024). These applications highlight the relevance
of performing a meaningful road classification that is suitable for a variety of applications.
Current methods for classifying road networks include manual approaches based on rules, sta-
tistical algorithms, and automated methods, each offering distinct advantages and limitations.
Several countries and cities have developed manuals with rules and algorithms for classifying roads
(Tsigdinos et al., 2024). Usually, these classifications rely on individuals exploring the streets and
manually collecting the attributes. On the other hand, different approaches have been developed
depending on the objectives and priorities set for each city. For example, Tang & Breckon (2010);
Mohammadi (2012) developed an image processing technique to incorporate automated terrain
recognition into street classification; (Bosurgi et al., 2019) incorporated statistical pre-processing
of road attributes to reduce subjectivity in classifications; Zhang et al. (2014) have incorporated
some deep learning technique to include dynamic data like traffic flows; and Taamneh et al. (2017)
include accident statistics into the classification. More recently, Leśniara & Szymański (2022) de-
veloped a method based on representation learning to derive clusters from OpenStreetMap (OSM)
road infrastructure data. These diverse methods highlight the ongoing advances in road network
classification, showing the need for more comprehensive and flexible strategies to meet the varied
needs of modern cities.
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Despite their advancements, current road classification methods face significant limitations in scala-
bility, adaptability, integration of new characteristics, or access to comprehensive road data. Many
approaches rely on a single attribute, such as terrain or road speed, to define road categories, which
restricts their ability to capture the complex and multifaceted nature of road networks. Static and
rule-based methods struggle to adapt to additional characteristics as the complexity of defining
categories and constructing rules increases exponentially with the number of variables. Similarly,
while machine learning-based techniques offer the flexibility to include a diverse range of variables,
they often require high-quality datasets that thoroughly represent varied road features. Practical
implementations of these methods may involve significant time and cost, mainly when applied to
large or dynamic datasets. Consequently, current methods either limit the incorporation of mul-
tiple variables or lack the robust datasets needed to support more complex models, underscoring
the need for innovative approaches in road network classification.
To address this gap, we propose a representation learning method combined with a clustering tech-
nique to perform road classifications based only on street-level imagery. In the field of representa-
tion learning, machine learning models are developed to transform various types of data (e.g., text
or images) into vector representations known as embeddings (Mikolov, 2013). These embeddings
are low-dimensional representations that preserve the essential characteristics and relationships of
the original data. Using embeddings eliminates the need for manually defining clustering classes,
allowing the model to autonomously group roads based on inherent visual patterns. Additionally,
street-level images provide a rich source of information about streets and their surroundings, such
as terrain type, urban infrastructure, land use, and vegetation. These images are also widely ac-
cessible through platforms like Mapillary, Apple Look Around, Google Street View (GSV), and
social media. This approach uses the potential and availability of visual data and offers a scalable
and adaptable solution for improving road network classification.
In this study, we develop and implement a method for road network classification using geo-tagged
street-level images as the sole input data source. Our approach involves four key steps. First, we
match street-level images to specific road sections based on the network topology of the designated
area, allowing each section to be represented by a collection of images. Second, we extract features
from these images using a pre-trained image embedding model. Third, we combine the image
vectors assigned to each road section to generate a unique vector representation. Finally, we
perform a clustering process to determine road classes through statistical analysis.
We apply this method in Delft, the Netherlands, to showcase its effectiveness. Specifically, we
collect over 70 thousand street-level images from across the city using the approach described by
Garrido-Valenzuela et al. (2023). These images are then used to classify around two thousands
road sections in Delft. To assess the performance of our classification, we analyze various attributes
within the classes, such as road type, vegetation, and surrounding infrastructure. This analysis
helps validate our method’s robustness and its ability to uncover meaningful distinctions between
different road categories. Our findings highlight the potential of using street-level imagery for
scalable and adaptable road network classification, paving the way for broader applications in
urban planning and mobility studies.

