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SHORT SUMMARY

Bicycles share similarities with motorised vehicles in that their primarily longitudinal movement
is limited by kinematic constraints, but they are more flexible in lateral motion and less restricted
by lane discipline. While a few models for cycling were reported in the literature, they mostly
explain specific behaviours under disconnected assumptions. A comprehensive cycling behavior
model that can simulate primary cyclist behaviors, including lane-keeping, turning, and obstacle
avoidance, is still lacking. This paper develops an optimal control-based model to simulate cyclist’s
tactical and operational behaviors, assuming cyclist minimizes accumulated costs anticipated in a
finite future. This finite future can be in time, e.g. when cycling on a long stretch or in space, e.g.
when turning or approaching a red light. The costs considered by cyclists reflect multicriteria of
travel efficiency, traffic rules, safety. Numerical experiments are conducted to check the plausibility
of the model and the influence of key parameters.
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1 INTRODUCTION

Cycling is an active traffic mode with great potential for achieving sustainability goals. Com-
pared to drivers, cyclists are less confined by infrastructure, exhibiting much flexibility in utilizing
road space and navigation. Meanwhile, there is significant heterogeneity in cyclist behaviors and
performance, highlighting the diverse range of experiences and motivations among riders (Hoogen-
doorn & Daamen, 2016). Understanding and predicting cyclist behavior, especially how they make
decisions for trajectory planning and control their bicycles at the tactical and operational levels,
are crucial for policy-making, infrastructure design and traffic management.

Existing cyclist models in the literature mostly resort to the adaptation of either vehicle driver
behavior models or the pedestrian behavior models (Twaddle et al., 2014). One modelling approach
is to divide the lane into several smaller strips, utilizing car-following models as longitudinal mod-
els and utilizing a discrete lane choice model to select the strip within the lane (Mathew et al.,
2012). To adapt the time- and space-discrete cellular automata (CA) models to bicycles, Yao et
al. (2009) designed smaller cells for multiple road users to allow them to occupy more than one cell
per time step. These models adapted from vehicles can not simulate continuous lateral movements.

Apart from this, pedestrian behavior models like Social Force Models (SFMs) (Helbing & Mol-
nar, 1995) are less bound by lane discipline and less rule-oriented. They can simulate the flexible
motion planning of cyclist in the 2D plane but do not consider the dynamic constraints of cy-
cling. To solve this issue, Schmidt et al. (2023) developed a microscopic model describing bicycle
interaction using SFMs with consideration of bicycle kinematics. However, they do not capture
the tactical decisions of cyclists. Schönauer et al. (2012) added a tactical force vector based on
the Stackelberg game concept to their social force model to model all road user’s movements in a
shared zone, the sum of the partial payoffs for both road users is used as a strategy. Hoogendoorn
et al. (2021) developed a game theoretical framework that includes different strategies (cooper-
ative, zero-acceleration, demon opponent) including traffic rules considering the communication
between cyclists. While gaming nature is relevant in scenarios with clear and opposing conflicts,
cyclists often exhibit non-strategic behavior (e.g., following habitual routes or relying on instincts).

The contribution of the paper is to model cycling behavior under an optimal control framework.
Cyclists are assumed to be predicted cost minimizers: they predict the future based on a two-
dimensional (2D) kinematic model and choose steering angle and acceleration to minimize some
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cost function in a finite future. The costs considered by cyclists include travel efficiency cost, lane-
keeping costs, safety cost, physical effort cost, and cost due to undesired situations at the final
time of the finite future. Heterogeneity and individual preferences can be reflected by the weights
of different costs. The use of the 2D kinematic model ensures that longitudinal and lateral bicycle
movements are coupled and realistic bicycle dynamics constraints are respected in simulation. The
tactical decisions of cyclist (e.g., avoidance strategies and deceleration patterns) are implicitly
embedded in the results of the optimized trajectory. Face validation and analysis of the model
outcomes are performed to clarify how the observed phenomena depend on parameter settings.

2 Optimal cyclist’s behavior model formulation

In this section, the conceptual design, the theoretical assumption and the mathematics model
of cyclist’s behavior are introduced.

Conceptual Model and Assumptions

Twaddle et al. (2014) adapted driver behavior classification (Michon, 1985) to cyclist areas,
where strategic behavior includes choice of route and departure time, tactical behavior includes
decisions and operations, and operational behavior includes control of bicycle. Our model focuses
on the tactical layer behaviour as shown in subfigure 1a. Our model considers bicycle’s kinemat-
ics, integrates inputs from the strategy layer with cyclist’s objectives and preferences, as well as
environmental observations, such as information on obstacles and infrastructure. The result of
the trajectory optimization can serve as reference trajectory to an operational layer that controls
bicycle dynamics.

