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Short summary

Defining the choice set is a critical challenge in discrete choice models with large sets of alternatives,
such as destination choice. This study proposes a novel approach based on perturbed utility
maximization, which explicitly represents zero probabilities for certain alternatives, enabling the
simultaneous estimation of deterministic consideration sets and model parameters. Tests with
synthetic data reveal that ignoring choice set restrictions in multinomial logit models leads to
overestimation of choice probabilities and marginal effects, especially for higher values, resulting in
biased policy evaluations. In contrast, the proposed method effectively mitigates these biases and
enhances estimation accuracy. Application to a real-world destination choice model demonstrates
the method’s scalability and robustness, confirming its ability to handle large choice sets and adapt
consideration set sizes based on contextual factors.
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1 Introduction

Discrete choice models are widely used in transportation for demand forecasting and policy eval-
uation. A critical aspect of these models is the definition of the choice set, as inaccuracies can
lead to biased estimates and flawed policy recommendations (Swait & Ben-Akiva, 1987; Li et al.,
2015). Despite its importance, practical applications often rely on externally constrained choice
sets (Fukuda & Ishii, 2024).
Existing methods for modeling consideration sets, the subsets of alternatives that decision-makers
actually evaluate, can be categorized into two approaches. Explicit approaches, such as Manski’s
two-stage model (Manski, 1977), treat consideration sets probabilistically (Swait & Ben-Akiva,
1987; Ben-Akiva & Boccara, 1995), offering theoretical rigor but struggling with computational
feasibility for large-scale problems. Implicit approaches, on the other hand, introduce penalty
terms into utility functions to approximate consideration set formation through a single-stage
model (Swait, 2001; Cascetta & Papola, 2001), enabling their application to large choice sets.
Both approaches share key limitations. They cannot strictly assign zero probabilities to alter-
natives, leading to biases in estimation and prediction results depending on the definition of the
full choice set. Additionally, both require pre-specifying variables for consideration set formation,
making results highly sensitive to variable selection.
Motivated by these challenges, this study proposes an implicit approach based on perturbed utility
maximization. By explicitly representing zero probabilities within the choice set, the proposed
method enables unique estimation of deterministic consideration sets and model parameters using
all explanatory variables. It eliminates the need for pre-specified variables, allowing robust esti-
mation even when the full choice set is mechanically defined. This framework is computationally
efficient and scalable, making it suitable for large-scale problems.

2 Methodology

This section introduces the αPUM, a perturbed utility model capable of representing zero prob-
abilities within the choice set, and describes a simultaneous estimation method for consideration
sets and model parameters.
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Perturbed utility model and αPUM

The perturbed utility model (PUM) maximizes perturbed utility, defined as the sum of expected
utility and a non-linear perturbation function (McFadden & Fosgerau, 2012; Fudenberg et al.,
2015). It encompasses any additive random utility model (ARUM) (Hofbauer & Sandholm, 2002;
Fosgerau et al., 2024).
The αPUM employs α-Tsallis entropy (Tsallis, 1988) as its perturbation function, enabling explicit
representation of zero probabilities (Watanabe & Hidaka, 2023). The choice probability vector
pn ≡ (pni)i∈Un

for a decision-maker n ∈ N facing the full set of alternatives Un is defined in
αPUM as:

pn = arg max
qn∈∆n

{
qT
n vn(Xn;β) +

1

µ
Hα(qn)

}
, (1)

where ∆n is the |Un|-dimensional probability simplex. The vector vn(Xn;β) represents deter-
ministic utilities, which are often assumed to be a linear combination of the explanatory variable
matrix Xn and the parameter vector β. The parameter µ is a scale parameter, standardized to
µ = 1 unless otherwise specified. The term Hα(qn) is the α-Tsallis entropy:

Hα(qn) =

{
1

α(α−1)

∑
j∈Un

(
qnj − qαnj

)
, α ̸= 1,

−
∑

j∈Un
qnj ln qnj , α = 1,

(2)

where α controls the entropy. As α → 1, Hα(qn) converges to the Shannon entropy. Thus, αPUM
includes the multinomial logit (MNL) model as a special case when α = 1.
When α > 1, the first-order condition reveals a threshold behavior:

pn = [(α− 1)vn − v⋆n1]
1

α−1

+ , (3)

where v⋆n is a unique threshold, 1 is a vector of ones, and [x]+ = max(x, 0). This shows that αPUM
assigns zero probabilities to alternatives with utilities below v⋆n/(α−1). The number of alternatives
with zero probabilities increases with higher α, leading to sparser probability distributions. The
set of alternatives with positive choice probabilities can be regarded as the consideration set in the
αPUM framework.

Estimation method

The parameters θ ≡ (α,β) are estimated by maximizing the log-likelihood function, calculated as
follows:

Lθ(p;y) ≡
∑
n∈N

yn lnpn, (4)

where yn ≡ (yni)i∈Un
represents the observed choice probability vector for decision-maker n ∈ N .