2 Method

This section describes the input data and outlines our method for classifying the street network
based on street-level imagery. Figure 1 provides an overview of the pipeline employed in the
classification process. To illustrate the method, we include examples from its implementation
in Delft, the Netherlands, though the approach is adaptable to any city with street-level images
availability. Delft is a historical city in the western part of the Netherlands, covering approximately
24km2. Its size and varied urban landscape, featuring streets from different eras, provide diverse
street styles, making it appropriate for testing our road classification approach.

Data

Our classification method utilizes street-level images (SLI) to extract visual street information and
a Geographic Information System (GIS) file to represent the road network. SLIs are panoramic
photographs captured at ground level, providing detailed visual and structural information about
street surroundings. Several providers, including Google Street View (GSV), Mapillary (Mapillary,
2023), and Apple Look Around (Apple Inc., 2023), offer these images worldwide. For this study,
we use imagery from GSV (Google, 2023), employing the image ID collection method described by
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Figure 1: General pipeline of the method.

Garrido-Valenzuela et al. (2023). This approach systematically gathers geo-tagged image IDs across
a study area, with each ID corresponding to a specific image and its geographical coordinates. In
addition to the SLIs, the GIS road network file is available through OpenStreetMap (OSM, 2024)
and it provides the coordinates needed to map and identify each street in the study area. For the
city of Delft, more than 70 thousands SLIs and around 300km of network are gathered.

Step 1: Image-road matching

The first step involves defining and associating the road section units with the SLIs. A road
section unit corresponds to a spatial line segment representing a street or a portion of it. These
road sections serve as the minimal spatial units for classification in our method. The definition of
a section can vary depending on the application, such as the segment between two intersections,
sections based on street names, or fixed-length segments (e.g., 100 meters). Then, the SLIs are
spatially associated with the road sections.
In our application for Delft, we define road sections using intersection nodes from the GIS net-
work file. These nodes represent points where streets intersect, serving as natural boundaries for
segmenting the road network. This process yields a total of 3, 429 road sections. Once the road
sections are defined, we create 20-meter buffers around them to match SLIs from their surround-
ings. If an image corresponds to multiple sections, it is assigned to the closest one. As a result,
1, 914 road sections are matched with at least one image, and 68, 178 SLIs are used in total. Figure
2 illustrates the coverage, with road sections having at least one associated image in green and
sections without images in red.

Step 2: Image embedding features extraction

The second step is designed to extract features from the road sections’ SLIs. We use a pre-
trained image embedding mode to achieve this, transforming the street-level images into vector
representations. These embeddings capture essential visual characteristics of the images, such as
textures, colors, structural patterns, and composition, while reducing the dimensionality of the
data. Several pre-trained models can be used for this purpose, including convolutional neural
networks (CNNs) and more recent architectures like Vision Transformers (ViTs). Once images are
represented as vectors, similar images will be closer in the multidimensional vector space. The
distances among images in the multidimensional space facilitate the clustering of road sections
based on shared visual characteristics.
In the following, we employ ResNet152, a CNN-based model pre-trained on ImageNet (He et al.,
2016). We choose this model because of its ability to extract high-quality features from images
across diverse contexts, making it well-suited for analyzing the visual content of street-level imagery.
For each road section, we process the associated images through the embedding model to generate
a set of vectors. (i.e., one vector per image). Using ResNet152, the resulting vector for each image
contains 2, 048 characteristics, preserving details that may be relevant for classification.
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Figure 2: Coverage of images over the road sections. Sections in green are associated with
at least one SLI. Sections in red have no images in the 20-meter surroundings.

Step 3: Road section embedding representation

The third step involves aggregating the image embeddings associated with each road section to
create a unified representation. To achieve this, we compute the mean of the embedding dimensions
for all images linked to a given road section. By averaging the vectors, we derive a comprehensive
representation that encapsulates the overall visual content of the section, balancing the contribu-
tion of each image. This approach ensures that the resulting vector reflects the collective visual
characteristics of the road section rather than relying on any single image.
Once the road section embeddings are generated, we address the curse of dimensionality issue
(Crespo Márquez, 2022), which can negatively affect the performance of clustering algorithms (in
step 4). High-dimensional data often leads to noise, sparse distributions, and diminished distances
between points (in the embedding space), making it challenging for clustering techniques to dis-
tinguish the classes. We apply Principal Component Analysis (PCA) to reduce the dimensionality
of the road section embeddings and mitigate this effect. Our PCA implementation is forced to
keep at least 80% of the original variance in the data, resulting in 86 dimensions in the final road
section representations.