We assume cyclists plan their trajectories in the finite future based on individual travel objec-
tives, interaction preferences, and physical riding capabilities. Such objectives can include:

• minimizing deviation from the desired heading,

• minimizing deviation from the desired lane position,

• minimizing deviations from the desired speed or minimizing travel time,

• maximizing safety and/or minimizing risk.

• maximizing smoothness and comfort and/or minimizing physical efforts.

We categorize the cyclist trajectory planning approach into two approaches: one approach in-
volves trajectory planning over a finite time horizon where the route lacks a specific, predefined
destination (e.g. the green cyclist in subfigure 1b), and the other plans future trajectory to a target
point in space, e.g. in turning and stopping scenarios (blue cyclists in subfigure 1b). Such differ-
entiation allows us to model primary behaviors of different scenarios under a unified mathematical
framework, as we will show in the ensuing of this section.

Kinematic Motion of Cycling

We utilize the unicycle model to simulate the kinematic motion of cycling, effectively capturing
cyclist’s behavior by coupling longitudinal and lateral movements (Fig. 2). This model strikes a
balance between realism and simplicity. Compared to the more complex multi-body model, which
involves intricate dynamics of interconnected rigid bodies and significantly higher computational
demands, the unicycle model is computationally efficient. Apart from this, the simpler mass-point
model represents cyclist as one single point and lacks rotational dynamics, limiting its ability to
represent realistic cycling behavior. Four state variables of cyclists are shown in Eq. 1.

x(t) = [x(t), y(t), θ(t), v(t)] (1)

where x(t) denotes the state of a bicycle at time t; x(t) and y(t) are the global plane coordinate
of the bicycle in m; θ(t) is the heading angle in rad; v is the velocity in m/s. The control variable
is defined as in Eq. 2:

u(t) = [al(t), w(t)] (2)

Here, al(t) and w(t) represent the cyclist’s pedaling and steering actions, corresponding to longi-
tudinal and lateral control, respectively.
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The state dynamics is described in Eq. 3.

dx(t)
dt

=
d

dt


x(t)
y(t)
θ(t)
v(t)

 =


v(t) cos(θ(t))
v(t) sin(θ(t))

ω(t)
al(t)

 (3)
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Realistic constraints on velocity (Eq. 4), acceleration (Eq. 5), and angular velocity (Eq. 6) are
imposed to ensure they remain within reasonable ranges, considering the physical limits of human
cycling capabilities and bicycle characteristics. The maximum centripetal acceleration is given by
acmax = µg, where µ represents the coefficient of friction and g is the acceleration due to gravity
(Eq. 7).

vmin ≤ v(t) ≤ vmax (4)

almin ≤ al(t) ≤ almax (5)

wmin ≤ w(t) ≤ wmax (6)

w(t)v(t) ≤ acmax (7)

Two Finite Future Formulations

Model Over a Fixed Time Horizon

This framework applies to scenarios where no obvious target point is within the cyclist’s line
of sight. The process objectives of riders over target horizon T are defined as Eq.(8), including
operation costs Lop, which describe physical efforts that riders make to change the motion state,
safety costs Ls, when facing obstacles, and lane deviation cost Llane, representing compliance with
the "stay within lane" rule. The square of deceleration adec , acceleration aacc, and centripetal
acceleration ac are related to the operation costs Lop (Eq.(9) to Eq.10). Specifically, the fourth
power dependence results in an accelerated increase in Ll for values of y(t) farther from the center.
yc and wl devote center line location and width of bicycle lane. This characteristic makes the
function suitable for modeling lane rules where a sharp response is required in objective functions
as the cyclist moves away from the lane (subfigure 3a). Eq.(12) represents the terminal cost Φ1

based on desired velocity vd and desired heading θd.

L(x,u) =
∫ t=T

t=0

(Lop + Ls + Ll) dt+Φ1(x(T )) (8)

Lop = β1a
2
l∆(−al) + β2a

2
l∆(al) + β3a

2
c (9)

∆(x) =

{
1, if x >= 0

0, if x < 0
(10)

Ll = β5 ·

(
1 +

(
2(y(t)− yc)

wl

)4
)

(11)

(a) Lane deviation cost Ll (Eq.11) (b) Safety cost Ls (Eq.13)

Figure 3: Function Ll and function Ls

Φ1(x(T )) = β6(v(T ))− vd)
2 + β7(θ(T ))− θd)

2 (12)

When no obstacles are present in the line of sight, safety cost Ls equals zero. Ls can be extended
to incorporate obstacle-avoidance behaviors when encountering stationary obstacles. Ls are deter-
mined by the position of obstacles (xobs, yobs), the optimized position of cyclist (x(t)), y(t)), and
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the dimension of obstacles with average radius ds (Eq.13). When the distance is less than ds, 0.5
meters, the function exhibits exponential growth, indicating an increased safety cost as the cyclist
approaches the obstacle (Subfigure 3b).