In the estimation process, if the choice probability for an observed alternative becomes zero, the
logarithmic term in equation (4) cannot be evaluated. To prevent this issue, small probabilities
are assigned to zero-probability alternatives, a technique commonly used in MNL estimation.
Maximizing the log-likelihood in equation (4) benefits from the differentiation of the choice prob-
ability pn with respect to the parameters θ. Although the choice probability in αPUM, derived
as the solution to the optimization problem in equation (1), does not have a closed-form expres-
sion, its derivatives with respect to both α and β can be expressed in closed form (Correia et al.,
2019; Peters et al., 2019; Blondel et al., 2020). This enables computationally efficient log-likelihood
maximization, making the estimation method applicable to large-scale choice problems.

3 Results and discussion

This section validates the proposed model and estimation method described in Section 2 using
synthetic data and applies the method to a destination choice model with real data to demonstrate
its applicability and effectiveness.

Validation with synthetic data

To validate the proposed method, simulations were conducted assuming a two-stage decision-
making process: a conjunctive noncompensatory formation of the consideration set followed by
compensatory choice within the consideration set (Payne, 1976).
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In the experimental setup, data was generated for N = 1000 users, each facing a choice set Un

of size |Un| = 100. Alternatives were characterized by two explanatory variables sampled from
a uniform distribution over [0, 1]. Consideration sets were formed by selecting alternatives with
explanatory variables below the threshold τ = [0.7, 0.7]. Choices within the consideration set were
made using the MNL model with true parameters β⋆ = [−2.0,−1.0]. Both αPUM and MNL
were estimated on the full set Un, without information on the true consideration sets. The data
generation and estimation process was repeated for R = 100 replications.
The estimation results are summarized in Table 1. Here, M(xi) represents the marginal effect of
variable i, calculated using probability-weighted sample enumeration (Train, 2009). The t-values
are evaluated as follows: α against 1, β against 0, and M against the true values. It is important
to note that direct comparison of true parameter values with estimated values is not meaningful
when the data generation and estimation models differ, as is the case with MNL and αPUM, due
to their fundamentally different model structures.

Table 1: Estimation results in synthetic data
TRUE αPUM MNL

Val. S.E. Est. S.E. t-val. Est. S.E. t-val.
α — — 1.500 0.045 11.01 — — —
β1 -2.0 — -0.357 0.077 -4.64 -3.189 0.110 -29.07
β2 -1.0 — -0.299 0.065 -4.59 -2.537 0.093 -27.21
τ1 0.7 — — — — — — —
τ2 0.7 — — — — — — —

M(x1) -0.048 0.000159 -0.0502 0.0034 -6.46 -0.0777 0.0049 -60.58
M(x2) -0.024 0.000079 -0.0420 0.0029 -62.05 -0.0618 0.0040 -94.48
L0 -4605.17 — -4605.17 —
LL -4001.20 23.22 -4043.93 24.34
ρ̄2 0.1305 0.0050 0.1214 0.0052
AIC 8008.39 46.44 8091.85 48.69

From the perspective of ρ̄2 and AIC, αPUM demonstrates superior explanatory and predictive
performance compared to MNL. This improvement highlights the value of endogenizing considera-
tion set restrictions in the modeling process. Additionally, MNL tends to overestimate parameters
and marginal effects. This overestimation appears to result from artificially increasing parameter
sensitivity to mimic sparsity. By contrast, αPUM reduces these biases, improving the reliability
of the estimated results.
These findings are explored in more detail in Figures 1 and 2, which illustrate, for each alternative,
the relationship between the true and estimated values for choice probabilities and marginal effects,
respectively. MNL overestimates both measures for alternatives with larger true probabilities,
with the discrepancies becoming more pronounced as true values increase. In contrast, αPUM
mitigates these discrepancies, providing more accurate estimates. Such discrepancies in MNL can
significantly affect policy evaluations, underscoring the benefits of using αPUM when consideration
sets are restricted. The robustness of αPUM’s performance was confirmed through additional tests
varying parameter values and sample sizes.
Figure 3 illustrates how αPUM estimates the consideration set in relation to observed alterna-
tives. In the data generation process, only alternatives with explanatory variable values below the
threshold [0.7, 0.7] were included in the true consideration set, resulting in observed alternatives
being distributed exclusively within this region. αPUM estimates consideration sets that expand
like a convex hull enclosing the observed alternatives. This behavior arises because assigning zero
probability to an observed alternative leads to a significant penalty in the log-likelihood function.
Under the current assumption of a linear utility function, αPUM tends to overestimate the size of
the true consideration set, especially when sufficient observations are available.