Step 4: Clustering for classification

The final step involves classifying the road sections by applying clustering techniques to the road
section embeddings. The clusters identified over the embedding features should group road sections
with similar visual characteristics. We use the elbow method to determine the proper number
of clusters. This method analyzes the variance explained by different numbers of clusters and
identifies the point where adding more clusters yields diminishing returns, balancing accuracy and
interpretability when selecting the number of clusters.
For the clustering process, we implement hierarchical clustering, which aligns well with the hierar-
chical nature of urban road networks. Hierarchical clustering builds a tree-like structure of nested
clusters, which mirrors the way roads are often organized in cities, from motorways to smaller local
streets. We also tried other clustering methods as part of an exploratory analysis of the robustness
of the embedding information in the next section.
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3 Results

Clustering application

Using the elbow method on hierarchical clustering, we determine that six clusters provide the op-
timal balance between accuracy and interpretability for classifying the road sections. Our method
allows us to group the road sections into distinct categories based on the visual characteristics
captured in the embedding. Figure 3 illustrates a map of Delft’s road network, with color-coded
roads according to their assigned cluster, highlighting the distinct road classes present in Delft.

Figure 3: Delft’s road sections colored by clusters. Clusters names are set based on the
visual characteristics of the images.

The model effectively differentiates some urban typologies. The city center, marked in light blue
(cluster 1), is characterized by narrow streets, canals, and historic, closely narrow houses with
minimal vehicle presence. Our model accurately identifies the natural boundaries of this area.
Additionally, the two major highways in Delft are clearly distinguished in yellow (cluster 2). While
the map reveals separation of other colored streets (red, pink, blue, and green), further analysis is
necessary to explore the meaning of these classifications.

Image exploration for cluster identification

We perform a qualitative analysis to better understand the characteristics of each cluster by sam-
pling and exploring subsets of images assigned to each group. This exploratory process complement
the cluster definitions by considering visual features from the images. Figure 4 presents random
images from the six clusters.
We labeled the clusters based on the visual characteristics observed in the sampled images and
the spatial distribution of the road sections in Figure 3. Cluster 1 (light blue) is labeled City
Centric due to the presence of narrow streets and historic buildings. This area aligns with the
well-known historic city center of Delft. Clusters 0 and 5 (pink and red) are labeled Residential
A and Residential B, respectively, characterized by residential houses, open areas, and presence
of trees on the streets. Residential B encircles the city center and features streets and buildings
similar in style to the historic core, while Residential A is located in the southern outskirt, with
wider streets, newer buildings, and green spaces. Cluster 2 (yellow) is identified as Motorway,
encompassing the main highways in Delft, and visible from the images showing large, high-speed
roads. Cluster 3 (blue), labeled Arterial, features wider streets with multiple lanes, reflecting their
role as major traffic arteries connecting different city areas. Lastly, Cluster 4 (green), labeled
Greenery, includes roads surrounded by more rural landscapes and vegetation. While similar to
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Figure 4: Randomly-sampled images from each cluster.

Arterial roads in their connectivity function, the visual cues of abundant greenery distinguish this
cluster. This labels serve as a preliminary interpretation of the clusters, which can be further
refined by incorporating additional data and expert knowledge.

Exploring street attributes within the classes

We explore the distribution of various street attributes within the identified clusters to evaluate the
ability of our method to classify features not explicitly present in the input imagery. Specifically, we
examine data related to road types, surface materials, speed limits, and the presence of vegetation
in Delft. This assessment provides insights into how well the visual characteristics captured in
the street-level images correlate with other significant urban features. Figure 5 illustrates the
distribution of these attributes across the six clusters.