Ls(t) = β4 exp

(
−
√

(xobs − x(t))2 + (yobs − y(t))2

ds

)
(13)

Model with Fixed Destination

This model can simulate cyclist behavior in scenarios with a fixed destination. We use this model
to simulate behavior in scenarios involving a deceleration process at a fixed stop line and turning
behavior at an intersection. We add Le (Eq. 15) in the process objective functions to represent
the constraint on cycling time in situations involving turns with limited time and stopping when
encountering a red light (Eq. (14) ). Soft constraints Φ2(x(T )) regarding the difference between
the terminal state x(T ) and the desired terminal state xd = [xd, yd, θd, vd] are included in the
objective functions (Eq. 17 ).

L(x,u) =
∫ t=topt

t=0

(Lop + Le + Lv) dt+Φ2(x(T )) (14)

Le(t) = β8 ∗ 1 (15)

Lv(t) = β9(v(T ))− vd)
2 (16)

Φ2(x(T )) = β9((θ(T )− θd)
2 + (x(T )− xd)

2 + (y(T )− yd)
2) (17)

Solution

IPOPT (Interior Point Optimizer) solver (Wächter & Biegler, 2006) is ultilized in our case
based on the primal-dual interior point method, which is specifically designed to handle large-
scale nonlinear programming (NLP) problems. Its optimizes iteratively the problem to find an
optimal solution that satisfies the Karush-Kuhn-Tucker (KKT) conditions. We use the open source
framework CasADi (Andersson et al., 2019) to solve the problems mentioned above.

minimize: L(x,u)
subject to: ulb ≤ u ≤ uub,

glb ≤ g(x,u) ≤ gub

(18)

u ∈ Rnx devotes the decision variable. L(x,u) is formulated in Eq. 8 and Eq. 14. Apart from
known partameters and bounds (lbu, ubu, lbg ubg), the initial guess for the decision variables are
provided for the primal-dual solution. Convergence Tolerance is set to 10−6 to achieve accurate
results.

3 Experimental Design

Table 1 shows the experiments designed to simulate cyclist’s behaviors in varying scenarios.

Lane-keeping Scenarios

The first aim of the experiments in this scenario is to investigate how cyclists with varying
tendencies (β5) to return to the desired lane position plan their trajectories over a 5 second-fixed-
horizon. At this point, we simulated a one-way lane with a width of 1.5 m, assuming that the
cyclist aims to stay as close to the center of the lane as possible based on Eq. 11. An initial offset
(0, 2) from the center line will be set as control parameter. Additionally, the desired speed will be
set as the initial speed 4m/s to eliminate the influence of acceleration and deceleration processes
on the curve. It is modeled based on model over fix horizon.

Apart from this, a deceleration experiment is designed to explore how the factor of the deceleration-
related cost component (β1) influences the deceleration process. Model with fix destination is uti-
lized in this experiment to simulate the deceleration response to a red light with the requirement
to stop at a fixed stop line.
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Scenario Goal Independent
Parameter

Control Parame-
ter

Assessment
Metrics

Lane-
keeping
(straight)

Exploring how cyclists with different de-
sire to return to the centerline influence
the trajectory

β5 vd, x(0), T Trajectory, speed,
acceleration

Exploring how the cyclists with different
operational skill levels influence the speed
(deceleration)

β1 vd, x(0), xd Speed, deceleration

Turning Exploring the changes in cycling speed
along the trajectory under different turn-
ing radii

xd, yd x(0), θd, vd Trajectory, speed,
acceleration

Exploring the changes in cycling speed
along the trajectory under different initial
speed

v0 x(0), y(0), θ(0), vd,
xd

Trajectory, speed,
acceleration

Stationary
obstacle
avoidance

Exploring how cyclists with different oper-
ation skill levels and varying levels of safety
awareness on obstacles plan their avoid-
ance trajectory

β3, β4 xobs, yobs, ds, vd,
x(0), T

Lateral deviation

Exploring how the capacity of cyclists to
tolerate rule violations when crossing solid
or dashed lines influence the trajectory

β5 xobs, yobs, ds, vd,
x(0), T

Trajectory

Table 1: Experimental design in different scenarios

Turning Scenarios

To investigate cyclists behavior during turns, we utilize model with fixed destination since the
center point of the turning lane can be pre-defined as the target destination. In particular, we
focus on the coupling relationship between linear velocity, angular velocity, and turning radius.
We explore the changes in cycling speed along the trajectory under different turning radii and
initial velocities. Terminal states are limited by soft constraints. In order to better observe the
speed-changing process during turning, velocity cost Lv from Eq. 16 is defined as zero in this
scenario and Le from Eq. 15 serve as the efficiency cost during turns.