Empirical analysis

To demonstrate the applicability of the proposed method, it was applied to a destination choice
model using real data from an activity survey conducted in March 2014 in Aichi Prefecture, Japan.
The survey collected information on respondents’ activities, including the type and location of each
activity, recorded hourly for their most recent weekday. Focusing on 233 shopping trips originating
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Figure 1: Comparison of true and estimated choice probabilities for each alternative:
αPUM (left) and MNL (right).

Figure 2: Comparison of true and estimated marginal effects for each alternative: αPUM
(left) and MNL (right).
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Figure 3: Observed alternatives and estimated consideration set.

from home, the analysis considered a full set of alternatives Un comprising 5,334 1-km mesh zones
across the prefecture.
The explanatory variables include distance band dummies (nearest: 0–2 km, short: 2–5 km,
medium: 5–10 km, long: over 10 km), the number of establishments (log-transformed) obtained
from the Economic Census for Business Activity (Statistics Bureau of Japan, 2019), and the sales
floor area (log-transformed, in hundreds of square meters) obtained from the Commercial Statistics
(Ministry of Economy, Trade and Industry, 2017). To capture the variation in shopping behaviors
across distances, the number of establishments and sales floor area were included as interaction
terms with the distance band dummies. For instance, routine purchases for daily necessities are
more common at shorter distances, while comparison shopping for durable goods tends to occur
at longer distances.
The estimation results, presented in Table 2, indicate that αPUM outperforms MNL in terms of
likelihood and AIC, suggesting better explanatory and predictive performance. The parameter α
is estimated to be significantly greater than 1, indicating the existence of restricted consideration
sets for shopping trips. Moreover, αPUM enhances interpretability by demonstrating that sales
floor area is significant for shorter distances, whereas the number of establishments is significant
for longer distances—aligning with the intuitive understanding that shopping trips include both
routine purchases and comparison shopping.
Figure 4 visualizes the choice probabilities for each mesh when a specific origin mesh is given. Under
MNL, consideration set restrictions are not accounted for, resulting in positive probabilities being
assigned to all 5,334 alternatives. In contrast, αPUM restricts the set of alternatives with positive
probabilities to 627 meshes, allowing clearer interpretation of likely destinations. Additionally,
as shown in Figure 5, which depicts the choice probabilities for alternatives assigned positive
probabilities under αPUM, αPUM provides sharper distinctions for low-probability alternatives
compared to MNL. This behavior demonstrates αPUM’s ability to limit alternatives to those with
meaningful probabilities, thereby enhancing both interpretability and robustness.

4 Conclusions

In this study, we demonstrated that αPUM, a perturbed utility model capable of explicitly rep-
resenting zero probabilities, enables the unique estimation of consideration sets and model pa-
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Table 2: Destination choice model estimation results (shopping purpose)
Purpose shopping

Number of samples 233
αPUM MNL

Est. t-val. Est. t-val.
α 1.181 12.37 ⋆ — — —
Distance band dummies

Inner trip — — — — — —
Nearest: 0-2km -2.861 -9.94 ⋆ -4.202 -8.49 ⋆
Short-distance: 2-5km -4.228 -22.32 ⋆ -8.824 -5.44 ⋆
Medium-distance: 5-10km -6.845 -18.46 ⋆ -19.137 -17.47 ⋆
Long-distance: 10km- -10.273 -24.97 ⋆ -34.359 -26.86 ⋆

Nearest: 0-2km
Number of establishments -0.084 -0.83 -0.219 -0.87
Sales floor area 0.510 6.53 ⋆ 0.847 2.99 ⋆

Short-distance: 2-5km
Number of establishments 0.003 0.04 -0.241 -1.24
Sales floor area 0.419 5.55 ⋆ 1.228 5.87 ⋆

Medium-distance: 5-10km
Number of establishments 0.479 3.90 ⋆ 1.754 1.55
Sales floor area 0.221 1.83 0.498 0.46

Long-distance: 10km-
Number of establishments 0.617 2.34 ⋆ 2.839 5.59 ⋆
Sales floor area 0.495 1.61 1.369 3.42 ⋆

L0 -1999.572 -1999.572
LL -655.420 -658.569
AIC 1336.840 1341.137

Figure 4: Estimated choice probability for each mesh when the starting mesh is specified:
αPUM (left) and MNL (right).
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Figure 5: Comparison of predicted choice probabilities between αPUM and MNL.

rameters, even when the full set of alternatives is mechanically defined. The proposed method
was validated using generated data under the assumption of conjunctive consideration set for-
mation. The results showed that the MNL model, which does not account for consideration set
restrictions, tends to overestimate choice probabilities and marginal effects, particularly for higher
values, leading to potential biases in policy evaluation. In contrast, αPUM mitigated these biases,
thereby improving estimation accuracy. Furthermore, the method was applied to a destination
choice model using real data with a large number of alternatives, confirming its applicability and
effectiveness in practical scenarios.
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