Figure 5: Distribution of road attributes across the clusters. (a) Road types , (b) Surface
materials, (c) Speed limits, and (d) Greenery across the clusters.

Figure 5a illustrates the distribution of road types across the clusters, sourced from OSM data. The
Motorway cluster predominantly includes trunk, motorway link, and motorway types, highlighting
the main highways in Delft. The City centric cluster includes the pedestrian roads, consistent with
its pedestrian-only zones. Residential A and B clusters mainly comprise residential and living street
types. The Arterial cluster shows a blend of primary, secondary, and tertiary roads, indicating its
function as a major traffic artery. The Greenery cluster contains more service roads, aligning with
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its rural nature.
Figure 5b shows the distribution of road surface materials across the clusters, focusing on paving
stones and asphalt, the dominant surface materials in Delft. City centric and residential A/B
clusters primarily have paving stones, indicative of older, traditional streets and lower speed zones.
Conversely, the Arterial and Motorway clusters mainly consist of asphalt roads, typical for major
thoroughfares.
Figure 5c depicts the road speed limits within the clusters, as reported by OSM. The Residential
clusters mostly have speed limits of 30km/h or less, while Arterial roads often have limits of 50km/h
or more. The Motorway cluster mainly includes speed limits above 70km/h. The Greenery cluster
(green) shows a mix of speed limits, with a notable presence of roads allowing speeds over 70km/h,
reflecting its rural character.
Figure 5d shows the composition of greenery across the clusters. This data is obtained from the
Groenkaart of the Dutch government, which provides a normalized value between 0 and 100 for
the greenery of the surroundings. We calculate the average greenery value within a 5-meter radius
around each road section and plot the distribution of these values across the clusters. The Greenery
cluster (green) has a significantly higher average greenery value than the other clusters, reflecting
the presence of more rural landscapes and vegetation in these areas.

4 Conclusions

In this study, we introduced an approach to classifying road networks using geo-tagged street-
level imagery. By applying representation learning and clustering techniques, we developed a
scalable method that effectively categorized road sections in Delft, the Netherlands, into six distinct
clusters. Each cluster reflected unique urban typologies and visual characteristics, demonstrating
the potential of street-level imagery for detailed road network classification. This method has
promising applications in urban planning, mobility studies, and automated vehicle navigation.
Our approach addresses limitations of traditional road classification methods by incorporating
diverse visual data and reducing reliance on manual input or high-quality road attribute datasets.
The use of image embeddings enabled the automatic grouping of roads based on visual patterns,
with clustering results aligning well with known urban structures in Delft. The method also
revealed nuanced distinctions in residential and arterial road types, highlighting its robustness.
Moreover, the clusters captured information beyond visual features, such as road types, surface
materials, speed limits, and greenery, suggesting that our method could be enhanced by integrating
additional data layers like traffic density or public transport routes to further improve accuracy
and utility.
However, we also acknowledge several limitations. The method’s reliance on street-level imagery
means that image quality, coverage, and representativeness can affect classification outcomes. In
regions with sparse, outdated, or biased imagery, the results may be less reliable. Additionally,
the image embedding process may overlook important road features, such as utilities or temporal
changes like construction or seasonal variations which are not present in the images. The clustering
process also poses challenges in determining the optimal number of clusters and interpreting the
resulting classifications. Future research could explore automated techniques for cluster validation
and refinement, as well as methods to improve the interpretability of the clusters.
Future work should implement specified computer vision models, such as transformer-based models,
to enhance feature extraction and classification performance. Additionally, developing specialized
classification models for street categorization could improve accuracy. Testing this method in
various cities with diverse urban layouts would assess its generalizability and robustness. Incorpo-
rating multi-modal data sources, such as satellite imagery or traffic flow statistics, could enrich the
classification process and provide an holistic view of road networks. Finally, creating user-friendly
tools for urban planners and policymakers could bridge the gap between research and practical
application.
Our study demonstrates the viability of using street-level imagery for road network classification.
By leveraging visual data and representation learning techniques, we offer a scalable and adaptable
method for classifying road networks that can support a wide range of urban planning and mobility
applications.
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