Stationary Obstacle Avoidance Scenarios

Among the various maneuvers performed by cyclist, obstacle avoidance has gained significant
attention due to safety concerns. We investigate how cyclist with differing levels of operational
skill and varying levels of safety awareness on obstacle plan the trajectory. Model over fix horizon
is utilized for this scenarios.

4 RESULTS AND DISCUSSION

Lane-keeping Scenarios

Fig. 4 demonstrates the impact of varying β5 values on the optimal trajectory. As β5 increases,
the cost of deviation from center line becomes larger, resulting in a less smooth trajectory. The
change in linear velocity is simultaneously influenced by both the centripetal acceleration term
and the linear acceleration term in the cost function. The angular velocity ω and linear velocity v
exhibit opposing trends under maximum centripetal acceleration ac, which is 9.81m/s2 for dry floor
(purple dashed line). Due to the constraint of the expected terminal velocity, the speed returns to
4 m/s in the end (Fig. 5).

In deceleration scenarios, the factor β1 represents the proportion of deceleration operation cost.
When β1 reaches 100, the result shows uniform deceleration with purple line in Fig. 6. With
smaller β1 values, the result shows maintaining speed until near the stop line, followed by a sudden
deceleration, which models cyclist with a higher tolerance for braking discomfort, resulting in
shorter duration for the deceleration process.
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Figure 5: State variables results for lane-keeping scenario with different β5 ranging from
0.01 to 10

Turning

Fig.7 first shows the optimized trajectorys of a cyclist from (0,0) to different endpoints, (1,1)(solid
line) with a smaller radius and (7,7) (dashed line) with a larger radius. Different colors represent
cyclists with different initial speed. With a larger turning radius and less angular changes, the
velocity generally remains constant (dashed lines) (Fig.8). Meanwhile, cyclists with the closer des-
tination of (1,1) decelerate their linear speed as the angular velocity increases during small turns
due to the upper limit of the centripetal acceleration 4m/s2 (wet floor). Cyclist with higher initial
speeds of 4m/s reaches this limit (blue solid line). Notably, the centripetal acceleration reaches
zero once, when the angular velocity decreases to zero and then reverses direction while the linear
speed approaches zero. This behavior occurs due to the high initial speed, which causes the cyclist
to overshoot the y-axis position.

Stationary Obstacle Avoidance

We introduce β4 as a representation of an individual’s alertness and safety awareness of cyclists by
cycling near obstacles. β3 can represent the cyclist’s tolerance of discomforts from centripetal force
and operational cost during turns. Fig. 9 illustrates the combined effects of β3 and β4 on optimised
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Figure 7: Optimal trajectory results for turning scenarios with different initial speeds and
radii

trajectory planning. Our results show that the maximum deviation from the center line increases
with an increase in β4, indicating a tendency to keep larger distance with obstacles at (5,0).
Conversely, as β3 increases, the maximum deviation decreases, reflecting a reduced willingness of
cyclists to move away from the centerline. The results indicate that both β3 and β4 independently
influence the trajectory planning of the bicycle.

Fig. 10 illustrates the varying capacities of cyclist to tolerate rule violations when crossing
solid lane boundaries, represented by larger β5 (blue line), or dashed lane boundaries, represented
by smaller β5 (red). Different avoidance patterns are depicted in a complex obstacle avoidance
scenario, where the safety cost and steering operation cost are balanced against adherence to lane-
keeping rules.

5 CONCLUSIONS

In this paper, a comprehensive cyclist behavior model based on optimal control theory is de-
veloped to simulate tactical cyclist trajectory planning. assuming cyclist minimizes accumulated
costs anticipated in a finite future. This finite future can be in time, e.g. when cycling on a long
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Figure 8: State variables result for turning scenario with different initial speeds and radii

Figure 9: Deviation from the centerline with different β4 and β3

stretch or in space, e.g. when turning or approaching a red light. The costs considered by cyclists
reflect multicriteria of travel efficiency, traffic rules, safety and physical efforts.

In the lane-keeping scenario, variations in β5, which represents the weight of the cost associated
with deviations from the center line, significantly influence the optimal trajectory. This parameter
reflects cyclists’ preference for maintaining proximity to the center of the bike lane. In turning
scenarios, when centripetal acceleration approaches its upper limit, a smaller turning radius neces-
sitates a reduction in linear velocity as angular velocity increases, under circumstances that initial
and desired terminal speeds remain constant. This relationship underscores the critical balance
between speed and angular velocity that cyclists must maintain to ensure stability and safety in
turning. In the stationary obstacle avoidance scenario, the safety factor and the combined effects
of β3, and β4 on trajectory deviation and velocity changes were analyzed. Additionally, compliance
with the lane boundary rules influences avoidance patterns in complex obstacle scenarios.
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Future work will include calibration and validation of the model using real-world data. Addi-
tionally, uncertainty analyses of environmental observations and constraints will be conducted to
further refine the model.
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